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Abstract

The paper analyzes the role of land in explaining non-balanced growth in
an economy. It develops a three-sector, closed-economy model, with agriculture,
manufacturing and services sectors. The central assumption is that agriculture
is most intensive in the use of land, followed by manufacturing and then services.
Exogenous growth in sectoral TFP and labor serve and endogenous evolution
of capital form the basis of growth. It is shown that if TFP growth rate diffe-
rences are small, the ranking of sectoral output growth rates is the reverse of
that of sectoral land-intensity, i.e., the growth rate is the fastest in the servi-
ces sector, followed by manufacturing and then agriculture. The same growth
ranking is preserved in the presence of capital accumulation if services are the
most capital-intensive sector, followed by manufacturing and then agriculture.
We also decompose sectoral growth differentials to analyze the strengths of the
different sources of growth. We find that in short run land intensity differences
play a larger role in explaining non-balanced growth and in long run the capital
intensity differences have a larger explanatory power.
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1 Introduction

Non-balanced growth is a salient feature of a modern economy (Ray (2010) among

others). If we disaggregate an economy into three broad sectors - agriculture, manu-

facturing and services - non-balanced growth is reflected in terms of differential output

growth across these three sectors. EUKLEMS data records gross output volume indi-

ces of these sectors (barring those service sectors where government plays a significant

role, like health and social services, public administration etc.) for member countries

of the European Union as well as selected developed countries. Compounded annual

growth rates based on this data are reported in Table 1.

We observe that for majority of countries in the data set, over the respective sample

periods, output growth is highest in the services sector, followed by manufacturing while

agriculture has posted the lowest growth rate among the three sectors.1 We may term

this as SMA ranking.

In Table 1, U.S. and U.K. can be noted major exceptions: over the period 1970s-

2007, agriculture has outpaced manufacturing while the services sector has witnessed

the fastest growth rate. However, if we consider more recent years, the SMA ranking

holds for them too. Over the period 1992-2007, the annual growth rates of the services,

manufacturing and agriculture sectors in the U.S. were 4.6%, 1.3% and 1.2% respecti-

vely, and in the U.K., these were 4.1%, 0.3% and -0.5% respectively over the period

1989-2007.2

It is generally difficult to obtain data on sectoral gross outputs for developing eco-

nomies. However, sector-wise breakups of value-added, rather than gross output, are

available for BRICS countries. Figure 1 depicts the evolution of sectoral GDP shares in

these countries from 1970 to 2012.3 It can be seen that in all BRIC countries the share

of services value added has increased dramatically - which includes the manufacturing

1The countries in the EUKLEMS dataset were among the top 50 countries in the global human
development index ranking, 2013, hence considered ‘developed’.

2Other nations in the EUKLEMS dataset which are ‘anomalies’ to SMA ranking are mostly the
Eastern European countries, which face obstacles in the growth of service activities. As noted in Sanz
(2014), structural rigidities due to national regulations in service sectors and low levels of integration
in the internal market, hinder the development of high value added business services. As these frictions
are stronger in the more interior European countries, this explains the slower growth of services sector
output in these countries. Overall, it is reasonable to state that in recent years, in the absence of
any governance issues, market forces have driven output growth to be highest in the services sectors,
followed by manufacturing and agriculture, in that order.

3Unlike the EUKLEMS data set, the World Development Indicators includes all services (both
market and non-market produced) in the ‘services’ category.
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Table 1: Compounded Annual Growth Rate (in %) for Sectoral Real Gross Output for
Selected Developed Countries. Source: EUKLEMS Database

Country Years Agriculture Manufacturing Services
Australia 1970 – 2007 1.4 1.8 3.5
Austria 1970 – 2007 0.7 2.9 3.7
Belgium 1970 – 2007 0.8 2.4 2.7
Canada 1970 – 2004 2.8 2.9 4.5
Cyprus 1995 – 2007 1.1 0.3 4.3
Czech Republic 1995 – 2007 0.3 6.0 4.3
Denmark 1970 – 2007 1.5 1.5 3.2
Estonia 1995 – 2007 11.6 16.6 15.8
Finland 1970 – 2007 0.7 2.8 3.4
France 1970 – 2007 1.0 2.2 3.2
Germany 1970 – 2007 1.5 1.8 3.1
Greece 1970 – 2007 0.3 1.6 3.8
Hungary 1991 – 2007 -2.2 4.1 3.5
Ireland 1970 – 2007 1.9 6.1 4.7
Italy 1970 – 2007 0.5 2.6 3.1
Japan 1973 – 2006 -0.4 1.4 3.2
South Korea 1970 – 2007 2.3 9.4 7.8
Latvia 1995 – 2007 1.2 1.7 2.4
Lithuania 1995 – 2007 -0.2 6.3 6.7
Luxembourg 1970 – 2007 0.5 1.8 8.4
Malta 1995 – 2007 3.4 0.1 4.5
Netherlands 1970 – 2007 1.7 2.1 3.4
Poland 1995 – 2006 0.1 6.9 4.9
Portugal 1970 – 2006 1.2 2.9 3.8
Slovak Republic 1995 – 2007 1.8 6.7 3.0
Slovenia 1995 – 2006 -0.3 4.3 3.8
Spain 1970 – 2007 2.1 2.8 3.7
Sweden 1970 – 2007 0.8 2.1 2.7
United Kingdon 1970 – 2007 1.0 -0.1 3.5
USA 1977 – 2007 1.6 1.1 4.2
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Figure 1: Sectoral Shares in Value Added for BRICS nations. Source: World Develop-
ment Indicators, World Bank

hub of the World - China. In two of five BRICS countries, the manufacturing share has

improved, but far less compared to services. The SMA ranking in terms of value-added

holds for all BRICS countries except for Russia. The same ranking would be implied

in terms of sectoral output unless relative price movements also have the same ranking

and are sufficiently large.

Thus, if one were to seek a general pattern of inter-sectoral output, available data

suggest the SMA ranking across countries. The current paper analyzes supply-side

factors that may lead to such ranking in a market-oriented economy. Even for those
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Table 2: Change in Sectoral Value Added Percentage Shares for BRICS Nations over
the Entire Sample Period. Source: World Development Indicators, World Bank

Country Years Agriculture Manufacturing Services
Brazil 1970 – 2009 -14.5 -11.7 26.2
Russia 1989 – 2009 -12.1 -17.4 29.5
India 1970 – 2009 -25.1 7.4 17.7
China 1970 – 2009 -11.8 1.4 10.4
South Africa 1970 – 2009 -8.2 -6.7 14.9

countries which do not follow the stylized output growth ranking, the model is general

enough to identify the sources/factors that account for such deviations from the broad

pattern (such as USA, UK, South Korea over the period 1970s-2007).

Conventional explanation behind why the services sector may grow faster than ma-

nufacturing and manufacturing may grow faster than agriculture is based on demand-

side reasons, e.g. Kongsamut et al. (2001), Eichengreen and Gupta (2013), among

others. Here, the central idea is that income elasticity of demand for services is greater

than unity, while that of the agriculture and manufacturing goods are less than unity

and unity respectively. This explains that over time demand for services grows faster

than demand for manufacturing and agriculture, which yields the SMA ranking.

There are supply-side models of non-balanced growth across sectors, but they do

not proclaim to explain why the service sector grows faster than manufacturing. For

instance, Baumol (1967) considers two sectors, both using only labor as input, whe-

rein one sector has higher productivity growth than the other. Total labor supply is

fixed. In long run, the output ratio is believed to be a constant (as neither of the two

commodities tend to ‘vanish’ in long run). Given the technologies, it is immediate that

labor in the less productive sector should grow at the expense of the more productive

sector. Under the presumption that services and manufacturing are respectively less

and more productive vis-a-vis each other, this would imply higher employment gro-

wth in the services sector compared to manufacturing. However, in developing coun-

tries data suggests a higher TFP growth in the services sector than in manufacturing

(Ghani (2010)), which implies that productivity growth differences do not explain the

trends in employment growth in these countries. Ngai and Pissarides (2007) develop

a multi-sector model to examine the role of differences in TFP growth in explaining

non-balanced sectoral growth in employment. All sectors share the same production

function, but differ in productivity growth rates. This implies that the price of a less
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productive sector grows at a faster rate compared to the price of a more productive

sector. Of the m goods, m− 1 are final consumption goods and one good is consumed

as well as invested in the form of capital. If the substitutability between the final goods

is low, i.e. the consumption demand is too inelastic, the expenditure on a particular

good is driven by its price change. Thus, the economy’s share of expenditure on the

least productive sector grows and along the balanced growth path employment shifts

from the more productive sector to the less productive sector. This corroborates with

the changes in employment shares witnessed in the US economy. Employment in the

agricultural sector (that has witnessed the highest growth in TFP) has declined while

that in the services sector (having lowest TFP growth rate) has risen. Manufacturing,

being the capital producing sector, witnessed an initial rise and then fall in its employ-

ment share. However, both the Baumol and the Ngai-Pissarides models are at odds

with the observed pattern of sectoral output growth ranking.

More recently, Acemoglu and Guerrieri (2008) have analyzed how sectoral intensity

differences in the use of capital may lead to non-balanced growth of output as well

as employment. In a two-sector model of capital accumulation with two factors of

production, labor and capital, they show that the capital accumulation will be accom-

panied by capital deepening so that the output (employment) of the relatively capital

intensive sector would grow faster (slower). While the Acemoglu-Guerrieri model falls

short of asserting that their model meant to explain the higher growth rate of the

service sector relative to manufacturing, they present data on capital intensities across

sectors in the U.S., which indicates that the services sector as a whole is the mildly

more capital intensive than manufacturing.4 Hence, one can interpret their model as

one which provides a capital deepening argument as to why the service sector output

would grow faster than manufacturing, but does not explain the higher employment

growth of the services sector vis-a-via manufacturing sector.

How far does the capital deepening argument apply to the differences in growth

rates between manufacturing and agriculture? To answer this, we look at the non-

labor shares across services, manufacturing and agriculture for OCED and some other

countries. Insofar as non-labor input is representative of capital, Table 3 shows that

for many countries, services are mildly more capital intensive than manufacturing,

4They tabulate the capital shares for selected industries within the services and manufacturing
sectors. Over 1987-2005, the average capital share in manufacturing was about 0.37 and that in the
selected services industries was about 0.373. According to EUKLEMS database, in the period 1970-
2007, USA, UK have a slightly higher capital intensity in services as compared to manufacturing.
This stems for higher use of IT capital in services sector. Also see Kutscher and Mark (1983).
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Table 3: Sectoral Non-Labor Shares of Selected Countries. Source: OECD Database
(2005-10)

Country Agriculture Manufacturing Services
France 0.76 0.34 0.42
Spain 0.79 0.40 0.48
Japan 0.85 0.50 0.47

Germany 0.55 0.31 0.49
Australia 0.77 0.42 0.44

UK 0.53 0.29 0.38
USA 0.71 0.42 0.43
EU 0.65 0.33 0.41

China 0.09 0.69 0.63
Brazil 0.57 0.51 0.52

while agriculture is more capital intensive than manufacturing. Therefore, while the

capital deepening argument serves to explain (in part) why the service sector would

grow faster than manufacturing, its applicability toward explaining differential growth

between manufacturing and agriculture is relatively weak.

The central objective of this paper is to introduce the role of land as a non-

reproducible input and differences in the use of land intensity in production in the

context of stylized differences in growth across services, manufacturing and agriculture.

True, land does not figure prominently in the literature on growth.5 But, as much in-

controvertible is that it is required for production, transportation, consumption, waste

disposal, etc. In the last decade, the demand for land has grown phenomenally, which,

in turn, has led to substantial increase in land prices. Even if we set aside land demand

for housing, the production sectors have been investing in land, both in the developed

and developing countries. According to Land Matrix (an online database on land de-

als), over 48 million hectares of land has been bought and sold since 2000 till 2013.

While the largest land deals took place in South East Asia (primarily India, China

and Malaysia), the “land rush” in the last five years or so is seen in Africa (e.g. South

5There are a few studies only. Nichols (1970) is one of the early papers, where land is introduced
as third input in production, besides labor and capital in a Solow economy. There is land and labor
augmenting technical progress at an exogenous rate. Wealth has two components: capital and the
value of land, a function of price of land. In steady state, land price and output grow at the same
rate. Roe et al. (2009) have several chapters on multi-sector growth, with land as an input only
in agriculture sector (not in manufacturing or services) and with the added role of land as an asset.
Unlike Nichols (1970), Roe et al. (2009) use an infinite-horizon Ramsey framework, but in both papers
in steady state the asset value of land grows at the same rate as the GDP of the economy.
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Africa, Tanzania and Mali).

Land contributes to different sectors of production in different ways. In agriculture,

it is almost synonymous with output – food. In manufacturing, it provides an area

for production – base and space, and, for many services, it is just a location. In most

countries that have favorable climate and relief conditions, a large proportion of land

is used in agriculture.6 Setting up manufacturing plants requires large expanses of

land. Most countries have allocated vast regions to develop manufacturing plants and

townships for workers together with transportation and other infrastructures facilities.

Of late, land issues have been springing up in countries like India and China. In China,

the demand for industrial land is about 67,000 acres per year, but the supply is less than

40% of that (Anderson (2011). In India too, the demand for land has played a crucial

role in the growth of industry. Difficulty in acquiring land is one of the primary reasons

for low investment in power sector (Singh (2012)).7 Service-sector firms or providers,

typically small in size, often require a modest ‘floor space’ – in a multi-storey building,

at a home or along the corridors of shops and other establishments.

It is almost natural to hypothesize that among the three broad sectors, agriculture

is most land-intensive, manufacturing is the next and the services sector is the least

land-intensive. The implication of this hypothesis towards non-balanced growth is

immediate: the supply of land being inelastic, ceteris paribus, the services sector would

tend to grow faster than manufacturing and the latter would tend to grow faster than

agriculture.

However, data on inter-sectoral land-use intensity is rather meager. To our know-

ledge, CORINE data is the only database which classifies land-use by industry type,

and it covers European countries only. Using this database, Hubacek and Giljum (2003)

calculate total sectoral land area (in hectares) per unit of sectoral output (in tones)

and call this measure the land appropriation coefficient (LAC). This measure quanti-

fies the intensity of land-use in different sectors. They find that in 1999, the LAC for

agriculture in EU-15 was 89.67, 0.79 for manufacturing and 0.19 for electricity, water,

transport and services. This indicates that agriculture output has very high depen-

dence on land as compared to manufacturing and services - which is supportive of our

6According to World Bank database, the share of arable land of total available land is 0.6 in India,
0.3 in Brazil, 0.4 in USA and 0.7 in UK.

7Decentralized manufacturing production is a relatively new trend. A firm manufactures its good
in parts in plants across the globe. Various parts of a product are then assembled near the points of
sale. Although this method has greatly reduced the manufacturing sector’s dependence on vast plots
of land, land continues to be an important factor for industrial growth.
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hypothesis on land intensity.

It is important to note however that most measures of capital include land. If so,

given our hypothesis on land intensity differences, the difference of non-labor share be-

tween services and manufacturing would underestimate that of capital share between

the two sectors and that between manufacturing and services. In other words, the

presumption of the hypothesis of services being more capital intensive than manufac-

turing and the latter being more capital intensive than agriculture is higher than what

is suggested in Table 3.8

More specifically, the model of the paper provides a non-balanced growth decomposi-

tion into sectoral TFP growth rates and the parts attributable to intensity differences

in terms of land use and capital use and how TFP shocks may affect non-balanced

growth in the long run and in the short run.

Section 2 presents an elementary model of growth without capital accumulation,

featuring land as an input in production. For analytical tractability it is assumed

that agriculture and manufacturing use land and labor, while services are produced by

labor alone. Growth is driven by TFP growth across sectors and growth of labor, both

exogenous. The impact of growth of labor is proportional to land-intensity differences.

By construction, non-balanced growth decomposition does not include differences in

capital intensity. The model in section 2 serves as a prelude to our main model in

Section 3, which incorporates capital accumulation. Growth decomposition includes

capital intensity differences as well and we characterize that for the long run and during

transition. Furthermore, we analyze the impact of TFP shocks on growth differences

in the long run and during transition. Section 5 concludes.

2 An Elementary Growth Model with Land as an Input

There are three sectors: agriculture (a), manufacturing (m), the numeraire sector, and

services (s). Each is produced in a perfectly competitive market with constant-returns

technology and consumed by households. There are two primary inputs - labor and

land. Land supply is fixed. Sectors a and m use both inputs, while sector s uses labor

only. Thus, sector s is (trivially) the least land-intensive. We assume sector a is more

land-intensive, relative to labor, than sector m. The three goods are differentiated on

8It must however be borne in mind that neither the land-intensity ranking nor the capital intensity
ranking should be viewed as substitutes of each other, and neither is meant to claim itself as the most
important explanation for non-balanced growth.
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the basis of land intensity differences, not through differences in household’s income

elasticity of their demand. Land has an additional role of being an asset. Households

‘accumulate’ land, although in the aggregate, land accumulation is zero.

Technologies in sectors a and m are Cobb-Douglas. Let γ and α be the share land

in total cost in these sectors respectively. That sector a is more land intensive than

sector m is captured by

Assumption 1 γ > α.

We shall express production functions in terms of unit cost functions. These are

ca(rDt, wt)/At ≡ rγDtw
1−γ
t /At for agriculture and cm(rDt, wt)/Mt ≡ rαDtw

1−α
t /Mt for

manufacturing. We assume constant-returns technology for services too: cs(wt)/St ≡
wt/St. Variables rDt and wt are the land rental rate and wage rate respectively and At,

Mt and St are overall productivity (TFP) parameters in sectors a, m and s respectively.

We can now write down the production side of this economy in general form in

terms of the familiar zero-profit and full-employment conditions, a la Jones (1965).

ca(rDt, wt)

At
= pat;

cm(rDt, wt)

Mt

= 1;
cs(wt)

St
= pst (1)

1

At

∂ca(rDt, wt)

∂rDt
Qat +

1

Mt

∂cm(rDt, wt)

∂rDt
Qmt = D̄ (2)

1

At

∂ca(rDt, wt)

∂wt
Qat +

1

Mt

∂cm(rDt, wt)

∂wt
Qmt +

1

St

dcs(wt)

dwt
= Lt (3)

where pat and pst are prices of food and services (in terms of manufactures), D̄ is the

total, fixed endowment of land in the economy and Lt is the total labor supply. These

are five equations in five variables: the two factor prices and three outputs.

In the demand side, a household’s total utility at t equals LtUt, where

Ut = φa lnCat + φm lnCmt + φs lnCst, φa, φm, φs > 0; φa + φm + φs = 1,

and Cjt denotes per capita consumption of good j. This is maximized subject to the

budget:

Lt(patCat + Cmt + pstCst) = Et, (4)

where Et is the total expenditure. The demand functions are:

LtCat =
φaEt
pat

; LtCmt = φmEt; LtCst =
φsEt
pst

. (5)
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The static equilibrium is described by the supply-side equations, and, the following

market clearing conditions:

LtCat = Qat; LtCmt = Qmt; LtCst = Qst. (6)

Any two of the above along with supply-side equations solve the system. Let Njt

denote factor N employed in sector j, where N = D,L (denoting land and labor) and

j = a, m, s.

Proposition 1

Dat ∝ D̄; Dmt ∝ D̄; Lat ∝ Lt; Lmt ∝ Lt; Lst ∝ Lt

Qat ∝ AtD̄
γL1−γ

t ; Qmt ∝MtD̄
αL1−α

t ; Qst ∝ StLt

rDt ∝MtD̄
−(1−α)L1−α

t ; wt ∝MtD̄
αL−αt

pat ∝ A−1t MtD̄
−(γ−α)Lγ−αt ; pst ∝ S−1t MtD̄

αL−αt

Et ∝MtD̄
−(1−α)L1−α

t .

Proof: See Appendix A.

Proposition 1 means that sectoral factor employment levels are independent of pro-

ductivity parameters. They vary directly with respective total factor supplies only.

There is no cross dependence – total labor supply does not affect sectoral land al-

locations nor does total land supply affect sectoral labor allocations. Cobb-Douglas

specifications imply that the ratio of sectoral land allocation, Dat/Dmt, is proportional

to the ratio of value of outputs, patQat/Qmt. In equilibrium, this is equal to the ratio

of respective consumption expenditures, which, in turn, is constant under log-linear

preferences. Thus, sectoral land allocation is proportional to total land supply and

independent of total supply of labor. Same reasoning holds for labor allocations.

We assume that population (labor supply) and TFP parameters grow at constant

rates:
Lt+1

Lt
= gL;

At+1

At
= gA;

Mt+1

Mt

= gM ;
St+1

St
= gS, (7)

where gL, gA, gM and gS are greater than unity.

The household’s consumption/land-investment decisions are inter-temporal. Let

ρ′ (< 1) and ρ ≡ ρ′gL (< 1) be the individual and population (household) size adjusted

time discount factor. The household’s dynamic problem is to choose {Et}∞0 , {Dt}∞1

10



that maximize its discounted lifetime utility

∞∑
t=0

ρt (lnEt − φa ln pat − φs ln pst)

subject to pDt(Dt+1−Dt)+Et ≤ wtLt+rDtDt. Here Dt is the household’s land holding

and pDt is the price of land (in terms of manufactures). The Euler equation and the

transversality conditions are:

Et+1

Et
= ρ

(
rDt+1 + pDt+1

pDt

)
. (8)

lim
t→∞

ρt

Et
pDtDt+1 = 0. (9)

The output and employment dynamics can be summarized as

Proposition 2 Employment in each sector grows at the (gross) rate of gL, and, output

growth rates have the expressions:

gQa = gAg
1−γ
L ; gQm = gMg

1−α
L ; gQs = gSgL. (10)

Proof: It follows immediately from Proposition 1.

Thus, non-balanced growth results from differential TFP growth, differential land

intensity (as long as total labor supply has a positive growth rate). Let g̃x denote the net

growth rate of variable x, equal to gx−1. Expressions in (10) imply g̃Qa ' g̃A+(1−γ)g̃L,

g̃Qm ' g̃M + (1− α)g̃L and g̃Qs ' g̃S + g̃L. Hence

g̃Qm − g̃Qa ≡ δm−a = (g̃M − g̃A) + (γ − α)g̃L;

g̃Qs − g̃Qm ≡ δs−m = (g̃S − g̃M) + αg̃L,
(11)

where δ’s denote difference in (net) growth rates of two sectors. Expressions in (11) are

decompositions of sectoral growth rate differentials into TFP differentials (first term in

the brackets in the r.h.s.) and those due to land intensity differentials (second term in

the r.h.s.). Furthermore, because land intensities differ across sectors relative to labor,

Proposition 3 Sectoral growth differentials ascribed to land intensity differential are

proportional to the growth rate of labor.
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Notice that land allocation between agriculture and manufacturing is invariant over

time, implying that technologies in these sectors exhibit decreasing-returns in terms of

the variable input, labor, as opposed to constant-returns in services. Thus, differences

in land-intensity amounts to difference in scale with respect to variable inputs, which

can explain non-balanced growth across sectors. The role of land use in non-balanced

growth is brought out by

Corollary 1 Under Assumption 1 and if TFP differences are not sufficiently large,

the services sector output grows the fastest, followed by the manufacturing sector and

then the agriculture sector.

There are two general conclusions. First, besides differences in TFP growth, diffe-

rences in land intensity in production explain the stylized facts on relative growth rates

of services, manufacturing and agriculture. Second, the growth ranking in Corollary 1

may hold even when gA > gM > gS. That is,

Corollary 2 Output growth ranking may be exactly the opposite of TFP growth ran-

king.

Remarks

a. For developing countries, data on TFP growth is rather scarce. The few studies

on TFP growth in developing countries like India, China, Pakistan, do not show

any pronounced rankings (Bosworth and Collins (2008), Bosworth and Maertens

(2010)). This accords with Corollary 1.

b. However, Wachter (2001), a European Central Bank study, shows that in the

U.S. and France the TFP growth of manufacturing far exceeds that of services

sector. But the services sector in these countries grow faster than manufacturing.

Our model conveys that land constraints may very well be an underlying reason,

although an empirical investigation of the same is beyond our scope.

It also immediately follows from (10) that

Corollary 3 An increase in the TFP growth rate in a sector leads to one-to-one in-

crease in the growth rate of output in that sector, without any spillover effects to other

sectors.
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Real GDP and Land Price Dynamics

Apart from sectoral growth rates, the model predicts the growth rate of real GDP, and,

that of land price in particular. The GDP of the economy in terms of manufactures

is equal to Yt ≡ patQat + Qmt + pstQst. In equilibrium, both patQat and pstQst are

proportional to Qmt. Hence GDP in terms of manufactures grow at the same rate as

does Qmt - which, in view of Proposition 1, equals gMg
1−α
L ≡ ḡ.

Assumed preferences imply a general price index, Pt ≡ pφaat p
φs
st , where the price of

goods are weighed by their respective weights in the household’s preferences. The real

GDP equals Yt/Pt. As the value of three outputs are proportional to each other, each

is proportional to real GDP. Hence

Yt
Pt
∝ (patQat)

φaQφm
mt (pstQst)

φs

pφaat p
φs
st

∝ Qφa
atQ

φm
mtQ

φs
st .

It follows from Proposition 2 that the growth rates of real GDP and per capita real

GDP are, respectively: gφaA g
φm
M gφsS g

1−(φaγ+φmα)
L and gφaA g

φm
M gφsS g

−(φaγ+φmα)
L .

Corollary 4 If there is no TFP growth in the three sectors, then real GDP per capita

falls over time.

This is an outcome of limited supply of land. If there is no TFP growth, then agriculture

and manufacturing sector grow slower than the total labor supply while the growth

rate of services sector is same as that of the total labor supply. In equilibrium per

capita real GDP falls over time.

In the light of Proposition 1, Et and rDt both grow at the rate ḡ. Using this, the

land price dynamics is solved from the Euler equation (8) as a first-order difference

equation:

pDt =

(
pD0 −

ρrD0

1− ρ

)(
ḡ

ρ

)t
+
ρrD0

1− ρ
ḡt. (12)

where the initial land rental rate, rD0, is derived from the static system. As 0 < ρ < 1,

ḡ/ρ > g. Hence, initially, if pD0 6= ρrD0/(1 − ρ), it is evident from above that in

the long run, the first term in the r.h.s. of (12) would dominate and thus pDt would

tend to grow or decline at the rate ḡ/ρ. The transversality condition rules out this
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possibility however.9 Rational agents bring to pass the initial land price being equal

to pD0 = ρrD0

1−ρ , so that the first-term is zero and

pDt =
ρrD0

1− ρ
ḡt. (13)

It follows that

Proposition 4 Real land price grows at the same rate the real GDP of the economy.

3 Capital Accumulation

We now introduce capital and its accumulation. Capital is assumed to be made up

from the manufacturing good in one-to-one raio. We retain the land intensity ranking

of Section 2. As already discussed in the Introduction, capital intensity ranking, parti-

cularly between manufacturing and agriculture, is not clear-cut across countries, and,

insofar as our focus is on the role of land-use ranking, any definite ranking of capital

intensity is not necessary. However, for sharpness of results, we assume that capital

intensity is highest in services and least in agriculture. Further, for simplicity, we make

this assumption in its extreme form: that is, capital is not used in agriculture at all

while the service-sector is more capital intensive than manufacturing.10 The end result

is that the land-use intensity ranking and the opposite ranking of capital intensity both

contribute toward the stylized fact of services sector growing faster than manufactu-

ring and the latter faster than agriculture. Non-balanced growth decomposition has

three elements: differences in TFP, differences in capital-intensity and differences in

land-intensity relative to labor.

9If pD0 6= ρrD0/(1− ρ),

lim
t→∞

ρt

Et
pDtDt+1 =

ρt[pD0 − ρrD0/(1− ρ)](ḡ/ρ)t

E0gt
D̄ =

pD0 − ρrD0/(1− ρ)

E0
D̄ 6= 0.

Hence the transversality condition (9) is not met.
10Roe et al. (2009) develop a three-sector growth model in the context of a small open economy.

Agriculture and manufacturing are traded sectors, while services are not. Land is used only in agri-
culture sector. Capital and labor are used in all three sectors. In some chapters, the additional role of
land as an asset has been considered. While the framework is similar to ours, the focus of their work
is not on unbalanced growth. Using such a framework, they attempt to explain the dynamics of the
Turkish macro economy over the last four decades.
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3.1 Static Equilibrium

The production side of agriculture is same as in the elementary model. Manufacturing

production requires three primary inputs: land, labor and capital. The unit cost

function is given by cm(rDt, rt, wt)/Mt ≡ rαDtr
β
t w

1−α−β
t /Mt, α, β < 1, where rt is rental

earned by capital. The services sector uses labor and capital. Let cs(rt, wt)/St ≡
rηtw

1−η
t /St, where 0 < η < 1.

We impose

Assumption 2 γ >
α

1− β

Assumption 3 η > β.

Assumption 2 signifies that, between agriculture and manufacturing the former is more

land intensive relative to labor (in the total share of land and labor in the respective

sector).11 It replaces our earlier Assumption 1. Assumption 3 reflects that capital is

used more intensively in the services than in manufacturing; this is a weaker assumption

than the service sector being more capital-intensive than manufacturing in the total

share of capital and labor in the respective sector.

The supply side is expressed in terms of the following the zero profit and full

employment conditions

ca(rDt, wt)

At
= pat (14)

cm(rDt, rt, wt)

Mt

= 1 (15)

cs(rt, wt)

St
= pst (16)

1

At

∂ca(rDt, wt)

∂rDt
Qat +

1

Mt

∂cm(rDt, rt, wt)

∂rDt
Qmt = D̄ (17)

1

At

∂ca(rDt, wt)

∂wt
Qat +

1

Mt

∂cm(rDt, rt, wt)

∂wt
Qmt +

1

St

∂cs(rt, wt)

∂wt
Qst = Lt (18)

1

Mt

∂cm(rDt, rt, wt)

∂rt
Qmt +

1

St

∂cs(rt, wt)

∂rt
Qst = Kt, (19)

where Kt is the aggregate stock of capital at time t.

11If land were present in the service sector production, the corresponding assumption would have
been that manufacturing is more land intensive than service production in the total share of land and
labor in the respective sector.
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The demand functions for three goods are given by (5), except that Et, total hou-

sehold expenditure on goods, equals total income minus savings. Static equilibrium

yields sectoral levels of factor employment and output being dependent on producti-

vity levels, factor supplies as well as total expenditure (spending). Given Cobb-Douglas

technologies and log-linear preferences, such dependencies assume following forms:

Proposition 5

Dat = D̄ · fDa(Et,Kt); Dmt = D̄ · fDm(Et,Kt);

Lat = Lt · fLa(Et,Kt); Lmt = Lt · fLm(Et,Kt); Lst = Lt · fLs(Et,Kt);

Kmt = M
1

1−β
t D̄

α
1−βL

1−α−β
1−β

t · fKm(Et,Kt);Kst = M
1

1−β
t D̄

α
1−βL

1−α−β
1−β

t · fKs(Et,Kt);

Qat = AtD̄
γL1−γ

t · fQa(Et,Kt); Qmt = M
1

1−β
t D̄

α
1−βL

1−α−β
1−β

t · fQm(Et,Kt);

Qst = StM
η

1−β
t D̄

αη
1−βL

1−αη−β
1−β

t · fQs(Et,Kt);

rDt = M
1

1−β
t D̄−

1−α−β
1−β L

1−α−β
1−β

t · frD(Et,Kt); wt = M
1

1−β
t D̄−

α
1−βL

−α
1−β
t · fw(Et,Kt);

rt = fr(Et,Kt);

pat = A−1t M
1

1−β
t D̄−

(1−β)γ−α
1−β L

(1−β)γ−α
1−β

t · fpa(Et,Kt);

pst = S−1t M
1−η
1−β
t D̄

α(1−η)
1−β L

−α(1−η)
1−β

t · fps(Et,Kt).

where

Et ≡
Et

M
1

1−β
t D̄

α
1−βL

1−α−β
1−β

t

; Kt ≡
Kt

M
1

1−β
t D̄

α
1−βL

1−α−β
1−β

t

. (20)

Proof: See Appendix B.

Remarks

a. The variables Et and Kt can be termed as ‘normalized’ capital stock and total

household expenditure respectively.12 Later, the dynamic system will be expressed

in (Et, Kt) space and in the steady state both are constant.

b. Expressions in Proposition 5 anticipate that the growth process of factor employ-

ment and outputs will be governed by transitional effects via endogenous evolution

of Et and Kt and long run effects through exogenous growth of productivities and

increase in labor supply.

12These are counterparts of capital and consumption per effective labor in the one-sector, Solow-
Ramsey-Koopman model.
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c. Unlike in the previous model, the factor-employment ratios between two sectors

are not time-invariant. Because a part of manufacturing output constitutes sa-

vings, the ratio of the value of outputs is not equal to the ratio of consumption ex-

penditure. Therefore, for example, while Dat/Dmt is proportional to patQat/Qmt,

the latter ratio is not constant. Consequentially, land used in each sector de-

pends on total land supply as well as total supplies of labor and capital and total

household expenditure. The same holds for employment of labor and capital.

d. Productivity in manufacturing affects output of services because a part of manu-

facturing is converted to capital and capital is an input to the services sector. (It

would have affected agricultural output if capital were used in that sector.)

3.2 Dynamics

The representative household own two assets - land and capital. They maximize the

discounted sum of its welfare: L0

∑∞
t=0 ρ

tUt. It has two sources of income, which is

used to finance purchase of goods and asset accumulation: namely, wage earnings and

rental income from assets (land and capital). Its dynamic problem is

Maximize
∞∑
t=0

ρt(lnEt − φa ln pat − φs ln pst),

subject to Et +Kt+1 −Kt + pDt(Dt+1 −Dt) ≤ wtLt + rtKt + rDtDt,

where Ut is substituted by its indirect form. For simplicity, the rate of capital depre-

ciation is assumed to be zero. Given L0, D0 and K0, the household chooses {Et}∞0 ,

{Dt}∞1 and {Kt}∞1 . We obtain the standard Euler equation

Et+1

Et
= ρ(1 + rt+1). (21)

There are two transversality conditions: (9) and

lim
t→∞

ρt

Et
Kt+1 = 0. (22)

The no-arbitrage condition between the assets is

1 + rt+1 =
pDt+1 + rDt+1

pDt
. (23)
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The full employment condition for capital (19) and the service-demand function (5)

together imply

βQmt = rtKt − φsηEt. (24)

Thus, the law of motion of capital, Kt+1 = Qmt − φmEt +Kt, can be written as

Kt+1 =
rtKt

β
− φmβ + φsη

β
Et +Kt. (25)

This equation, the Euler equation, the no-arbitrage condition as well as the trans-

versality condition form the basis of the dynamic system. Using the expressions in

Proposition 5 and defining g◦ ≡ g
1

1−β
M g

1−α−β
1−β

L , eqs. (36) and (39) can be expressed as

Et+1

Et
=
ρ [1 + fr(Et+1,Kt+1)]

g◦

Kt+1 =
1

g◦
·
[
fr(Et,Kt)Kt

β
− φmβ + φsη

β
Et +Kt

]
.

(26)

These two equations form the core dynamic system of the economy.

For land price dynamics we rewrite the non-arbitrage equation (38) in terms of the

normalized variables

PDt+1 =
1 + fr(Et+1,Kt+1)

g
PDt − frD(Et+1,Kt+1), (27)

where PDt ≡ pDtM
− 1

1−β
t D̄−

α
1−βL

− 1−α−β
1−β

t .

3.3 Steady State

This is defined by Et = E∗ and Kt = K∗. Eqs. (40) yield

r∗ = fr(E∗,K∗) =
g◦

ρ
− 1

E∗

K∗
=

(g◦ − 1)(1− βρ) + 1− ρ
ρν

, where ν ≡ φmβ + φsη < 1.

(28)

The former is the modified golden rule, whereas the latter defines the trajectory where

savings grow at a constant rate. Eqs. (41) implicitly solve (E∗,K∗). In Appendix B we

show that the steady state exists and it is unique.

Factor employment shares and land allocation across sectors remain invariant. Furt-
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hermore, it follows directly from Proposition 5 that

Proposition 6 Along the steady state,

g∗Qa = gAg
1−γ
L ; g∗K = g∗Qm = g◦ = g

1
1−β
M g

1−α−β
1−β

L ; g∗Qs = gSg
η

1−β
M g

1−αη−β
1−β

L . (29)

Since capital is not used in the agriculture sector, the growth rate of this sector is

affected by the TFP growth in that sector and the exogenous growth rate of labor; it

is not affected capital accumulation.

As the manufacturing good is transformed one-to-one into capital, manufacturing

output and capital must grow at the same rate. Notice that TFP growth in manufac-

turing has a multiplier effect - captured by the exponent 1/(1−β) - on growth rates of

manufacturing and capital. It is because it promotes capital accumulation and hence

manufacturing output expands due to TFP growth rate and the induced growth of

capital.

Services sector growth is affected by TFP growth in that sector as well as that

in manufacturing since capital is used in the services sector. Because the growth of

capital exceeds that TFP in manufacturing, TFP growth in manufacturing may exert

more than one-to-one impact on the growth rate of services output. Also notice that an

increase in the exogenous growth rate of labor affects the growth rates of manufacturing

and services output directly as well as indirectly via enhancing the growth rate of

capital.

Long-run Non-Balanced-Growth Decomposition

The current model reveals three sources of long-run sectoral output growth differences:

those in TFP growth rates, land-intensity and capital intensity. The r.h.s. expressions

of eqs. (30) below provide what we call long-run non-balanced-growth decompositions.

δm−a = (g̃M − g̃A) +

(
γ − α

1− β

)
g̃L +

β

1− β
g̃M ;

δs−m = (g̃S − g̃M) +
α(1− η)

1− β
g̃L +

η − β
1− β

g̃M .

(30)

The three right-hand side terms respectively express the contribution of TFP differen-

tial, land intensity differential (relative to labor) and capital intensity differential.

Note that
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Proposition 7 (a) Land and capital intensity differences affect the magnitudes of the

impacts of growth rates of respectively labor and TFP in manufacturing towards non-

balanced growth. (b) An increase in the growth rate of labor widens the difference in

sectoral rates between manufacturing and the agriculture sector and between services

and manufacturing. This is due to differences in the land-use intensities across sec-

tors. (c) An increase in TFP growth in manufacturing leads to more than one to one

widening of difference in output growth rates between manufacturing and agriculture

sector and less than one to one narrowing of differences in output growth rates between

services and manufacturing.

SMA ranking is equivalent to δm−a and δs−m both being positive. However the

output growth decomposition (30) per se does not necessarily imply that δm−a and

δs−m need to be positive; hence it can accommodate the deviations from the general

pattern of SMA ranking.

The Corollaries 1 and 2 carry over under Assumptions 2 and 3. However, Corollary

3 does not hold, i.e., there are cross sectoral effects of TFP growth.

Corollary 5 TFP growth in agriculture or services sector affects output growth in the

respective sector only, whereas that in manufacturing affect output growth in manufac-

turing as well as services.

It is because capital, a manufacturing good, is used in the production of services.

If capital was an input in the agriculture sector or if sectoral goods were inputs in the

production of other sectors, then there would have been other cross-dependencies of

sectoral TFP and output growth.

Aggregate Growth, Land Price and Kaldor Facts

As in the elementary model the real GDP growth rate equals a consumption-weighted

growth rates of sectoral outputs. In the steady state, it is equal to

g∗Y = gφaA g
φm+φsη

1−β
M gφsS g

φa(1−β)(1−γ)+φm(1−α−β)+φs(1−αη−β)
1−β

L

Notice that while the weights on gA, gS and gL in the growth rate of real GDP

are less than one, the weight on gM may exceed unity. If φm + φsη > 1 − β, then 1

percentage point increase in gM raises the growth rate of real GDP by more than 1

percentage point. If the multiplier effect of gM on manufacturing and services output
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growth rate is sufficiently strong, then the multiplier effect of gM is projected on real

GDP growth also.

The land-price dynamic equation (27) yields that at steady state PDt = P∗D. Thus,

land price grows at rate g◦ at steady state.

Lastly, as consistent with other studies on non-balanced growth such as Kongsamut

et al. (2001) and Ngai and Pissarides (2007), despite non-balanced growth across sectors

the model accords with Kaldor’s facts on aggregate economy-wide growth.

Proposition 8 Over the steady state, the capital-output (GDP) ratio, return on ca-

pital, factor shares in national income and the growth rate out output (real GDP) per

worker are all constant.

Proof: Output is measured by GDP of an economy. At steady state, Kt = K∗ and

Et = E∗, so it follows from Proposition 5 that GDP grows at the rate g◦. Thus, the

growth rate of GDPt/Lt is constant. Further, from the Proposition 5 it is easy to see

that the variables Kt/GDPt, rt, wtLt/GDPt and rtKt/GDPt are constant at steady

state.

3.4 Dynamics off the Steady State

Imagine an economy yet to achieve steady state, or one, which was initially along the

steady state and is perturbed by a shock so that K0 6= K∗. For simplicity, let us limit

ourselves to displacement of the model economy in the local neighborhood of the steady

state.

As shown in Appendix B, the steady state is saddle-path stable, and, along the

saddle path,

Proposition 9 As K0 ≶ K∗, over time, (a) Kt and Et increase or decrease; (b) growth

rate of normalized capital falls or rises; and (c) the interest rate decreases or increases.

This is intuitive. If, for example, the initial normalized capital stock falls short of its

long run level, it builds up over time and interest rate falls. It means that the growth

rate of capital exceeds its long-run rate and it falls over time towards the steady state

rate of growth. This is accompanied by normalized aggregate consumption or total

expenditure rising over time, i.e., the growth rate consumption being higher than its

long-run rate and falling over time.

Our main objective is to understand the pattern of sectoral output growth rates.

To begin with,
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Proposition 10 Sectoral factor allocations over time exhibit the following proportional

relationships:
Dat

Dmt

∝ Lat
Lmt
∝ Lst
Lmt
∝ Kst

Kmt

for all t. (31)

Proof: The first proportionality follows from the ratio of wage to land rental being same

across agriculture and manufacturing. Likewise, the equality of wage to capital rental

ratio across manufacturing and services implies the third proportionality relation. We

have wtLat = (1− γ)patQat = (1− γ)φaEt, and, similarly, wtLst = (1− η)φsEt. Thus,

the Lat/Lst ratio is constant over time, implying the second proportionality relation.

Remarks

a. In particular, the second proportionality says that labor employment growth rate

is same in services and agriculture.

b. Expression (31) does not imply that the ratios remain constant over time. For

instance, if Lat/Lmt rises over time, so would other ratios.

As shown in Appendix B

Proposition 11 The ratios in (31) increase or decrease with time as K0 ≶ K∗,

an immediate corollary of which is that

Corollary 6 gKs ≷ gKm, gLa = gLs ≷ gL ≷ gLm and gDa ≷ 1 ≷ gDm according as

K0 ≶ K∗.

It says that if initially an economy is relatively capital-scarce, as capital accumu-

lation takes place more feverishly, relatively more capital is employed in the services

sector. However, this outcome does not depend on the services sector being more capi-

tal intensive. As capital grows at a rate higher than its long-run rate, and, capital goods

are same as manufactures, relatively less manufactures are available for consumption.

Insofar as it leads to a substitution in consumption towards services, there is a hig-

her relative demand for capital in producing services, compared to manufacturing. In

equilibrium, there is relatively more capital used in the services sector and relatively

less capital employed in the manufacturing sector. In turn, relatively less labor and

land are used in manufacturing. That is, land moves away from manufacturing to

agriculture.

How do sectoral output growth rates compare with their long run growth rates?
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Proposition 12 Output growth rates in agriculture and services sectors are higher

or less than the respective steady state growth rates according as K0 ≶ K∗, whereas

the growth rate of manufacturing output cannot be ranked vis-a-vis its long-run growth

rate.13

Suppose K0 < K∗. Corollary 6 implies that labor and capital employment in the

services sector grow faster than aggregate labor and aggregate capital respectively, and,

in view of Proposition 9, the growth rate of capital exceeds its long-run rate. Thus,

the service output growth rate must exceed its long-run rate. Labor employment in

agriculture also grows faster than aggregate labor and land employment in agriculture

increases, whereas it remains constant in the steady state. It follows that output

growth in agriculture exceeds its long run rate. The growth rates of labor and capital

in manufacturing are lower than those of aggregate labor and capital respectively, while

the growth rate of capital exceeds its long-run rate. Hence, the output growth rate of

manufacturing cannot be ranked unambiguously against its long-run rate.14 However,

Proposition 13 The growth rate of manufacturing output is less or greater than that

of aggregate capital as K0 ≶ K∗.

It is because labor and capital employment growth rates in manufacturing fall short or

exceed the respective aggregate growth rate according as K0 ≶ K∗.15

Non-Balanced Growth Decomposition

As seen in Section 4.2, differences in long-run sectoral growth rates have three com-

ponents: TFP growth differences, differences in capital intensity and those in land

intensity. To understand non-balanced growth across sectors off the steady state we

rewrite the sectoral production functions as

Qat = AtD̄
γL1−γ

t dγatl
1−γ
at ; Qmt = MtD̄

αKβ
t L

1−α−β
t dαmtk

β
mtl

1−α−β
mt ; Qst = StK

η
t L

1−η
t kηstl

1−η
st ,

(32)

where dit ≡ Dit/D̄, lit ≡ Lit/Lt and kit ≡ Kit/Kt are the respective land, labor

and capital shares for sector i. The aim is to first decompose growth rate differences

13See Appendix B.
14Numerical simulations, using parameters of the USA economy and if K0 < K∗, indeed show during

the transition periods the growth rate of manufacturing output is less than its steady state growth
rate.

15See Appendix B.
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into long-run and short-run components and characterize the latter in particular. It

is however not feasible to express the latter in terms of closed-form functions of the

underlying exogenous sources of growth and factor intensity differentials.

Production expressions (32) make clear that short-run effects work through (a) the

transitory or the short-run component of the evolution of the capital stock, and, (b)

changes in sectoral factor employment shares. Needless to say, (a) and (b) both vanish

in the long run.

By definition, gKt = gKtg
◦ = g◦ + g̃Ktg

◦, where the first term is the long-run

component of capital growth and the second its short-run component. Using this, (32)

yields

g̃Qm − g̃Qa = [g̃M − g̃A] +

(
γ − α

1− β

)
g̃L +

β

1− β
g̃M︸ ︷︷ ︸

long run

+ βg̃Kt + (αg̃dm − γg̃da) + [(1− α− β)g̃lm − (1− γ)g̃la] + βg̃km︸ ︷︷ ︸
short run

(33)

g̃Qs − g̃Qm = [g̃S − g̃M ] +
α(1− η)

1− β
g̃L +

η − β
1− β

g̃M︸ ︷︷ ︸
long run

+ (η − β)g̃Kt − αg̃dm + [(1− η)g̃ls − (1− α− β)g̃lm] + [ηg̃ks − βg̃km]︸ ︷︷ ︸
short run

.

(34)

Note that the effect of short run growth component of aggregate capital on sectoral

growth differences (through the coefficient of g̃Kt) depends on differences in capital

intensity across the sectors. When K0 < K∗, g̃Kt > 0 and thus it is a factor contri-

buting towards growth differences between services and manufacturing and between

manufacturing and agriculture.

Next consider land-use changes. We already know, when K0 < K∗, that g̃dm < 0 <

g̃da. These changes tend to narrow the difference between growth rates of manufac-

turing and agriculture outputs but widen that between growth rates of services and

manufacturing output. Changes in labor employment shares and capital shares have

similar effects. We have g̃la = g̃ls > 0 > g̃lm and g̃ks > 0 > g̃km, which tend to narrow

g̃Qm − g̃Qa and widen g̃Qs − g̃Qm. Thus, changes in labor shares and capital shares

- which are short run effects - tend to reduce the output growth differences between

manufacturing and agriculture, and raise the growth differences between services and
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manufacturing.

Opposite effects hold if K0 > K∗.
The overall implication is that when K0 < (resp. >) K∗, the short-run movements

tend to unambiguously enhance (resp. reduce) growth difference between services and

manufacturing, whereas the effect on growth differential between manufacturing and

agriculture is likely to be relatively small, possibly negative (resp. positive). Another

way to put it is that in a capital poor economy, the services sector grows faster than

manufacturing sector in all periods, whereas the output growth ranking between ma-

nufacturing and agriculture is ambiguous. It is possible that the sum of contributions

of changes in land-use, labor shares and capital shares may outweigh long-run effects

and in the short run agriculture grows faster than manufacturing over some interval of

time.

3.5 A Simulation Analysis

Analytically we were able to compare growth rates of service and agricultural sectors

to their steady state growth rates, but such comparison for the manufacturing sector

was not possible. The dynamics of sectoral growth rates could not be characterized.

We now undertake a simulation analysis to further our understanding of the evolution

of sectoral growth rates as well as obtain a quantitative assessment of non-balanced

growth decompositions. The main findings are:

a. The differences in sectoral TFP growth rates have the largest contribution towards

long-run output growth differences.

b. Land intensity differences play a much more important role in manufacturing-

agriculture output growth gap than in services-manufacturing output growth gap.

c. In transition periods, the manufacturing output growth rate is less than its long

run growth rate.

d. The aggregate capital changes and capital use changes together explain a signifi-

cation fraction of short run output growth differences.

e. Land use changes, even in short run, are more crucial to the manufacturing-

agriculture output growth gap as compared to services-manufacturing output gro-

wth gap.

f. We perform robustness test with respect to α, the parameter which could not be

precisely estimated owing to lack of data availability. We find that an increase in
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manufacturing land intensity, α, has very little effect on transition growth rates,

but significantly reduces manufacturing-agriculture output growth difference and

significantly increases services-manufacturing output growth gap.

We choose parameter values and initial conditions in reference to the USA over

the period 1977-2010. We have already noted in Table 1 that USA is an exception to

the stylized sectoral output growth ranking witnessed across the countries. In USA

while the services sector is the fastest growing sector, the growth rate is slowest in the

manufacturing sector (not agriculture sector). On the basis of eq. (30), the anomaly

can be explained by the fact that the TFP growth in agriculture sector must have

been much higher than that in manufacturing. In this simulation exercise we aim to

quantify the contribution of other factors.

Choice of Parameters

From the EUKLEMS dataset, we interpret the agriculture sector as the ‘Agri-

culture, forestry, fishing, and hunting’ industry and the manufacturing sector is the

‘Manufacturing’ industry. The services sector includes ‘Wholesale and Retail Trade’,

‘Transportation and Storage’, ‘Accommodation and Food Services’, ‘Information and

Communication’, ‘Financial and Insurance’, ‘Information and Communication’, ‘Fi-

nancial and Insurance’, ‘Real Estate’, ‘Professional’ and ‘Community’ services. For

labor intensity in production, we take the average of the wage compensation to gross

output ratio for the period 1977-2010. It gives γ = 0.77, α + β = 0.78 and η = 0.59

which are the respective non-labor shares in the agriculture, manufacturing and ser-

vices sectors. We do not have any information that distinguishes land and capital

intensities of manufacturing sector. Based on our earlier discussion where we hypot-

hesize that the capital intensity differences between manufacturing and services sector

would most likely be small, we assume β = 0.55 (reasonably close to η = 0.59). This

implies α = 0.23. Note that the values chosen for factor intensities satisfy Assumptions

(2) and (3).

Total labor force is captured by the ‘full-time and part-time employees’ data from

the Bureau of Labor Statistics. We calculate the compounded annual growth rate of

total employment for 1977-2010 and choose it as the population growth rate, leading

to gL = 1.012, i.e. an average annual growth rate of 1.2%. The standard methodology

to calculate sectoral TFP growth rates are such that they should match the sectoral

output growth rates (Acemoglu and Guerrieri (2008)). We find that in the latter years

of the period 1977-2010, the services sector grew the fastest, followed by agriculture
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Table 4: Parameter Values for Numerical Simulation
α β γ η φa φm φs ρ gA gM gS gL D̄

0.23 0.55 0.77 0.59 0.01 0.15 0.84 0.98 1.0117 1.0035 1.015 1.012 10

and manufacturing output (EUKLEMS dataset: gQa = 1.0145, gQm = 1.0138 and

gQs = 1.0283). As noted previously, unlike the stylized tend, in the US the agriculture

sector grows faster than manufacturing. This is primarily driven by the growing energy

demand for ethanol production from corn and is, so far, a specific feature of the US

economy. These output growth rates yield the total factor productivity growth rates as

gA = 1.0117, gM = 1.0035 and gS = 1.0150.16,17 Note, the manufacturing TFP growth

rate is lower than the growth rate of agriculture TFP.

The preference parameters, the φ’s, are taken from the average sectoral shares in

gross output: φa = 0.01, φm = 0.15 and φs = 0.84.

The standard parameter value for annual discount rate is adopted, giving ρ = 0.98

(Acemoglu and Guerrieri (2008)). Total US land area is 10 million square km, so we

choose D̄ = 10. The parameter values are summarized in Table 4.

Choice of Initial Values

As we characterize the transitional dynamics near the steady state, the value of

initial normalized capital stock is taken to be near the steady state. In this capital

poor economy, we assume K0 = 0.8K∗. Note, K∗ depends on parameter values, which

we already know. The total labor force in 1977 was about 92 million workers, so we

take L0 = 92. The TFP parameters are calculated so that they match the output

levels, A0 = 836, M0 = 2.33 and S0 = 2.35.The initial normalized capital stock and

the initial manufacturing productivity level together yield K0 = 1.57 ∗ 104. The initial

values are tabulated in Table 5.

Overall Trends

Consistent with Proposition 9 and Corollary 6, with low initial capital stock, si-

mulations show that normalize capital and normalized expenditure grow over time,

16Ngai and Pissarides (2008) calculate the sectoral TFP growth ranking from change in relative
prices. They find that for USA in the period 1930-2004, TFP growth is highest in agriculture,
followed by manufacturing and services. It is known that the measurement of TFP growth depends
on what factors are employed in the production of good. Like most existing estimates of sectoral TFP
growth, Ngai and Pissarides (2008) also do not incorporate the differential use of land across different
sectors. Hence their measures of TFP growth does not perfectly match our estimates. We resort to
first principles to calculate the sectoral TFP growth in accordance with our model.

17From the data on output growth differences across sectors and the computed TFP growth rates,
it is clear that output growth rate differences and TFP growth rate differences are not in sync.

27



Table 5: Initial Values for Numerical Simulation
L0 K0 A0 M0 S0

92 1.57 ∗ 104 836 2.33 2.35
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Figure 2: Sectoral Output Growth Rates over Time

interest rate falls, the factor proportions grow over time and become skewed towards

the manufacturing sector. Moreover, in the light of Proposition 12, the initial growth

rates of agriculture and services outputs are higher than the respective steady state

growth rates.

In addition to theoretical predictions, simulations show that output growth rates of

agriculture and services decline over time to their respective steady state growth rates,

and, the manufacturing output growth rate rises over time. These are illustrated in

Figure 2.

Non-Balanced Growth

Figure 2 also indicates that service sector’s growth rate remains highest, followed by

agriculture and manufacturing. This is consistent with our discussion of long-run and

short-run elements of non-balanced growth decomposition. The computed TFP growth

rates are such that gS > gM . Thus, following our discussion on services-manufacturing

growth decomposition based on eq. (34) in the case of capital poor economy, we find
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that all long-run and short-run factors of output growth differences favour services

sector as compared to the manufacturing sector. This explains why the growth rate of

services sector is higher than that of manufacturing in both short-run and long-run.

Simulations show that agriculture grows faster than manufacturing. The long-run

TFP growth rankings (gA > gM) as well as short-run growth favour higher growth in

agriculture, based on eq. (33). In this case, it appears that these effects are so strong

that agriculture sector grows faster than manufacturing in all periods.

Analyzing Non-balanced Growth

Table 6: Non-Balanced Growth Decomposition in the Long Run

Output Growth Share of TFP Share of Share of
Differences (%) Differences (%) Land-Intensity Capital-Intensity

Differences (%) Differences (%)
Manu. over Agri. [-] 52.3 19.9 27.8
Serv. over Manu. 80.2 17.6 2.2

We now investigate to find out the strengths of the different sources of non-balanced

sectoral growth in our simulated economy. We present the magnitudes of the long-run

sources of sectoral output growth gaps in Table 6. The three sources of long-run out-

put growth are (a) differences in sectoral TFP growth rates, (b) joint effect of capital

intensity difference and TFP growth in manufacturing, and (c) joint effect of land

intensity difference and labor growth. Of these different sources of long-run output

growth differences between manufacturing and agriculture sector, we find that diffe-

rences in TFP growth differences have the largest contribution, albeit negative. This

explains how agriculture may grow faster than manufacturing even though the factor

intensity differences drive growth in opposite direction. The growth decomposition is

slightly different for the services-manufacturing output growth gap. Given the direction

of productivity growth ranking, and factor intensity differences between services and

manufacturing, it follows from eq. (34) that all the sources favour higher growth in ser-

vices as compared to manufacturing. Here also we find that the TFP growth differences

have the largest contribution to the services-manufacturing output growth gap.

In Table (7) we depict the four sources of short run output growth differentials –

transitory changes in aggregate capital, changes in land-use, changes in labor employ-

ment and changes in capital. As seen in eqs. (33) and (34), land-use changes affect with
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land intensity, capital changes affect in conjunction with capital intensity and changes

in labor employment affect together with labor intensity. The direction of the diffe-

rent effects are same as discussed in the analytical discussion of growth decomposition.

Through simulations we find the relative strengths of the different sources of short run

growth differentials. We find that in the manufacturing-agriculture growth gap, chan-

ges in aggregate capital have the largest impact while in the services-manufacturing

output growth differences, the effect of changes in capital use is largest. Land-use

changes are more important within the manufacturing-agriculture growth ranking, but

possibly not so much so in the services-manufacturing growth differences.

Table 7: Non-Balanced Growth Decomposition in the Short Run (in %) for time period
t = 1

Output Growth Aggregate Capital Land Use Labor Use Capital Use
Differences Changes Changes Changes Changes
Manu. over Agri. 45.6 [-]31.7 [-]9.6 [-]13.1
Serv. over Manu. 16.8 1.4 26.1 55.7

Robustness

How sensitive are the results to the parameter values and initial conditions? Of the

thirteen parameters which fully specify the model (see Table 4), the values of all except

α are taken from actual data. Due to lack of data on land-use α could not be deter-

mined. We run sensitivity checks with respect to α in a way such that a change in α

keeps α + β (whose value is derived from data) unchanged. This ensures that returns

to scale in manufacturing production remains unity. The initial values of employment

and productivity parameters were taken from data (see Table 5), but the initial capital

stock was considered to be near its steady state value. We have already observed that

the initial capital stock does not influence the near-the-steady-state dynamics. Hence,

we conduct robustness checks only with respect to α.

We find that a change in α by ±10%, changes the convergence rate (i.e., 1/µ2)

by ∓0.01 percentage points. Thus, the convergence rate is fairly robust to parameter

changes as well as changes in initial conditions.

The long run sectoral output growth gaps are sensitive to changes in α. We

show this in Table 8. An increase in manufacturing land intensity by 10% decrea-

ses manufacturing-agriculture output growth gap by about 0.07 percentage points and
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Table 8: Sensitivity Analysis

Parameter (% Change) Change in Change in steady state
Convergence Rate output growth gaps

(in percentage points) (in percentage points)18

Manu. - Agri. Serv. - Manu.

α
+10% -0.012 -0.067 0.027
-10% 0.015 0.074 -0.030

it increases services-manufacturing output growth differentials by about 0.03 percen-

tage points. Given that the initial manufacturing-agriculture output growth gap was

-0.08% and services-manufacturing output growth gap was about 1.4%, the α-driven

growth-gap changes are significant. Notice as the land intensity differences are smaller

between manufacturing and agriculture output as compared to that services and ma-

nufacturing outputs, the effect of change in α on the former output growth gap is also

lesser. This brings to focus on how small differences in α across countries would have

significant effects on their inter-sectoral growth dynamics.

4 Land Transactions Restrictions

There are restrictions on conversion of agriculture land for industrial use. For example,

land acquisition laws in India, Nigeria and other developing countries is fairly stringent

and demands significant compensation.

For the model, it implies that there is no sectoral land transactions. Land deals

occur within sectors where ownership of agriculture or manufacturing land changes

hands.

4.1 Static Equilibrium

The unit cost functions for agriculture and manufacturing sectors change: ca(rat, wt)/At =

rγatw
1−γ
t /At and cm(rmt, rt, wt)/Mt = rαmtr

β
t w

1−α−β
t /Mt, where rat and rmt are rental ra-

tes for agriculture and manufacturing lands respectively.

Assumptions 2 and 3 hold. The zero profit conditions remain (14)-(16), except now

18The baseline steady state output growth gap for manufacturing - agriculture was −0.08% and for
services - manufacturing was 1.45%.
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land rental rates differ across sectors. The land market clearing condition changes to

1

At

∂ca(rat, wt)

∂rat
Qat = D̄a,

1

Mt

∂cm(rmt, rt, wt)

∂rmt
Qmt = D̄m, (35)

where D̄a and D̄m are exogenously given agricultural and manufacturing land restricti-

ons. Further, D̄a + D̄m = D̄.

The household consumption demand functions are stated in eq. (5). The static

equilibrium is

Proposition 14

Lat = Lt · hLa(Et,Kt); Lmt = Lt · hLm(Et,Kt); Lst = Lt · hLs(Et,Kt);

Kmt = M
1

1−β
t D̄

α
1−βL

1−α−β
1−β

t · hKm(Et,Kt);Kst = M
1

1−β
t D̄

α
1−βL

1−α−β
1−β

t · hKs(Et,Kt);

Qat = AtD̄
γL1−γ

t · hQa(Et,Kt); Qmt = M
1

1−β
t D̄−

1−α−β
1−β L

1−α−β
1−β

t · hQm(Et,Kt);

Qst = StM
η

1−β
t D̄

αη
1−βL

1−αη−β
1−β

t · hQs(Et,Kt);

rat = M
1

1−β
t D̄1 1−α−β

1−β L
1−α−β
1−β

t · hra(Et,Kt); rmt = M
1

1−β
t D̄

α
1−βL

1−α−β
1−β

t · hrm(Et,Kt);

wt = M
1

1−β
t D̄

α
1−βL

−α
1−β
t · hw(Et,Kt); rt = hr(Et,Kt);

pat = A−1t M
1

1−β
t D̄−

(1−β)γ−α
1−β L

(1−β)γ−α
1−β

t · hpa(Et,Kt);

pst = S−1t M
1−η
1−β
t D̄

α(1−η)
1−β L

−α(1−η)
1−β

t · hps(Et,Kt).

where E and K are normalized expenditure and capital respectively.

Household’s dynamic optimization problem is unchanged, except now the intertem-

poral budget allows for within sector land transactions, not unrestricted land transacti-

ons.

Maximize
∞∑
t=0

ρt(lnEt − φa ln pat − φs ln pst),

subject to Et+Kt+1−Kt+p
D
at(Dat+1−Dat)+p

D
mt(Dmt+1−Dmt) ≤ wtLt+rtKt+ratDat+rmtDmt,

where Ut is substituted by its indirect form. Given L0, Dm0 and K0, the household

chooses {Et}∞0 , {Dat}∞1 , {Dmt}∞1 and {Kt}∞1 . We obtain the standard Euler equation

Et+1

Et
= ρ(1 + rt+1). (36)
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There are three transversality conditions: (22) and

lim
t→∞

ρtpDatDat+1

Et
= 0, lim

t→∞

ρtpDmtDmt+1

Et
= 0, . (37)

The no-arbitrage condition between the assets are FILL IN

(38)

The law of motion of capital is unchanged.

Kt+1 =
rtKt

β
− φmβ + φsη

β
Et +Kt. (39)

This equation, the Euler equation, the no-arbitrage condition as well as the trans-

versality condition form the basis of the dynamic system. Using the expressions in

Proposition 14 and defining g◦ ≡ g
1

1−β
M g

1−α−β
1−β

L , eqs. (36) and (39) can be expressed as

Et+1

Et
=
ρ [1 + hr(Et+1,Kt+1)]

g◦

Kt+1 =
1

g◦
·
[
hr(Et,Kt)Kt

β
− φmβ + φsη

β
Et +Kt

]
.

(40)

These two equations form the core dynamic system of the economy.

4.2 Steady State

This is defined by Et = E∗ and Kt = K∗. Eqs. (40) yield

r∗ = hr(E∗,K∗) =
g◦

ρ
− 1

E∗

K∗
=

(g◦ − 1)(1− βρ) + 1− ρ
ρν

, where ν ≡ φmβ + φsη < 1.

(41)

The former is the modified golden rule, whereas the latter defines the trajectory where

savings grow at a constant rate. Eqs. (41) implicitly solve (E∗,K∗). In Appendix B we

show that the steady state exists and it is unique.

Proposition 15 Along the steady state,

g∗Qa = gAg
1−γ
L ; g∗K = g∗Qm = g◦ = g

1
1−β
M g

1−α−β
1−β

L ; g∗Qs = gSg
η

1−β
M g

1−αη−β
1−β

L . (42)
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Steady State Points – comparisons with model B

• rental rate on capital unchanged

• As D̄m < D∗m, it implies Rm > RD, RD > Ra, K and E are lower in model C.

Manufacturing and services output are lower, while agriculture output is higher in

model C. Wage rate, price of agriculture goods and services all are lower. Opposite

effects when D̄m > D∗m. Labor allocation is unaffected by land trade restrictions.

5 Concluding Remarks

In recent decades, the services sector has recorded highest output and employment gro-

wth in almost all countries. Sectoral growth is lead by services sector and followed by

manufacturing and agriculture, in that order. This phenomenon is mainly attributed

to demand-side factors like non-homothetic preferences. There are a few supply-side

explanations for the three sector growth ranking, but they are based on sectoral TFP

growth rankings. As the ranking of sectoral TFP growth rates is not uniform across

developing and developed countries, these explanations are applicable to mostly develo-

ped countries. In this paper, we propose a supply-side phenomenon which explains the

sectoral output growth ranking and is not country-specific. We regard that differences

in factor intensities in goods production explain non-balanced growth. In particular,

we postulate that given limited supply of land, the differences in land intensity across

sectors manifest into differences in sectoral growth – highest growth of services (the

least land intensive) sector followed by manufacturing and agriculture (the most land

intensive sector).

Our analysis began with a three-sector model with only land and labor as inputs.

Labor and sectoral TFP grow over time at exogenous rates. We showed that differences

in growth rates of sectoral outputs are due to differences in sectoral TFP growth rate

as well as due to differences in sectoral land intensity. If TFP growth differences are

not large, then land intensity differences determine the inter-sectoral growth ranking.

Further, it is possible that output growth ranking may be exactly opposite of TFP

growth ranking.

We also extended this basic model by including capital in the production of ma-

nufacturing and services goods and incorporating endogenous accumulation of capital.

Labor growth and sectoral TFP growth continue to be the sources of long run growth.

Now, capital intensity differences in addition to differences in sectoral TFP growth
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rates and land intensity differences, all three contribute to the sectoral output growth

differences. In transitional periods, the factor movements are entwined and it is not

possible to characterize the exact trajectories of the economy. We simulate the model

to analyze short-run trends. We find that if the initial capital stock is low, capital

grows at a rate higher than its long-run rate and, as capital goods are same as manu-

factures, relatively less manufactures are available for consumption. Insofar as it leads

to a substitution in consumption towards agriculture and services, there is a lower

relative demand for capital, land and labor in producing manufacturing, as compared

to other goods.

We also decompose sectoral growth differentials to analyze the strengths of the dif-

ferent sources of growth. We find that TFP growth differences play a significant role in

explaining long-run output growth differences. In short-run, aggregate capital changes

and land-use changes are the two largest contributors towards the manufacturing-

agriculture output growth gap. In the short-run services-manufacturing output growth

differences, capital-use changes and then the labor-use changes play the largest roles.

An interesting question ahead would be to explore the role of housing in sectoral

non-balanced growth. In the extended model, the normalized capital and normalized

expenditure dynamics was independent of changes in land price. However, if we bring

in housing consumption, it may make the dynamic system more involved and make

land a more important feature of a growing economy.
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Appendix A Proof of Proposition 1

We use Jones’s “hat” calculus, where equations are log-differentiated and proportionate

change variables are indicated by a ‘ .̂’ Zero-profit conditions imply

γr̂Dt + (1− γ)ŵt = p̂at + Ât

αr̂Dt + (1− α)ŵt = M̂t

ŵt = p̂st + Ŝt.

(A.1)

Log-differentiating full-employment conditions,

λDa

[
Q̂at − (1− γ)(r̂Dt − ŵt)

]
+ λDm

[
Q̂mt − (1− α)(r̂Dt − ŵt)

]
= ˆ̄D + λDaÂt + λDmM̂t

λLa

[
Q̂at + γ(r̂Dt − ŵt)

]
+ λLm

[
Q̂mt + α(r̂Dt − ŵt)

]
+ λLsQ̂st

= L̄t + λLaÂt + λLmM̂t + λLsŜt,

(A.2)

where λNj is share of factor N employed in sector j.

Market-clearing conditions imply

Q̂mt − Q̂at = p̂at

Q̂mt − Q̂st = p̂st.
(A.3)

Eqs. (A.1) and (A.3) imply

(γ − α)(r̂Dt − ŵt) = Q̂mt − Q̂at + Ât − M̂t

α(r̂Dt − ŵt) = Q̂st − Q̂mt + M̂t − Ŝt.
(A.4)

Substituting the above into (A.2), we solve Q̂at, Q̂mt and Q̂st:

Q̂at = Ât + γ ˆ̄D + (1− γ)L̂t

Q̂mt = M̂t + α ˆ̄D + (1− α)L̂t

Q̂st = Ŝt + L̂t.

(A.5)

Eqs. (A.5) imply the proportionality relations for outputs claimed in Proposition

1. Substituting (A.5) into (A.3) yields proportionality relations for relative prices.
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Proportionality relations for factor prices follow from (A.1) once we know those of

relative prices. Those for output and prices implies the proportionality relation for Et.

We have

D̂at = Q̂at − (1− γ)(r̂Dt − ŵt)− Ât = ˆ̄D

D̂mt = Q̂mt − (1− α)(r̂Dt − ŵt)− M̂t = ˆ̄D

L̂at = Q̂at + γ(r̂Dt − ŵt)− Ât = L̂t

L̂mt = Q̂mt + α(r̂Dt − ŵt)− M̂t = L̂t

L̂st = Q̂st − Ŝt = L̂t,

where we have made use of (A.4) and (A.5).

The above expressions imply the proportionality relations for sectoral factor em-

ployment in Proposition 1. The proportionality relations of relative prices follow from

(A.3). In turn, those of input prices follow from (A.1). Finally, since, in equilibrium,

Et ∝ Qmt; hence their proportionality relations are the same.

Appendix B Capital Accumulation Model in Section 3

Proof of Proposition 5

The full employment conditions (17)-(19) yield the following expressions of value of

sectoral outputs in terms of aggregate earnings of three factors: land, labor and capital.

θ1patQat = [(1− α)η − β]rDtD̄ − αηwtLt + α(1− η)rtKt

θ1pstQst = β(1− γ)rDtD̄ − βγwtLt + [(1− β)γ − α]rtKt

θ1Qmt = −(1− γ)ηrDtD̄ + γηwtLt − γ(1− η)rtKt.

(A.6)

where θ1 ≡ γ(η − β)− αη.

Next, the demand functions (4) along with agriculture and services goods market

clearing conditions LtCat = Qat;LtCst = Qst imply patQat = φaEt; pstQst = φsEt.

Substituting the above into the first two expressions of (A.6) and dividing the resulting
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equations by (MtD̄
αL1−α−β

t )1/(1−β) and rearranging give rise to

βRdt = αrtKt + θ2Et
β

R
α

1−α−β
dt

= θ3Etr
β

1−α−β
t + (1− α− β)r

1−α
1−α−β
t Kt, where

(A.7)

θ2 ≡ φaβγ − φsαη ≷ 0

θ3 ≡ φaβ(1− γ)− φs[(1− α)η − β] ≷ 0,

Kt and Et are as defined in (20) and

Rdt =
rDt

M
1

1−β
t D̄−

1−α−β
1−β L

1−α−β
1−β

t

. (A.8)

RDt 

rt 

A 

A 

B 

B 

Figure 3: The Reduced Form Static System

We can call Rdt the normalized land rental, just as Kt and Et are the normalized

capital stock and total expenditure. (As discussed in the text, all normalized variables

become constant or time-invariant along the steady state.) Eqs. (A.7) implicitly solve
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RDt and rt as functions of Kt and Et. As shown in Figure 3, the first equation in

(A.7) defines a upward sloping straightline (AA) relating RDt and rt, whose intercept

on the vertical axis may be positive or negative as θ2 ≷ 0. The second equation in

(A.7) defines a negative locus between RDt and rt (BB), which is asymptotic to the

horizontal axis and asymptotic to the vertical line at rt = ξ, where ξ ≥ 0 depending

on the sign and magnitude of θ3. Hence a unique intersection between AA and BB

in the first is assured. That is, solutions to RDt and rt exist and they are unique.

Accordingly, let

Rdt = frD(Et,Kt); rt = fr(Et,Kt).

Following the definition of Rdt,

rDt = M
1

1−β
t D̄−

1−α−β
1−β L

1−α−β
1−β

t · frD(Et,Kt).

The zero-profit condition for the manufacturing sector yields the expression of wt in

Proposition 5, where fw(Et,Kt) is a function of frD(Et,Kt) and fr(Et,Kt). In turn, the

zero-profit conditions for the agriculture and service sectors imply the expressions of

relative prices, where fpa(·) and fps(·) are functions of frD(·), fr(·) and fw(·). Substitu-

ting factor price and product price expressions into (A.6) gives the output expressions

in Proposition 5. Sectoral employment of a factor is a product of the respective factor

coefficient - a function of factor prices - and output. Hence expressions of factor prices

and outputs lead to the expressions of factor employments in Proposition 5.

Existence and Uniqueness of the Steady State

Instead of using the implicit function fr(Et,Kt), we use the reduced form static system

(A.7) for our purpose. Substituting these equations into the steady state relations (41),

we obtain two equations in R∗D and K∗:

R∗D
K∗

=
φaγ[(g◦ − 1)(1− βρ) + (1− ρ)] + φsαηρ(g◦ − 1)

ρν
(A.9)(

g◦ − ρ
ρ

)− β
1−α−β (R∗D)−

α
1−α−β

K∗
=

[φa(1− γ) + φs][(g
◦ − 1)(1− βρ) + (1− ρ)]

ρν

+
φs(g

◦ − 1)ρ[(1− α)η − β]

ρν
+
φs(g

◦ − ρ)(1− η)

ρν
.

(A.10)

39



Eq. (A.9) is a linear, positively sloped relationship between R∗D and K∗, which goes

through the origin. Eq. (A.10) defines a decreasing, relationship between R∗D and K∗,
asymptotic to both axes. Hence an intersection point (steady state) exists and it is

unique.

Saddle-Path Stability

We first eliminate Rdt from the static system (A.7) to obtain rt as a function of norma-

lized expenditure (Et) and the ratio of capital earnings to expenditure (rtKt/Et ≡ Xt):

rt =
β

1−β
β

(αXt + θ2)
α
β [(1− α− β)Xt + θ3]

1−α−β
β E

1−β
β

t

≡ Γ(Et
−
,Xt
−

). (A.11)

At the steady state, both αXt + θ2 and (1 − α − β)Xt + θ3 are positive,19 and,

evaluated at the steady state,

ΓE = −(1− β)r∗

βE∗
; ΓX = −r

∗Ω

β

where Ω ≡ α2

αX ∗ + θ2
+

(1− α− β)2

(1− α− β)X ∗ + θ3
.

In order to prove saddle-path stability, it seems easier to cast the dynamics in the

(Et,Xt) space rather in terms of Et and Xt. Rearranging our original dynamic system

(40) yields

g◦Et+1 = ρ [1 + Γ(Et+1,Xt+1)] Et (A.12)

19We have

X ∗ =
(g◦ − ρ)ν

(g◦ − 1)(1− βρ) + 1− ρ
=

(g◦ − ρ)(φmβ + φsη)

(g◦ − 1)(1− βρ) + 1− ρ

αX ∗+θ2 =
φmβ[α(g◦ − 1) + 1− ρ] + φaβγ[(g◦ − 1)(1− βρ) + 1− ρ] + φsη[α(g◦ − 1)βρ+ 1− ρ]

(g◦ − 1)(1− βρ) + 1− ρ
> 0.

If (1− α)η ≤ β, then θ3 > 0 and obviously, (1− α− β)X ∗ + θ3 > 0. Otherwise, if (1− α)η ≤ β

(1− α− β)X ∗ + θ3 =
J

(g◦ − 1)(1− βρ) + 1− ρ
, where

J ≡ φmβ(1− α− β)(g◦ − ρ) + φaβ(1− γ)[(g◦ − 1)(1− βρ) + 1− ρ]

+ φs{(g◦ − ρ)β(1− η) + (g◦ − 1)βρ[(1− α)η − β]}
> 0.
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ρ

[
Xt+1 +

Xt+1

Γ(Et+1,Xt+1)

]
=
Xt
β

+
Xt

Γ(Et,Xt)
− ν

β
. (A.13)

Linearizing (A.12) around the steady state, using the expressions of ΓE and ΓX and

denoting deviations from steady state by εt ≡ Et − E∗ and χt ≡ Xt −X ∗, we have

εt = a11εt+1 + a12χt+1, where (A.14)

a11 ≡ 1 +
ρ(1− β)r∗

βg◦
> 1; a12 ≡

ρE∗r∗Ω
βg◦

> 0.

Similarly, eq. (A.13) yields

ρ(1− β)X ∗

βr∗E∗
εt+1 +

ρβ(1 + r∗) + ρX ∗Ω
βr∗

χt+1 =
(1− β)X ∗

βr∗E∗
εt +

β + r∗ + X ∗Ω
βr∗

χt. (A.15)

Substituting the expression of εt into the last relation and rearranging give

χt = a21εt+1 + a22χt+1. (A.16)

where

a21 ≡ −
X ∗(1− β)[βg◦(1− ρ) + (1− β)ρr∗]

E∗βg◦(β + r∗ + X ∗Ω)
< 0

a22 ≡
ρβ2g◦(1 + r∗) + ρ[βg◦ − (1− β)r∗]X ∗Ω

βg◦(β + r∗ + X ∗Ω)
< 1.20

Thus we have the following 2× 2 system:(
εt

χt

)
=

(
a11 a12

a21 a22

)(
εt+1

χt+1

)
≡M

(
εt+1

χt+1

)
. (A.17)

The stability of our dynamic system depends on the magnitudes of eigen roots the

matrix M−1. However, eigen roots of M−1 are inverses of those of M . We thus analyze

the matrix M . Let µ1 and µ2 be its eigen roots. Saddle-path stability is ensured if

and only if µ1 and µ2 are both real and only one of them has modulus greater than

unity. This is proved via the following three lemmas which uses the expressions of the

elements of M .

Lemma 1 ∆1 ≡ (a11 − a22)2 + 4a12a21 > 0.

20It is possible that a22 < 0.
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Proof: We have

∆1 = (A+B + C)2 − 4ρ(1− β)r∗X ∗Ω[β(1− ρ)g◦ + (1− β)ρr∗]

β2g◦2(β + r∗ + X ∗Ω)
, where

A ≡ (1− ρ)β + (1− ρβ)r∗ + (1− ρ)X ∗Ω
β + r∗ + X ∗Ω

> 0

B ≡ ρ(1− β)r∗

βg◦
> 0; C ≡ ρ(1− β)r∗X ∗Ω

βg◦(β + r∗ + X ∗Ω)
> 0

= (A+B + C)2 − 4(1− ρ+B)C

= (A+B + C)2 − 4(A+B)C + 4[A− (1− ρ)]

= (A+B − C)2 +
4ρ(1− β)r∗

β + r∗ + X ∗Ω
> 0.

Lemma 1 implies that µ1 and µ2 both are real.

Lemma 2 ∆2 ≡ (a11 − 1)(a22 − 1)− a12a21 < 0.

Proof: In particular, from the expression of a22, we have

a22 − 1 = −βg
◦[(1− ρ)β + (1− ρβ)r∗] + [(1− ρ)βg◦ + ρ(1− β)r∗]X ∗Ω

βg◦(β + r∗ + X ∗Ω)

Now, using the above expression as well as those of a11, a12 and a21,

∆2 =
ρ(1− β)r∗

βg◦

{
a22 − 1 +

[(1− ρ)βg◦ + ρ(1− β)r∗]X ∗Ω
βg◦(β + r∗ + X ∗Ω)

}
= −ρ(1− β)r∗[(1− ρ)β + (1− ρβ)r∗]

βg◦(β + r∗ + X ∗Ω)

< 0.

Lemma 2 implies that (µ1 − 1)(µ2 − 1) < 0. Hence, if both roots are of the same sign,

both must be positive, with one greater than one and the other less than one.

Lemma 3 ∆3 ≡ a11a22 − a12a21 > 0.

Proof:

∆3 = a11 − 1 + a22 + ∆2
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=
ρ(1− β)r∗

βg◦
+
ρβ2g◦(1 + r∗) + ρ[βg◦ − (1− β)r∗]X ∗Ω

βg◦(β + r∗ + X ∗Ω)
− ρ(1− β)r∗[(1− ρ)β + (1− ρβ)r∗]

βg◦(β + r∗ + X ∗Ω)

=
ρ(1− β)r∗ + βg◦ + ρX ∗Ω

β + r∗ + X ∗Ω
, where we have used ρ(1 + r∗) = g◦

> 0.

Hence, µ1µ2 > 0, i.e., both roots are of the same sign. In view of Lemma 2, both

roots are positive, one is less than one and the other exceeds one, implying saddle-path

stability.

Proof of Proposition 9

Let 0 < µ1 < 1 < µ2. The stable root of the transition matrix M−1 is then 1/µ2. The

solution expressions are

εt =
AE
µt2

; χt =
AX
µt2

,

where (AE , AX ) is the eigen vector. To solve this vector, we note in view of the system

(A.17) that

a21AE + (a22 − µ2)AX = 0. (A.18)

Another relationship between AE and AX results from that the initial condition that

K0 is given, or, equivalently κ0 is given, where κt ≡ Kt −K∗.
By definition

Kt =
XtEt
rt

,

and linearizing it around the steady state,

κt =

(
X ∗

r∗
− XtEt

r∗2
Γ∗E

)
εt +

(
E∗

r∗
− XtEt

r∗2
Γ∗X

)
χt

=
X ∗εt + E∗(β + X ∗Ω)χt

βr∗

=
X ∗AE + E∗(β + X ∗Ω)AX

βr∗
· 1

µt2
.

At t = 0, we have
X ∗AE + E∗(β + X ∗Ω)AX

βr∗
= κ0. (A.19)

43



We can write

κt = κ0
1

µt2
. (A.20)

Hence Kt increases or decreases over time as κ0 ≶ 0, i.e., K0 ≶ K∗.
Eq. (A.20) implies

Kt+1 −K∗

Kt −K∗
=

1

µ2

⇔ gK − 1

K∗/Kt − 1
= 1− 1

µ2

,

where gK ≡ Kt+1/Kt. Suppose K0 < K∗, so that Kt < K∗. Over time Kt rises, which

implies gK must fall, proving part (b) of Proposition 9.

Eqs. (A.18) and (A.19) solve AE and AX . We have

AE =
βr∗(a22 − µ2)κ0

D
; AX = −βr

∗a21κ0
D

, (A.21)

where D ≡ (a22−µ2)X ∗− a21E∗(β +X ∗Ω) < 0.21 Since a22 < 1, we have a22−µ2 < 0.

Given D < 0 it follows that AE ≶ 0 as κ0 ≶ 0. Thus, Et rises or falls over time as

K0 ≶ K∗. This proves part (a) of Proposition 9.

Next, linearizing rt = Γ(Et,Xt) around the steady state

rt − r∗ =
ΓEAE + ΓXAX

µt2

=

[
µ2 − 1 +

(1− ρ)β + (1− ρβ)r∗

β + r∗ + X ∗Ω

]
(1− β)r∗

2
κ0

DE∗µt2
≷ 0 as κ0 ≶ 0.

Thus rt decreases or increases with time according as K0 ≶ K∗. Part (c) of Proposition

9 is proved.

21Since µ2 > 1, it is enough to prove that (a22 − 1)X ∗ − a21E∗(β + X ∗Ω) < 0. We have

(a22 − 1)X ∗ − a21E∗(β + X ∗Ω)

= −
{
β2(1− ρ)g◦ + [(1− ρβ)g◦ − ρ(1− β)2]r∗

}
X ∗

βg◦(β + r∗ + X ∗Ω)

− [(1− ρ)βg◦ + ρ(1− β)r∗]X ∗2Ω

g◦(β + r∗ + X ∗Ω)

< 0.
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Proof of Proposition 11

From constant returns and Cobb-Douglas technologies, Lmt/Lat ∝ Qmt/(patQat). Mar-

ket clearing implies patQat = φaEt, whereas, in view of (24), Qmt is proportional to

rtKt − φsηEt. Hence
Lmt
Lat
∝ Xt − φsη.

In view of (A.21),

Xt −X ∗ = χt = −βr
∗a21κ0
Dµt2

,

implying that Xt and thus Lmt/Lat decrease or increase over time as K0 ≶ K∗. There-

fore, the ratios in (31) increase or decrease with as K0 ≶ K∗.

Proof of Proposition 12

Suppose K0 < K∗. Corollary 6 implies that gLa = gLs > gL and gKs > gK . Proposition

9, part (b) says gK > g∗K . Thus, gKs > g∗K , and,

gQs = gSg
η
Ksg

1−η
Ls > gSg

∗η
K g

1−η
L = g∗Qs.

Proposition 11 implies that land input use rises in agriculture over time, i.e., gDa > 1

(whereas in the long run g∗Da = 1 as land allocation remains constant). Hence

gQa = gAg
γ
Dag

1−γ
La > gAg

1−γ
L = g∗Qa.

Likewise, if K0 > K∗, gQs < g∗Qs and gQa < g∗Qa.

Consider manufacturing output. Suppose K0 < K∗. Then

gQm = gMg
α
Dmg

β
Lmg

1−α−β
Km < gMg

β
Lg

1−α−β
K Q gMg

β
Lg
∗1−α−β
K = g∗Qm since gK > g∗K .

Proof of Proposition 13

From (24)
Qmt

Et
=
Xt − φsη

β
.

Suppose K0 < K∗. In course of the proof of Proposition 11, it is shown that Xt falls

over time. Therefore, gQm < gE. It suffices to prove that gE < gK , i.e., Et/Kt decreases

over time if κ0 < 0.
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Linearizing the ratio Et/Kt around the steady state,

Et
Kt
− E

∗

K∗
=

1

K∗

(
εt −

E∗

K∗
κt

)
=

1

K∗µt2

(
AE −

E∗

K∗
κ0

)
=

κ0
DK∗µt2

[
βr∗(a22 − µ2)−

DE∗

K∗

]
=

r∗κ0
DK∗µt2

[
−(1− β)(a22 − µ2) +

E∗a21(β + X ∗Ω)

X ∗

]
=

(1− β)r∗κ0
DK∗µt2

{
µ2 − 1 +

βr∗[g◦(1− ρβ)− ρ(1− β)]

βg◦(β + r∗ + X ∗Ω)

}
, where

we have made use of the expressions of a22 − 1 and a21

> 0 if κ0 < 0, since D < 0.

Hence Et/Kt falls with time if κ0 < 0.

Appendix C Land Restrictions

The full-employment conditions (18) and (19) yield

αη(1− γ)patQat = [β − η(1− α)]rmtD̄m + αηwtLt − α(1− η)rtKt

αηpstQst = −βemtD̄m + αrtKt (A.22)

αQmt = rmtD̄m

Substituting the zero profit condition (15), the agriculture and services market

clearing conditions, patQat = φaEt and pstQst = φsEt, into the first two expressions of

(A.23) and dividing the resultant equations by (MtD̄mL
1−α−β
t )1/(1−β) we get:

β
D̄m

D̄
Rmt = αrtKt − φsαηEt;

β

R
α

1−α−β
mt

= θ3r
β

1−α−β
t Et + (1− α− β)r

1−α
1−α−β
t Kt (A.23)
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where

Rmt =
rmt(

MtD̄−(1−α−β)L
1−α−β
t

) 1
1−β

; Et =
Et(

MtD̄αL1−α−β
t

) 1
1−β

; Kt =
Kt(

MtD̄αL1−α−β
t

) 1
1−β

The reduced form static system can be solved exactly as in the previous section.

It follows that factor prices and outputs would be of the form stated in For sake of

brevity, we skip the proof.
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