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Abstract

A principal contracts with an agent whose ability is uncertain. Abil-
ity is learnt from the agent’s performance in projects that the principal
finances over time. Success however also depends on the quality of the
project at hand, and quality is privately observed by the agent who is
biased towards implementation. We characterize the optimal sequence
of rewards in a relationship that tolerates an endogenously determined
finite number of failures and incentivizes the agent to implement only
good projects by specifying rewards for success as a function of past
failures. The fact that success becomes less likely over time suggests
that rewards for success should increase with past failures. However,
this also means that the agent can earn a rent from belief manipulation
by deviating and implementing a bad project which is sure to fail. We
show that this belief-manipulation rent decreases with past failures and
implies that optimal rewards are front-loaded. The optimal contract re-
sembles the arrangements used in venture capital, where entrepreneurs
must give up equity share in exchange for further funding following
failure.
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1 Introduction

Consider a firm that evaluates entering a new business. The firm puts a man-
ager in charge and finances projects related to this business, such as designing
prototypes or testing specific markets. The manager is better informed about
the quality of the projects - that is, their chances of succeeding - but his in-
terests may not align with those of the firm. For instance, the manager might
be present biased or have a taste for empire building, thus deriving a larger
benefit from implementing projects compared to the firm. Moreover, there is
uncertainty about the manager’s fit to lead the firm’s operations in the new
business, and therefore about his ability to make projects succeed. In such
situations, how much funding should the firm place at the manager’s disposal
and how can the firm incentivize the manager to work in its interest?

Learning often involves delegation. A firm while learning about the prof-
itability of entering a new business, often starts small and delegates decision-
making to a manager. The agency problem in the above scenario is related
to the fact that the manager usually has better information about the quality
of projects in which he can invest, but has incentives di�erent from that of
the firm. The firm would like the manager to wait for good projects and only
take those up. The manager on the other hand, benefits from working on
projects regardless of quality. However good projects are not always available
and hence the firm has to provide incentives for the manager to wait for the
good projects. Further, one of the advantages of failure in projects is that
the agent may earn further rents from future projects, while a success reveals
the business is profitable for the firm and might lead the firm to place a spe-
cialist in charge of the business. Thus, the manager might want to take up
projects which fail in order to postpone the completion of the learning phase.
The problem of the firm is to find the optimal amount of funding and reward
structure in order to incentivize the manager to select the right projects.

To study these issues, we develop a model in which a principal contracts
with an agent to complete a task. The agent’s ability to complete the task is
unknown to both the principal and the agent. Completing the task requires
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success in a project. The agent’s performance in a project depends both on
his ability and the quality of the project at hand. In particular, only high
ability agents have a chance of success in good quality projects, which ar-
rive1 stochastically and may not be available at any given point. Bad quality
projects, which fail regardless of the ability of the agent, are always available.
The quality of the projects available is privately observed by the agent before
deciding which project to implement in any particular period. The principal
only gets to observe whether a project implemented resulted in a success or
a failure and not the quality of the project - this is the source of asymmetric
information in the model.

Since only good quality projects can succeed, the principal would want the
agent to only implement these projects. However, the agent is biased towards
implementing projects regardless of quality, since he gets a private benefit
regardless of quality of the project and his ability. In order to incentivize
the agent to wait for a good project to arrive, the principal o�ers reward for
success in a project.

Failure in a project leads to a reduction in belief regarding the agent’s abil-
ity and hence reduces the belief regarding probability of success in a project.
This suggests that the rewards for success, needed to incentivize the agent
to wait, should increase with past failures. However, this in turn creates an
incentive for the agent to deviate and earn a rent. Suppose the principal ex-
pects the agent to implement only good projects. If the agent deviates and
implements a bad project, then the resulting failure leads to a reduction in the
principal’s belief regarding the agent’s ability, while the agent’s belief about
his ability remains unchanged2. Thus, the agent can ensure himself a strictly
positive rent by this deviation.

The optimal contract has rewards for success decreasing with the number
of past failures. Since success in a project completes the task and obviates the
need for further project implementation, the agent will select a good project

1The arrival rate of good projects is independent of the agent’s ability. Thus ability here
refers to the agent’s capability of succeeding in good projects.

2This is because the agent knows that performance in bad projects is not indicative of
ability.
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only if the rewards for succeeding in the project compensates him for the po-
tential loss of continuation rents that selecting a good project makes more
likely. These continuation rents not only include the private benefit from
implementing projects but also rents due to possible divergence in beliefs de-
scribed above. These factors combine to produce rewards for success which
decrease with the number of past failures.

Another feature of the optimal contract is that, increasing the number
of trials results in higher rewards to be paid to the agent for success. This
is because increasing the number of trials implies that the potential loss of
continuation rents from selecting a good project is higher for the agent. The
loss in continuation rents is higher due to the possibility of getting private
benefits from implementing a larger number of projects as well as earning
higher rents due to the possibility of greater divergence of beliefs.

The optimal number of trials is determined by considering the trade-o� be-
tween higher rent paid to the agent and better information obtained through
increasing number of trials. Increasing the number of trials provides more op-
portunities for a high ability agent to succeed and thus reduces the probability
that the agent was high ability but failed due to a lack of su�cient opportu-
nities. However as discussed above, increasing the number of trials leads to
higher bonuses paid to the agents for success. We further find that the op-
timal number of trials is an increasing function of the prior belief regarding
the agent’s ability and the payo� that the principal gets from success and is a
decreasing function of the cost of implementing projects.

The model can also be used to analyze financial contracting between en-
trepreneurs and investors. An entrepreneur often has a better understanding
of the products he can launch, but may receive private benefits, monetary or
reputational, from launching products even when these are not profitable. Fur-
thermore, it is initially unknown whether the entrepreneur has the necessary
skills to make a good product succeed. Also, success by a entrepreneur often
leads to his replacement3 (Wasserman 2008). Thus we can apply the model

3For instance, the first major task in a new venture is the development of its product or
service. However, once the product is ready, the business often faces di�erent challenges -
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to highlight some of the agency problems present in the relationship between
the entrepreneur and the investor and illustrate how they impact the financial
arrangements between them.

Empirical evidence on venture capital financing is consistent with the re-
sults obtained in the model. For instance, Kaplan and Strömberg (2003) find
evidence that founders’ cash flow rights decline over financing rounds and de-
crease as the firm performance worsens. This is consistent with the model’s
prediction that the rewards for the agent are a decreasing function of past
failures. Similarly the result that a higher prior about the agent’s ability leads
to increased funding is consistent with the findings in the empirical literature
on venture capital financing which suggest that entrepreneurs who have suc-
ceeded in the past are likely to get better deals. (Gompers, Kovner, Lerner
and Scharfstein 2010).

Related literature: This paper is related to the literature on contracting
for experimentation. The experimentation literature has mostly focused on
how to incentivize e�ort. Bergemann and Hege (1998, 2005) and Hörner and
Samuelson (2013) study dynamic moral hazard models in which the principal
finances the agent to work on projects but the agent can choose to divert
cash for private benefits or equivalently not exert e�ort. The experimentation
literature has focused mainly on how to incentivize e�ort. However e�ort
is only part of the overall incentive problem. In a managerial context, it
is often likely the case that managers are industrious but the primary issue
is determining how e�ective managers are in their tasks4. Our goal in this
paper is to understand how the principal can optimally incentivize the agent
to implement the right projects while learning about the agent’s ability. We
analyze a situation where the agent is better informed about the quality of

marketing, sales and customer services and hence investors might want to put a di�erent
CEO in charge.

4See for instance Kaplan (1984) who considers e�ort-based models as inadequate for cap-
turing incentive issues in management. Further PwC (2017) suggests that problem solving,
creativity and innovation are among some of the most important skills as rated by CEOs
across countries.
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projects but biased relative to the principal. The experimentation component
arises because both the principal and the agent learn about the agent’s ability
as the agent implements projects and they observe the projects’ outcomes.
The relevant deviation is not lowering e�ort but rather selecting bad projects.

Halac, Kartik and Liu (2016) study long-term contracts for experimenta-
tion, with adverse selection about the agent’s ability and moral hazard about
his e�ort choice. They find that the optimal bonus structure is either constant
or back-loaded,that is the agent is rewarded more for later success. In con-
trast, we find that bonus structure should instead be front-loaded, that is the
agent should be rewarded more for success after a fewer number of failures.
The di�erence is driven by the fact that in our setting the agent gets a private
benefit from implementing projects and hence must be compensated for the
loss in continuation payo�s.

Manso (2011) derives an optimal contract where the agent chooses between
shirking, exploiting a well-known approach , or exploring a new approach.
He finds that the optimal contract which induces the agent to try the new
approach exhibits tolerance for early failure and rewards for long-term success.
In contrast, in our setting the agent faces a choice between implementing a
bad project or waiting for a good project to arrive to implement it. Our model
suggests that tolerating early failures and rewarding long-term success might
lead to adverse incentives for an agent who derives benefits from continuing
to work on projects. In particular, our model brings into focus the incentive
cost of giving an agent a higher number of opportunities to succeed.

Hidir (2017) involves the agent exerting e�ort in order to acquire infor-
mation about the unknown quality of a project where both e�ort choice and
signals regarding quality are private information for the agent. Our model
shares the feature that it is ex-ante unknown how long it may take in order to
acquire information. However, in her model, the agent receives a rent at each
point he is waiting for news while in our setup the agent receives a payo�s
only when he implements projects.

This paper is also related to the literature on assessing managerial ability
originating from Holmström (1999). The literature highlights that firms draw
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inferences about the manager’s ability based on public signals. This in turn
provides an incentive for the manager to take actions to distort the public
signals. However typically the managers take actions which try and make
them appear better than they are (or at least no worse than what they are).5.
In contrast, in our model, managers benefit from the possibility of making the
principal more pessimistic about his ability. In that respect, this is closer to the
literature on belief manipulation6 . The literature on belief manipulation has
mostly focused on situations in which agents have to apply (hidden) e�ort. In
contrast, our paper suggests another source - selecting bad projects - through
which the agent might create a divergence between public belief about his
ability and his own private belief and earn a rent on the basis of that.

The paper is connected with the literature on delegation originating from
Holmström (1977, 1984). An important focus in this literature has been on
how to incentivize an biased agent with superior information to act in the
principal’s interest. We highlight the fact that delegation also allows us to
learn about the agent’s ability. Recently, there has been quite a few papers
related to dynamic delegation - Hörner and Guo (2015), Lipnowski and Ramos
(2015), Li, Matouschek & Powell (2017) - however these are in a repeated game
setting and there is no learning component. The exception is Guo (2016). In
her setting, the agent receives private information only once at the beginning
of the game while in our setup the agent receives private information multiple
times over the course of the game.

The rest of the paper is organized as follows. In section 2, we describe
the model setup and solve a benchmark case with complete information. In
section 3, we illustrate the basic insights and tradeo�s by considering the
optimal contract which allows for one and two trials. In section 4, we derive the
optimal contract for the general problem. In section 5, we present comparative
statics results. Section 6 discusses some extensions and empirical implications
and we conclude in section 7.

5See for example Hermalin (1993), Holmström and Ricart i Costa (1986).
6See for example Bergemann and Hege (2005), Bhaskar (2012), Wolf (2017).
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2 The Model

In this section, I describe the model setup and solve a benchmark case with
complete information.

2.1 Setup

There are two risk-neutral players: a (male) agent and a (female) principal.
Both have a common discount factor ” œ (0, 1). Time t = 0, 1, 2... is discrete
with an infinite horizon.

Ability: The ability of the agent is persistent and is either high or low. Nei-
ther the principal nor the agent knows the true ability - the initial common
prior is that the agent is high ability with probability –0 œ (0, 1)7. The agent’s
ability can be assessed through performance in projects.

Projects: Each period there are up to two types of projects available - “bad”
and “good”. A “bad” project fails regardless of the ability of the agent, whereas
“good” project succeeds with probability “ œ (0, 1) if the agent is of high abil-
ity and fails otherwise. In each period, there is always a bad project available,
whereas a good project is available with probability p œ (0, 1). The availability
of projects is independent of the agent’s ability8. The agent can implement up
to one project each period. If a good project becomes available in a specific
period and the agent chooses not to implement it that period, then the agent
cannot implement that particular project in future periods either.

7There are a few justifications for the common prior assumption. First, the agent’s as-
sessment of ability is based on past performance and hence is likely to be known to the
principal. Second, the uncertainty about agent’s ability might be interpreted as uncertainty
about the quality of the match ,which is similarly unknown to both the agent and the
principal. Further, we note that although the analysis begins with a common prior assump-
tion, over the course of time, it is possible that beliefs about ability might diverge due to
asymmetric information.

8Thus one can interpret ability of the agent as corresponding to his ability to capitalize
on opportunities
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Payo�s: Following Zwiebel (1996), the agent gets a private benefit b > 0 per
project implemented.9 It costs c > 0 to implement a project. Outside options
per period for both the principal and the agent are normalized to 0 each. The
principal values successful outcome at R > c.10

Information: In each period, only the agent observes if a good project is
available. Given the financing from the principal, the agent has a choice be-
tween implementing no project, implementing a bad project or implementing
a good project (if available). The principal can observe if a project is chosen
in a specific period and also what the outcome of the project is. In particular,
success in a project is immediately observed by both the principal and the
agent. The quality of the project chosen in case of failure of the project is not
observed by the principal (even ex post).

Learning: Not implementing a project provides no information regarding the
ability of the agent. Suppose the principal expects the agent to implement
projects if and only if they are good. In that case, failure leads to a reduction
of the principal’s belief regarding the ability of the agent. Let –k denote the
probability that the agent is of high ability given k past failures and no success.
Then (assuming again that the agent only implements good projects) Bayes’
law implies

–k = (1 ≠ “)k–0
(1 ≠ “)k–0 + (1 ≠ –0)

. (1)

Success in a project reveals that the agent is of high ability since only high
ability agents can succeed.

We note that it is possible for the beliefs of the agent and the principal to
diverge. In particular, if an agent selects to implement a bad project, then his

9The private benefit includes benefits such as publicity as well as learning in case of the
entrepreneurship example and also takes into account e�ort cost of implementing projects -
thus one can interpret b as the net benefit to the agent from implementing projects.

10Since only high ability agent can achieve success, R summarizes the future surplus the
principal gets from interacting with a high ability agent.
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belief will be unchanged following failure. However if the principal expected
the agent to implement a project if and only if it was good and she sees the
project fail, then she will reduce her belief regarding the agent’s ability.

Contracts: We consider contracting at period zero with full commitment on
part of the principal. We restrict attention to contracts in which (i) the agent
implements a project if and only if it is good and (ii) payments are conditional
only on the number of past failures. Formally, a contract is given by (k, X)
where k œ {0, 1, ...} is the maximum number of trials the principal is willing to
fund and X = (X0k, X1k, .., Xsk, ..Xk≠1k) specifies the transfer 11 to be made
to the agent conditional on the agent succeeding after s failures and the con-
tract allowing for a total of k failures. We assume limited liability:Xsk cannot
be negative. This is not the most general set of contracts. The simplifying
assumptions on the contract set are designed to bring out in the simplest pos-
sible way what the basic economic tension is in the delegation and learning
problem. Once the basic tradeo� is clearly modeled, it is easier to explore the
robustness of the optimal contract to generalizations of the contract set.

One possible interpretation of the contracts under study is as follows. The
agent has no money of his own to fund projects. At the beginning of the
game, the principal commits to a line of credit up to an amount kc to be
used for undertaking projects where k is a non-negative integer and is a choice
variable for the principal. This provides enough funds to try k projects since
each project requires c to be implemented. If the agent exhausts the funding
without obtaining a success, the game ends. The other contingency where the
game ends is when the first success is achieved.

Histories: There are two relevant histories to keep track of. One is the public
history of past failures, specifically the number of failures up to period t.12

11An alternative interpretation for X is given in section 6.
12Note that since the contract specifies payments only as function of number of past

failures, it’s not required to track the order of sequence of failures and non-implementation.
This is without loss of generality given the IID assumption regarding the availability of good
projects.
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The other is the agent’s private history including the number of past failures
up to t and the quality of projects implemented up to t.13

Let �k denote the principal’s expected payo� at time 0 from a contract
which allows for k trials and has the agent implement a project if and only
if it is good. The principal’s problem is to choose k and {Xsk}k≠1

s=0 at time 0
to maximize her expected payo� �k. The agent’s strategy at a given point in
time is to choose which project (if any) to implement that period as a function
of his private history and the projects available at that period. Let Vk(m, s)
be the agent’s expected payo� after s failures, m of which were good projects,
in a k-trial contract14.

Figure 1 illustrates the game tree for the stage game when both good and
bad projects are available and there have been s failures in projects out of
which m Æ s were failures in good projects. If s Ø k, then the principal does
not finance projects and hence the payo� to both the principal and the agent is
given by 0 each. If s < k, then the principal finances the project. If the agent
chooses not to implement a project, then both the principal and the agent get
0 each and the number of failures in projects remains unchanged. If the agent
implements a bad project, then the agent gets b and the principal gets ≠c.
The number of failures which have failed is given by s + 1, while the number
of failures in good projects is still given by m. If the agent implements a good
project, then it can result in either success or failure. In case the project fails,
the agent gets b while the principal gets ≠c. The number of projects that have
failed equals s + 1 while the number of good projects that have failed is given
by m + 1. Since the principal does not observe the quality of the project but
only observes failure, she cannot identify if the project implemented was good
or bad. If the good project succeeds, the principal pays the agent Xsk. Thus

13The agent’s private history also includes availability of projects in past periods, however
this does not a�ect payo�.

14If the principal expects the agent to implement a project i� it is good, then s failures
corresponds to the principal’s belief about the agent’s ability to be –s while m failures in
good projects corresponds to the agent’s belief about his ability to be –m. There is thus a
one to one map between the number of failures (m, s) and the beliefs (–m, –s).
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Figure 1: Tree for Stage Game

the agent’s payo� is given by b + Xsk while the principal’s payo� is given by
R ≠ Xsk ≠ c.

2.2 Complete Information Benchmark

In this subsection, we derive the optimal contract when the principal can
observe the quality of the projects available each period and write a contract
which can include the quality. In this case, the principal implements a project
if and only if it is good and keeps experimenting until the point at which her
belief falls below a cuto� level. We derive below this cuto� belief.

Let –k denote the belief regarding the agent upon observing k failures
and zero successes. Suppose that there is a good project available. Then if the
principal permits the good project to be implemented and stops experimenting
if the project fails, her payo� is given by

–k“R ≠ c.

12



In the above expression, –k“ refers to the probability of success in a good
project given k failures and zero successes in good projects and R is the payo�
to the principal in the event of success. Thus expected surplus from imple-
menting a good project is given by –k“R and c is the cost of implementing a
project.

The principal should thus experiment as long as the above payo� is non-
negative, that is till the highest k such that

–k“R Ø c.

Assumption 1: Experimentation is initially profitable in the absence of an
agency problem:

–0“R Ø c.

This assumption means that without the agency problem, the principal
would be willing to experiment at least once at the initial belief.

3 The Special Case with at Most One or Two Trials

This section illustrates some basic insights and tradeo�s in the special case
where first there is only one trial and second where there may be up to two
trials.

3.1 One Trial Contract

In this case, the agent gets only one shot at implementing a project. For the
contract that allows for one trial, we need to determine the optimal bonus X01

that incentivizes the agent to implement the project if and only if the project
is good. The incentive compatibility condition for not implementing a project
over choosing a bad project is given by

”V1(0, 0) Ø b. (2)
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The equation says that the payo� to the agent from not implementing a
project has to be greater than that of selecting the bad project. The payo�
from not implementing a project is given by ”V1(0, 0). It refers to the observa-
tion that if the agent chooses to not implement a project, then he gets 0 this
period and the next period utility for the agent is still given by V1(0, 0) since
the the number of failures are unchanged if the agent selects not to implement
a project. If the agent selects the bad project, then he gets b this period but
the project is sure to fail and since the contract only allows for one trial, his
continuation payo� is 0.

The incentive compatibility condition for choosing the good project if it is
available is given by

b + –0“X01 Ø max(”V1(0, 0), b). (3)

Given equation (2), we can simplify as

b + –0“X01 Ø ”V1(0, 0). (4)

The left side stands for the expected payo� to the agent if he selects a good
project. It consists of the current gain b that the agent makes if he implements
a project and the expected bonus in case of success. Since the project is good
and the belief that the agent is of high ability is given by –0, the probability
of success is given by –0“. In case of success, the agent is rewarded by the
bonus X01 as stated in the contract. The contract allows for only one trial;
hence if the agent fails, the principal chooses to stop experimenting in which
case the agent receives 0. The term on the right side refers to the payo� from
not implementing a project which is same as before.

The agent’s ex-ante value in such an incentive compatible contract is given
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by

V1(0, 0) = p(b + –0“X01) + (1 ≠ p)”V1(0, 0)
= p

1 ≠ ”(1 ≠ p)(b + –0“X01).

= ◊(b + –0“X01) (5)

where ◊ © p
1≠”(1≠p) . Since both p and ” lie between 0 and 1, we get

0 < ◊ < 1.
We observe that incentive compatibility for the good project is always

satisfied since ” < 1 and the expected payo� from implementing a project is
non-negative15. Hence we only need to make sure that X01 is high enough so
that incentive compatibility condition for the bad project is satisfied. Plugging
in the value of V1(0, 0) and solving for X01 we obtain,

X01 Ø b(1 ≠ ”)
”–0“p

. (6)

The principal’s expected payo� from this contract is given by �1 which
satisfies

�1 = ◊[–0“(R ≠ X01) ≠ c].

The term R ≠ X01 represents the payo� to the principal in case of success
while c stands for the cost of implementing the project. Since the contract
allows for only one failure, one failure ends the experimentation. As the bonus
payments enter negatively in the principal’s profit, she won’t pay the agent
more than required and hence inequality (4) is satisfied with an equality. Thus
we get

X01 = b(1 ≠ ”)
”–0“p

. (7)

15From equation (5), we obtain V1(0, 0) = ◊(b + –0“X01). Inserting this in equation (4),
the right hand side equals ”◊(b + –0“X01) . Since 0 < ”, ◊ < 1, equation (4) is satisfied.
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We thus observe that X01 is an increasing function of b and a decreasing
function of ”, –0, “, p . The purpose of having X01 > 0 is to ensure that if the
agent comes across a bad project, the expected reward from foregoing on the
bad project and waiting for a good project to come along is high enough that
he is willing to not implement the bad project. The cost of passing up on the
bad project at hand is the private benefit b. Hence higher is the b, greater the
incentive needs to be for the agent to pass up on that in the current period.
Since the agent has to wait till at least the next period to see if a good project
comes along, the more impatient an agent is, higher needs to be the bonus
from succeeding in a good project. The bonus is only paid out in the event of
success in the good project and hence it is decreasing in –0“, the probability
of success of the good project. Finally, the lower the value of p, the more the
agent needs to wait for a good project to come along and hence the reward for
waiting has to be higher.

The corresponding expected payo� to the agent from accepting the contract
is given by

V1(0, 0) = b

”
.

The principal should prefer to o�er this contract over not experimenting
at all if and only if �1 Ø 0 which gives us:

–0“R Ø c + b(1 ≠ ”)
”p

.

Assumption 2:

–0“R > c + b(1 ≠ ”)
”p

. (8)

This inequality says that the principal will want to experiment at least
once even in the second best.
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3.2 Two Trial Contract

In this case, the agent gets at most two shots at implementing projects. We
first consider what happens in case the first trial results in failure. If the first
trial fails, there is only one more failure permitted in the contract. Hence the
analysis is similar to the analysis for one failure contract considered above.
Since the contract requires the agent to implement a project if and only if it is
good and on path the belief of the agent is –1 after the first failure, we obtain

X12 Ø b(1 ≠ ”)
”–1“p

. (9)

We observe that the bonus o�ered to incentivize the agent in the last
opportunity has to be higher in the contract with two trials than in the contract
with one trial that is X12 > X01. This is because the agent’s belief about his
ability is lower and hence he needs a higher incentive to wait for the good
project.

In order to determine X02, we consider the incentive compatibility condi-
tions prior to first failure. The incentive compatibility condition for selecting
the good project given 0 failures is now given by

b + –0“X02 + (1 ≠ –0“)”V2(1, 1) Ø ”V2(0, 0). (10)

Since the principal does not stop experimenting immediately after a failure
but allows the agent to continue to experimenting, the agent’s payo� upon
failure is given by ”V2(1, 1) and not 0 as before.

The incentive compatibility condition for rejecting the bad project gives us

”V2(0, 0) Ø b + ”V2(0, 1). (11)

Unlike the one failure contract, failure in a project in this case does not stop
experimentation. The agent does not update his beliefs about himself after
the expected failure but the principal’s belief declines to –1 (as implementing
the bad project is "o� path"; that is, the principal was expecting the agent
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to implement only good projects). We note that even if the agent deviates
from the principal’s prescribed strategy after 0 failures to implement a bad
project, he will choose to implement a project i� good in the second trial.
This follows from verifying that the two incentive compatibility conditions -
(i) b + –0“X12 Ø ”V2(0, 1) and (ii) ”V2(0, 1) Ø b are satisfied16. The agent’s
value from the contract in such a case is given by

V2(0, 1) = ◊[b + –0“X12]

The agent’s ex-ante value (on path) is given by

V2(0, 0) = ◊[b + –0“X02 + (1 ≠ –0“)”V2(1, 1)].

Once again the incentive compatibility for the good project is satisfied since
” < 1 and the expected payo� from implementing the project is non-negative.
Thus we only need to make sure that X02 is high enough so that incentive
compatibility condition for the bad project is satisfied. Plugging in the value
of V2(0, 0) and solving for X02 we get,

X02 Ø b

◊–0“
[1
”

≠ (1 ≠ –0“)”◊2]
¸ ˚˙ ˝

+X12[1 ≠ ”◊(1 ≠ “)]
¸ ˚˙ ˝

>0
>0

(12)

We thus observe that X02 is an increasing function of X12.
The principal’s expected payo� from o�ering a contract which allows for

two trials is given by �2 which satisfies

�2 = ◊[–0“(R ≠ X02) ≠ c]
+”◊2(1 ≠ –0“)[–1“(R ≠ X12) ≠ c].

Since both X02 and X12 enter negatively in the expression for expected
payo� and X02 is increasing in X12, the principal will try to minimize these
two as much as possible. Hence both equations (7) and (10) hold with equality

16This is discussed in more detail in Section 4.
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and we obtain,

X12 = b(1 ≠ ”)
”–1“p

. (13)

X02 = b(1 ≠ ”)
”–0“p

+ b(1 ≠ ”)
”–1“p

+ b. (14)

It’s useful to think about the individual terms in the above expression. The
first term plays a similar role as the term in equation (4) - it provides incentives
to forego on the bad project in favor of waiting for a good project to come along.
However in equation (14), there are now two additional terms - these refer to
the fact that in the contract with two failures there are additional benefits to
selecting a bad project when there is another opportunity still remaining. If
the agent selects a bad project, he knows for sure that the game will not end
this period - since the project is sure to fail - and hence gives the agent an
opportunity to earn further rent. There are two sources of this additional rent.
First, the agent gets to implement another project which gives him a benefit
of b > 0. Second, the agent has the opportunity to gain an additional rent
because his belief is higher than the belief which the principal had in mind
while designing the bonus for the next project - we can see this from

V2(0, 1) = ◊[b + –0“X12] = ◊[b + –0
–1

b(1 ≠ ”)
”p

] > ◊[b + b(1 ≠ ”)
”p

] = V2(1, 1).

We also see that X02 > X12 - that is the contract has to be front-loaded.
While comparing X02 and X12 we see that the agent is more pessimistic about
his ability upon implementing a good project and failing - hence he has to be
possibly provided a greater incentive in order to make sure he waits for the
good project. On the other hand, the agent has to be provided additional
incentives in the first attempt to compensate him to forego the possible rents
from taking up the second project as outlined in the previous paragraph. What
X02 > X12 says is that the second e�ect dominates and hence the contract is
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front-loaded. We note that this contrasts with some of the existing results
in the literature. For example, Halac, Kartik and Liu (2016) found instances
where contracts have bonuses which are increasing as the agent gets more
pessimistic. The main di�erence in our model is that the agent gets a benefit
each time a project is undertaken and hence the contract has to compensate
the agent for the loss in continuation value in order to incentivize him to
implement only good projects.

It’s also useful to compare X02 with the bonus XV
02 that the principal would

have to pay to the agent in the scenario the principal could verify the quality of
the project implemented before giving permission to go ahead with the second
trial and could commit to firing the agent in case it was discovered that he
had selected a bad project. In this case the the bonus17 can be obtained as

XV
02 = b(1 ≠ ”)

”–0“p

Thus if the principal could verify the project quality ex-post and commit
to firing the agent for selecting selecting the bad project, the contract becomes
back-loaded that is XV

02 < X12.
We also note that X02 > X01, that is increasing the number of trials implies

that earlier success have to be rewarded more in the contract which has higher
number of trials. This is because the agent has to be compensated for greater
losses in rents in the contract with higher number of trials.

If we compare �2 with �1, we see that the principal faces benefits and costs
in moving from a contract with 1 trial to 2 trials. The change in the expected
payo� can be decomposed as:

�2 ≠ �1 = ”◊2(1 ≠ –0“)[–1“(R ≠ X12) ≠ c]
¸ ˚˙ ˝

benefit

≠ ◊–0“(X02 ≠ X01)¸ ˚˙ ˝
cost

17This is also the bonus that the principal would pay to an agent if he can costlessly
replace the agent with another agent upon failure in a project. In this case though ability is
not agent-specific but is more about the quality of the idea that is being assessed through
projects.
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The additional benefit is captured by the term

”◊2(1 ≠ –0“)[–1“(R ≠ X12) ≠ c].

This reflects the case that the high ability agent might fail while attempting
a good project on the first attempt which happens with probability (1 ≠ –0“)
but allows for the possibility that the agent succeeds on the second attempt.

The cost on the other hand can be seen in the term

◊–0“(X02 ≠ X01).

If we compare it to the case with one failure we see that that the principal
gets a lower payo� if the agent succeeds in the first attempt since X02 > X01.
Thus the main tradeo� to the principal is increasing the number of experiments
funded leads to more accurate information about the ability of the agent but
has to be paid for not only in terms of more cost of experimentation but also
in higher rents to the agent in case of earlier success.

4 Optimal Contract

In this section, we examine the properties of the optimal contract that incen-
tivizes the agent to implement the project if and only if it is a good project.

We can decompose the problem into a two step procedure: First, given a
maximum number k of trials that the principal is willing to fund, what should
the optimal bonus scheme be in order for the agent to choose the project if
and only if it is a good project? Having found the optimal bonus scheme, we
determine the number of trials the principal is willing to fund.

4.1 Optimal Bonus

Definition: Given a maximum number of trials k that the principal is willing
to fund, we say that the bonus scheme (Xsk)s=0,1...k≠1 is incentive compatible
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if under such a bonus scheme the agent chooses to implement projects if and
only if they are good projects. We define an optimal contract as a contract
that is incentive compatible and maximizes the principal’s expected payo�.

Let (Xsk)s=0,1...k≠1 be a incentive compatible bonus scheme . Let �s,k denote
principal’s expected payo� from such a contract when s < k failures and zero
successes in good projects have taken place. Then �s,k satisfies the following
the recurrence relation :

�s,k = p[–s“(R ≠ Xs,k) + (1 ≠ –s“)”�s+1,k ≠ c] + (1 ≠ p)”�s,k

With probability p, a good project becomes available and is implemented.
This leads to an expected profit of –s“(R≠Xsk)+(1≠–s“)”�s+1,k ≠c . Given
that the bonus scheme is incentive compatible, all the earlier failures were in
good projects and hence the probability that the agent is high ability is given
by –s from equation (1). Thus the probability of success in the good project
is given by –s“. In case of a success, the principal gets R ≠ Xsk since the
contracts specifies Xsk as the bonus to be paid in such a situation. In case of
a failure which happens with probability (1 ≠ –s“), the future payo� is given
by ”�s+1,k. Finally c stands for the cost of implementing the project. With
probability 1 ≠ p, the good project is not available and thus a project is not
implemented. Hence we move on to the next period and the profit for the
principal is summarized by ”�s,k.

The above recurrence relation can be further simplified to yield

�s,k = ◊(–s“(R ≠ Xsk) + (1 ≠ –s“)”�s+1,k ≠ c)

where ◊ © p
1≠”(1≠p) . Thus the overall expected profit from o�ering a con-
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tract which tolerates k failures is given by �0,k © �k where

�k = ◊[–0“(R ≠ X0k) + (1 ≠ –0“)”�1,k ≠ c]
= ◊[–0“(R ≠ X0k) ≠ c] + ◊(1 ≠ –0“)”�1,k

= ◊[–0“(R ≠ X0k) ≠ c] +
◊2”(1 ≠ –0“)(–1“(R ≠ X1k) + (1 ≠ –1“)”�2,k ≠ c)

= ◊(–0“(R ≠ X0k) ≠ c) +
k≠1ÿ

s=1
◊s+1”s(

s≠1Ÿ

m=0
(1 ≠ –m“))(–s“(R ≠ Xsk) ≠ c)

Given k, the principal’s profit maximization problem is to choose (Xsk)k≠1
s=0and

(Vk(m, s))s
m=0 to maximize �k subject to the following constraints: subject to,

for each s = 0, ..., k ≠ 1,

b + –m“Xsk + (1 ≠ –m“)”Vk(m + 1, s + 1) Ø ”Vk(m, s) (IC-G)
b + ”Vk(m, s + 1) Æ ”Vk(m, s) (IC-B)

Xsk Ø 0 (LL)

where Vk(m, s) is defined by:

Vk(m, s) = max
1Gms,1BGms,1Bms,1Gms+1BGmsÆ1

{p[1Gms(b + –m“Xsk

+(1 ≠ –m“)”Vk(m + 1, s + 1))
+1BGms(1 ≠ 1Gms)(b + ”Vk(m, s + 1))
+(1 ≠ 1BGms)(1 ≠ 1Gms)”Vk(m, s)]
+(1 ≠ p)[1Bms(b + ”Vk(m, s + 1))
+(1 ≠ 1Bms)”Vk(m, s)]}

where 1Gms is an indicator function which takes value = 1 if the agent
selects the good project (after s public failures of projects, of which m were
good) if it is available and 0 otherwise. Similarly 1BGms stands for the indica-
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tor function for the agent’s choice regarding an implementation of bad project
if a good project is available ((after s public failures of projects, of which m

were good) while 1Bms stands for the indicator function for the agent’s choice
regarding implementation of a bad project (after s public failures of projects,
of which m were good) if a good project is not available.

Our first result deals with the question of how should the principal set Xsk

to maximize the expected profit from such a contract.

Proposition 1: Suppose the principal’s optimal contract funds up to k trials.
Then bonuses (Xsk)s=0,1...k≠1 in this contract are given by

Xsk = (k ≠ 1 ≠ s)b +
k≠1ÿ

m=s

b(1 ≠ ”)
”p“–m

.

Proof: See the appendix

Sketch of the proof
The proof is divided into the following steps. Instead of the profit maxi-

mization problem, we focus on the equivalent cost minimization problem.

Step One: We first consider a relaxed problem by restricting agent’s o�
path strategies to have only one-period deviations - that is the agent can only
deviate once (by either choosing not to implement a project when a good
project is available or by implementing a bad project) but from then on will
choose to implement projects if and only if they are good projects. Since the
bonus schemes are such that they act as incentives against all deviations, it
has to be true that they prevent the agent from these types of deviations. We
can thus write the relaxed problem as

min
(Xsk)k≠1

s=0

{◊–0“X0,k +
k≠1ÿ

s=1
◊s+1”s[

s≠1Ÿ

m=0
(1 ≠ –m“)][–s“Xs,k]}

subject to for each s = 0, ..., k ≠ 1,
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b + –s“Xs + (1 ≠ –s“)”V T
k (s + 1, s + 1) Ø ”V T

k (s, s) (IC-G-O-s)

b + ”V T
k (s, s + 1) Æ ”V T

k (s, s) (IC-B-O-s)

Xsk Ø 0 (LL)

where

V T
k (s, s) = ◊(b + –s“Xsk) +

k≠1ÿ

m=s+1
◊m+1≠s”m≠s[

m≠1Ÿ

n=s

(1 ≠ –n“)][b + –m“Xmk]

and

V T
k (s, s + 1) = ◊(b + –s“Xs+1k) +

k≠2ÿ

m=s+1
◊m+1≠s”m≠s[

m≠1Ÿ

n=s

(1 ≠ –n“)][b + –m“Xm+1k]

Step Two: We then show that IC-G-O-s are satisfied. To see this, we observe
that V T

k (s, s) can be rewritten as

V T
k (s, s) = ◊(b + –s“Xs + (1 ≠ –s“)”V T

k (s + 1, s + 1))

Thus we can rewrite the IC-G-O-s as

b + –s“Xs + (1 ≠ –s“)”V T
k (s + 1, s + 1) Ø ”◊(b + –s“Xs + (1 ≠ –s“)”V T

k (s + 1, s + 1))

which is always satisfied since b + –s“Xs + (1 ≠ –s“)”V T
k (s + 1, s + 1) > 0

and 0 < ”, ◊ < 1.

Step Three: Next, if the only o� path strategies available to the agent are
these one-period deviations, then all the IC-B-O-s need to hold with equality,
otherwise the principal can decrease bonuses without a�ecting incentives fol-

25



lowing s failures and before to increase profit18.

Step Four: Based on the IC-B-O-s holding with equality, we obtain a di�er-
ence equation linking Xsk and Xs+1k:

Xsk = b(1 ≠ ”)
”“–sp

+ Xs+1k + b

along with the boundary condition:

Xk≠1k = b(1 ≠ ”)
”“–k≠1p

This gives us a solution for Xsk as stated in the proposition.

Step Five: We finally show that the Xsk we found by restricting the agent’s
o�-path strategy are enough to deter the agent from more complex o�-path
strategies involving multiple deviations. Intuitively, the contract in the relaxed
problem ensured that the agent has no incentives to deviate if never deviated.
The agent’s private belief is either the same as the public belief (if he deviates
by not implementing a project when a good project is available) or higher (if
he deviates by selecting a bad project). Hence we can verify deviating is even
less attractive to the agent if he has deviated before.

Proposition 1 lends itself to the following two corollaries:

Corollary 1: Bonuses are front-loaded i.e X0k > X1k > ... > Xk≠1k.

The intuition is that earlier bonuses need to compensate the agent for giv-
ing up the rents that he could have got from future projects as well as rents
due to the possibility of divergence between the private belief of the agent and
the belief based on public history.

18It is possible to decrease bonuses with violating limited liability conditions since one
can show that Xsk > 0, which follows from IC-B-O-s and induction - the details are shown
in the appendix.
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Corollary 2: Increasing the number of failures allowed increases the bonus
needed to incentivize the agent at each stage: Xsk > XskÕ for k > kÕfor
s = 0, 1...kÕ ≠ 1.

The intuition follows from observing that an increase in the number of tri-
als implies that the agent has an opportunity to get greater private benefits by
implementing more projects as well as earn higher rents by causing a greater
divergence between public and private beliefs. Thus the agent has to be com-
pensated for a greater potential loss of continuation rents for selecting good
projects when there is an increase in number of maximum failures allowed.

4.2 Optimal Number of Trials

Having found the optimal bonus scheme, we move on to examine the question
of how should the principal decide on the optimal number of trials. To un-
derstand the determinants, it’s useful to decompose the impact on expected
payo� of the principal as a result of a change in the number of trials. The
change in payo� for the principal if he decides to increase the number of trials
from k to k + 1 is given by

—�k = ◊k+1”k[
k≠1Ÿ

m=0
(1 ≠ –m“)][–k“(R ≠ Xkk+1) ≠ c]

+
kÿ

s=1
◊s”s≠1–0(1 ≠ “)s≠1“(Xs≠1 k ≠ Xs≠1 k+1)

© MBSB
k ≠ MCSB

k

We can decompose the total change in the expected payo� of the principal
into two parts: the “marginal benefit” and the “marginal cost”. We define and
expand on the terms below.

Increasing the number of trials from k to k + 1 has two consequences for
the principal’s expected payo� - first, there is an additional opportunity to
succeed in case the first k trials result in failure and second, the bonuses for
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success in the first k trials have to be altered as a consequence of corollary 2.
Since the number of trials has gone up from k to k + 1, there is now

an additional opportunity to experiment. The “marginal benefit” refers to
the impact on the expected payo� due to the principal having one additional
chance of experimentation, holding fixed the bonus to be paid in case of success
in the first k trials. We note that the additional trial is of use only if the first
k trials have resulted in failure. For k Ø 1, the expected payo� from the
additional opportunity is given by

MBSB
k © ◊k+1”k[

k≠1Ÿ

m=0
(1 ≠ –m“)][–k“(R ≠ Xkk+1) ≠ c]

We can decompose this expression into two parts - rk≠1
m=0(1≠–m“) refers to

the probability of no success in the first k trials while ◊k+1”k[–k“(R≠Xkk+1)≠c]
refers to the expected payo� for success in the k + 1th trial. MBSB

0 is given by
◊[–0“(R ≠ X01) ≠ c].

Lemma 1: The “marginal benefit” of experimentation is decreasing in the
maximum number of failures tolerated by the principal, that is MBSB

k is a
decreasing function of k.

Proof: See the appendix

The intuition is that not only does the new opportunity present itself much
later (which is reflected in the terms ◊k+1”k), but it is also less likely to present
itself - the probability is given by rk≠1

m=0(1 ≠ –m“) = {1 ≠ –0 + –0(1 ≠ “)k} -
and also when it presents itself the expected payo� (–k“(R ≠ Xkk+1) ≠ c) is
decreasing in k as well since the probability of success –k“ is lower and the
principal also needs to pay a higher bonus Xkk+1 to incentivize the agent.

The “marginal cost” captures the fact that increasing the number of trials
permitted results in increasing the bonus that has to be promised to the agent
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in case of success after 0, 1, ...k ≠ 1 failures. This observation follows from
corollary 2. The “marginal cost”19 for k Ø 1 is given by

MCSB
k ©

kÿ

s=1
◊s”s≠1–0(1 ≠ “)s≠1“(Xs≠1k+1 ≠ Xs≠1k)

In the above expression, –0(1 ≠ “)s≠1“ refers to the probability of success
in the sth trial, while ◊s”s≠1(Xs≠1k+1 ≠ Xs≠1k) refers to (discounted) value of
increased bonus. We also define MCSB

0 © 0.
Using the result for the optimal bonuses from proposition 1, we can rewrite

the “marginal cost” for an incentive compatible contract as

MCSB
k =

kÿ

s=1
◊s”s≠1–0(1 ≠ “)s≠1“(b + b(1 ≠ ”)

”–k“p
)

Lemma 2: The “marginal cost” of experimentation is increasing in the maxi-
mum number of failures tolerated by the principal, that is MCSB

k is increasing
function of k.

Proof: See the appendix

The intuition is that a higher value of k implies a lower value of –k which
results in a higher increase in bonus to be paid in the event of earlier success
as Xs≠1k+1 ≠ Xs≠1k = b + b(1≠”)

”–k“p
as well as there being a higher probability of

earlier success since qk
s=1 ◊s”s≠1–0(1 ≠ “)s≠1“ is increasing in k as well.

Once we have the decomposition of changes in expected payo� of the prin-
cipal as a result of changing the number of trials allowed, we can characterize
the optimal number of trials that the principal should be willing to tolerate.
The change in expected payo� due to a change in the maximum number of tri-

19One could decompose the e�ect on expected profit due to an increase in the number of
trials in di�erent ways. However it is instructive for the analysis to have the cost of financing
a project c be subtracted from the “marginal benefit”, as opposed to including it as part of
“marginal cost”.
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als can be viewed as the di�erence of the “marginal benefit” and the “marginal
cost”. The “marginal benefit” is a decreasing function of the number of trials
permitted and the “marginal cost” is an increasing function of the number of
trials permitted. Hence the change in expected payo� is positive as long as the
“marginal benefit” exceeds the “marginal cost” and thus the principal should
choose the largest number of trial for which the “marginal benefit” exceeds
the “marginal cost”. This is also illustrated in Figure 2 below.

Proposition 2: The optimal number of trials is unique and given by the
highest k for which MBSB

k Ø MCSB
k

We can also compare the optimal number of trials in the complete infor-
mation benchmark and the second best. In the complete information case,
there is no bonus to be paid and hence the “marginal cost” as defined above
equals 0 for any number of trials decided upon by the principal20. We thus
have MCCI

k = 0 for any k. The “marginal benefit” of an additional trial in
the complete information benchmark is given by

MBCI
k © ◊k+1”k[

k≠1Ÿ

m=0
(1 ≠ –m“)][–k“R ≠ c]

The “marginal benefit” is higher in the complete information benchmark
as compared to the second best. Hence the principal should experiment more
in the complete information as compared to the situation in which the agent
has to be incentivized through bonuses. This discussion is summarized in the
following proposition.

Proposition 3: The second best allows for an ine�ciently low number of
trials compared to the complete information benchmark.

20Recall that the cost of financing a project c is subtracted from the marginal benefit in
the decomposition described above.
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Figure 2: Optimal number of trials

5 Comparative Statics

In this section, we provide comparative statics results on the number of trials
and the principal’s expected payo� as a function of parameters.

Proposition 4: The principal’s second best expected payo� as well as the
number of trials are increasing in R and –0 and decreasing in c.

Comparative statics with respect to –0

To understand how a change in –0 impacts the number of trials, we look at
how it impacts the MBSB

k and MCSB
k . We note that MBSB

k is an increasing
function of –0(all proofs are in the appendix) while it is possible for MCSB

k to
be either an increasing or decreasing function –0. The impact on the “marginal
cost” is driven through two channels - holding fixed the number of trials -
an increase in –0 leads to a reduction in bonus paid when success happens
after a specific number of failures. However it is also more likely that the
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agent succeeds earlier, which combined with the front-loading of bonuses imply
that the principal could end up paying more. Hence the impact on MCSB

k is
ambiguous. Thus it might seem possible that as a result of increase in –0, the
increase in “marginal cost” is so high that the principal might end up reducing
the number of experiments he wants to perform. However as shown in the
Appendix, an increase in the prior is always going to lead to an increase in the
number of trials.

The e�ect on expected payo� is unambiguous as well - holding fixed the
number of trials, it can be shown that expected payo� of the principal increases
as –0 increases. Since the principal is free to vary the number of trials (which
includes the option of not changing the number of trials), her expected payo�
is going to be higher in situations when there is an increase in –0.

Comparative statics with respect to c:

An increase in c leads to a reduction in the “marginal benefit” but has no
e�ect on “marginal cost”. Hence the number of trials permitted is going to be
weakly lower. Holding fixed the number of trials, expected payo� is decreasing
in c and hence an increase in c leads to a reduction in expected payo�.

Comparative statics with respect to R:

An increase in R leads to a increase in the “marginal benefit” but has no e�ect
on “marginal cost”. Hence the number of trials permitted is going to be weakly
higher. Expected payo� is going to increase following an argument similar to
that for the –0 case.
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6 Discussion

6.1 Connecting Predictions with Empirics

The model developed can be applied to venture capital industry. We can
view Xsk as a measure of cash-flow rights21 for the entrepreneur upon success.
Corollary 1 suggests that the cash-flow rights for the entrepreneurs are a de-
creasing function of the number of past failures. Kaplan and Strömberg (2003)
find evidence that founders’ cash flow rights decline over financing rounds and
increase with firm performance. They suggest that the increase in VC cash
flow rights over financing rounds is consistent with the VC demanding more
equity as compensation for providing additional funding. Our model provides
an alternative explanation based on incentive theory for reasons why founders’
cash-flow rights decline over financing rounds as well as when firm’s perfor-
mance becomes worse.

Our model also has some implications for the structure of anti-dilution
provisions which protect previous investors during “down rounds”. 22 Anti-
dilution provisions are quite common ( see for e.g., Kaplan and Strömberg
2003; Gompers, Gornall, Kaplan, and Strebulaev 2016) and are meant to
protect the investors against future financing rounds at a lower valuation than
the valuation of the current (protected) round. Typically these come at the
cost of reduced equity shares for the founders during down rounds and are
often associated with loss of motivation on part of the founders. One can
interpret the optimal bonuses identified in proposition 1 as a measure of the
maximum amount of equity dilution for the entrepreneurs per each round
that is consistent with still keeping entrepreneurs incentivized to act in the
investor’s interest.

The result that an increase in the prior about the entrepreneur’s ability is
associated with greater financing is consistent with the findings in the empirical

21Cash-flow rights for entrepreneurs are defined as the fraction of a portfolio company’s
equity value that entrepreneurs have a claim to.

22A down round is defined as a financing round with a lower share price than the previous
round.
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literature on venture capital financing which suggests that entrepreneurs who
have succeeded in the past are likely to get better deals (Gompers, Kovner,
Lerner and Scharfstein 2010). The empirical evidence regarding the e�ect of c

on financing of experimentation is mixed. Recent research (Kerr, Nanda and
Rhodes-Kropf 2014; Ewens, Nanda, and Rhodes-Kropf forthcoming) suggests
that the main impact of a reduction in c has been in increasing the number
of entrepreneurs financed. However investors have reduced the amount of
funding to individual entrepreneurs at the initial stage and now wait for more
information about future prospects of the investment before committing more
resources.

6.2 Non-Monetary Rewards

Our model has so far interpreted X as monetary payments made from the
principal to the agent. However in a lot of settings, especially within organi-
zations, ability to exchange money is often limited23. Similarly, founders are
often rewarded for success not via monetary bonuses or cash flow rights but via
greater control rights. To capture this in our model, we can also interpret X in
our model as promised continuation utilities instead of monetary bonuses. Let
f(X) denote the cost to the principal of providing continuation utility X to
the agent. Thus now success after s failures results in the agent receiving Xsk

as before but the principal’s payo� is given by R ≠ f(Xsk). If we assume that
f(X) is an increasing convex function of X, then the expression obtained for
Xsk in proposition 1 remains unchanged. Further the results for the optimal
trials as well as the comparative statics results too remain qualitatively sim-
ilar. Thus our model can be widely applied to settings even where monetary
rewards are not available.

23The restriction on the use of monetary rewards is a common feature in the delegation
literature.
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6.3 Private Observability and Disclosure

In our model, success in a project was immediately observed by the principal.
Suppose instead that the outcome in a project is privately observed by the
agent but can be verifiably disclosed. However if success is not immediately
disclosed, then they are lost. Further, assume that the principal’s payo� from
project success obtains here only when the agent discloses it. Then one ques-
tion that might be of interest is under the optimal contract found above, does
the agent have enough incentive to disclose the success? The answer is yes,
and one can see it in the context of the two trial example. Suppose the agent
implements the first trial in period t and obtains a success. In case he reveals
the success, he gets a payo� of b + X02. However, if he chooses to hide the
success, then he moves on to the second trial. Having received success, the
agent knows that he is a high ability type for sure while the belief about his
ability based on public history is given by –1. Hence following the logic for
the two trial case, he will indeed choose to wait for the good project to come
before choosing to implement a project. His payo� in this case is given by
b + ◊(b + “X12). Since X02 > X12 + b, we obtain

b + X02 > b + b + X12

> b + ◊(b + “X12)

and hence the agent will choose to disclose success as soon as he obtains
one.

7 Conclusion
This paper studied a dynamic principal-agent model for experimentation in
which the agent is financed to work on projects and we learn about the agent’s
ability through observing his performances in the projects. Performance also
depends on the quality of the projects implemented; this quality is private
information for the agent who is biased towards implementation. We identified
the sources of rents received by the agent in this setting and showed that the
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optimal bonus structure has payments for success decreasing in the number
of past failures. The optimal amount of funding to be made available for the
agent for implementing projects is determined by comparing the information
received by the principal as a result of higher number of observations and the
higher rents to be paid to the agent as a consequence of increasing the number
of observations.

There are some questions related to the issues analyzed in the paper that
may be of interest for future research. One possibility is to analyze more
general reward structure for instance by allowing the principal to contract on
a richer set of variables, for example time or periods in which no project is
implemented. Another interesting question to study is what happens in the
absence of commitment power on behalf of the principal. Finally, it could
also be interesting to study the dynamics of the relationship in a multi-stage
interaction between the principal and the agent - where performance in a stage
has implications for the incentive structure in later stages. These remain for
future research.
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Appendix: Proofs

Proof of Proposition 1:

Fix k, the maximum number of failures permitted. We are interested in charac-
terizing the bonus scheme (Xsk)s=0,1,...k≠1 that maximizes the principal’s profit
and also ensures that the agent chooses to implement the project if and only
if it is a good project.

The proof is divided into the following steps. We first study a relaxed
problem by restricting the agent’s o� path strategies to have only one devi-
ation - that is the agent can only deviate once but from then on will choose
to implement projects if and only if they are good projects. Since the bonus
contracts are such that they act as incentives to all deviations, it has to be
true that they prevent the agent from such deviations. We then show that if
the only o� path strategies available to the agent are these deviations, then
the incentive compatibility condition for the bad projects have to hold with
equality, otherwise the principal can change bonuses to increase profit. Based
on that, we obtain a di�erence equation linking Xsk and Xs+1k as well as a
boundary solution for Xk≠1k. This gives us a solution for Xsk as stated in the
proposition. We finally show that the Xsk we found by restricting the agent’s
o�-path strategy to one deviations are enough to deter the agent from more
complex o�-path strategies involving multiple deviations.

*Principal’s problem

The principal’s expected profit under an incentive compatible contract that
has the agent implementing project if and only if it is a good project is given
by

�k = ◊[–0“(R ≠ X0k) ≠ c] +
k≠1ÿ

s=1
◊s+1”s{

s≠1Ÿ

m=0
(1 ≠ –m“}{–s“(R ≠ Xsk) ≠ c}

We see in the above expression that the each of the Xsk enter negatively
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in the principal’s profit - hence if the principal can reduce any Xsk without
violating the limited liability or any of the incentive compatibility constraints
she would do so.

. The principal’s problem is to chose (Xsk)s=0,1...k≠1 and (Vk(m, s))m=0,1..s;s=0,1..k≠1

to maximize profit subject to the incentive compatibility conditions and the
limited liability. This is equivalent to the following cost minimization problem:

min
(Xsk)k≠1

s=0 ,(Vk(m,s))m=0,1..s;s=0,1..k≠1
◊–0“X0,k +

k≠1ÿ

s=1
◊s+1”s(

s≠1Ÿ

m=0
(1 ≠ –m“)(–s“Xsk)

subject to incentive compatibility for good projects (IC-G)

b + –m“Vk(m, s) + (1 ≠ –m“)”Vk(m + 1, s + 1) Ø ”Vk(m, s)

incentive compatibility for bad projects (IC-B)

”Vk(m, s) Ø b + ”Vk(m, s + 1)

and limited liability (LL)

Xsk Ø 0

and Vk(m, s) is defined by:

Vk(m, s) = max
1Gms,1BGms,1Bms,1Gms+1BGmsÆ1

{p[1Gms(b + –m“Xsk

+(1 ≠ –m“)”Vk(m + 1, s + 1))
+1BGms(1 ≠ 1Gms)(b + ”Vk(m, s + 1))
+(1 ≠ 1BGms)(1 ≠ 1Gms)”Vk(m, s)]
+(1 ≠ p)[1Bms(b + ”Vk(m, s + 1))
+(1 ≠ 1Bms)”Vk(m, s)]}

where 1Gms is an indicator function which takes value = 1 if the agent
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selects the good project if it is available and 0 otherwise. Similarly 1BGms

stands for the indicator function for the agent’s choice regarding bad projects
if a good project is available while 1Bms stands for the indicator function for
the agent’s choice regarding bad projects if a good project is not available.

Suppose the number of public failures is s out of which m failures were in
good projects. We define V T

k (m, s) as the expected profit of the agent if he
implements the project if and only if it is a good project from then on.

Then V T
k (m, m) satisfies the following recurrence relation:

V T
k (m, m) = p(b + –m“Xmk + (1 ≠ –m“)”V T

k (m + 1, m + 1)) + (1 ≠ p)”V T
k (m, m)

= ◊(b + –m“Xmk + (1 ≠ –m“)”V T
k (m + 1, m + 1))

= ◊(b + –m“Xmk) +
k≠1ÿ

y=m+1
◊y+1≠m”y≠m[

y≠1Ÿ

n=m

(1 ≠ –n“)][b + –y“Xyk]

We can similarly get an expression for V T (m, m + 1) which is given by

V T
k (m, m + 1) = p(b + –m“Xm+1k + (1 ≠ –m“)”V T

k (m + 1, m + 2)) + (1 ≠ p)”V T
k (m, m + 1)

= ◊(b + –m“Xm+1k + (1 ≠ –m“)”V T
k (m + 1, m + 2))

= ◊(b + –m“Xm+1k) +
k≠2ÿ

y=m+1
◊y+1≠m”y≠m[

y≠1Ÿ

n=m

(1 ≠ –n“)][b + –y“Xy+1k]

*Restriction to one-period deviations:

We start out by restricting the agent to one-period deviations. That is only
once will he deviate from the principal’s prescribed strategy and from then
on he will select the to implement the project if and only if it is a good
project. Since the agent is restricted to one-period deviations, the incentive
compatibility constraints are that for each of s = 0, 1...k ≠ 1 the following
inequalities need to hold true.
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b + –s“Xsk + (1 ≠ –s“)”V T
k (s + 1, s + 1) Ø ”V T

k (s, s) (IC-G-O-s)

b + ”V T
k (s, s + 1) Æ ”V T

k (s, s) (IC-B-O-s)

The top inequality (IC-G-O-s) says that the agent prefers to implement
a good project if a good project is available. The bottom inequality (hence-
forth referred to IC-B-O-s) says the payo� from not implementing a project is
greater than implementing a bad project.

* IC-G-O-s is always satisfied

We first note that the incentive compatibility condition for the good project
is always satisfied. To see this, we observe that

”V T
k (s, s) = ”◊(b + –s“Xsk + (1 ≠ –s“)”V T

k (s + 1, s + 1))
< (b + –s“Xsk + (1 ≠ –s“)”V T

k (s + 1, s + 1))

since 0 < ”, ◊ < 1.

*Xsk > 0 for all s

We next observe that Xsk > 0 for all s. To show this we use a induction
argument. That is, we start by showing that this is true for Xk≠1k > 0 and
Xk≠2k > 0 and then show that if Xm+1k > 0, then Xmk > 0.

The incentive compatibility condition for the bad project when beliefs are
–k≠1 is given by

”V T
k (k ≠ 1, k ≠ 1) Ø b
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However we note that

V T
k (k ≠ 1, k ≠ 1) = ◊(b + –k≠1“Xk≠1k)

Hence we get
Xk≠1k Ø b(1 ≠ ”)

”–k≠1“p
> 0.

Consider s = k ≠ 2. The incentive compatibility condition for the bad
project when beliefs are –k≠1 is given by

”V T
k (k ≠ 2, k ≠ 2) Ø b + ”V T

k (k ≠ 2, k ≠ 1)

∆ V T
k (k ≠ 2, k ≠ 2) ≠ V T

k (k ≠ 2, k ≠ 1) Ø b

”

Using the expressions for V T (m, m) and V T (m, m + 1), the LHS can be
simplified to give

V T
k (k ≠ 2, k ≠ 2) ≠ V T

k (k ≠ 2, k ≠ 1) = ◊{–k≠2“(Xk≠2k ≠ Xk≠1k)}
+◊2”(1 ≠ –k≠2“){b + –k≠1“Xk≠1k}

This allows us to obtain

◊–k≠2“Xk≠2k Ø [ b
”

≠ ◊2”(1 ≠ –k≠2“)b] + ◊–k≠2“Xk≠1k ≠ ◊2”(1 ≠ –k≠2“)–k≠1“Xk≠1k

= b[1
”

≠ ◊2”(1 ≠ –k≠2“)] + ◊–k≠2“Xk≠1k[1 ≠ ◊”(1 ≠ “)]
> 0

where the second line follows from using Bayes’ rule on –k≠2. The third
line follows from observing that each of b > 0, 1

”
≠ ◊2”(1 ≠ –k≠2“) > 0 and

◊–k≠2“Xk≠1k[1 ≠ ◊”(1 ≠ “)] > 0 .

General induction step: Assume that each of Xk≠1k, Xk≠2k...Xm+1k > 0.
We now show that this implies Xmk > 0. The incentive compatibility condition
for bad projects when beliefs are –s is given by
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”V T
k (s, s) Ø b + ”V T

k (s, s + 1)

We can follow similar steps as above and show that

V T
k (s, s) ≠ V T

k (s, s + 1) = ◊–s“Xsk + Xs+1k[◊2”(1 ≠ –s“)–s+1“ ≠ ◊–s“] +

+
k≠1ÿ

m=s+2
AmXmk +

◊k≠s”k≠s≠1(1 ≠ –s“)(1 ≠ –s+1“)...(1 ≠ –k≠2“)–k≠1“b

Here Am is the coe�cient for Xm and is given by

Am = ◊m≠s+1”m≠s{(1 ≠ –s“)(1 ≠ –s+1“)...(1 ≠ –m≠1“)–m“

≠◊m≠s”m≠s≠1{(1 ≠ –s“)(1 ≠ –s+1“)...(1 ≠ –m≠2“)–m≠1“

= ◊m≠s+1”m≠s{(1 ≠ –s“)(1 ≠ –s+1“)...(1 ≠ –m≠2“)–m≠1(1 ≠ “)“
≠◊m≠s”m≠s≠1{(1 ≠ –s“)(1 ≠ –s+1“)...(1 ≠ –m≠2“)–m≠1“

= ◊m≠s”m≠s≠1{(1 ≠ –s“)(1 ≠ –s+1“)...(1 ≠ –m≠2“)–m≠1“(◊”(1 ≠ “) ≠ 1)
< 0

Thus we get that

◊–s“Xsk Ø b[1
”

≠ ◊k≠s”k≠s≠1(1 ≠ –s“)(1 ≠ –s+1“)...(1 ≠ –k≠2“)–k≠1“b]

+Xs+1k◊–s“[1 ≠ ◊”(1 ≠ “)] +
k≠1ÿ

m=s+2
(≠Am)Xmk

> 0

where the last equality follows from the observation that b > 0, Xm+1k, ...Xk≠1k >

0 (from the induction step) as well as the coe�cients on b, Xs+1k....Xk≠1k are
all positive. Hence we get that Xsk > 0.
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* All IC-B-O-s hold with equality

We now argue that all IC-B-OS need to hold with equality.
The argument is by contradiction. Let s be the first instance whereby the

inequality is strict that is,

”V T
k (s, s) > b + ”V T

k (s, s + 1)

and

”V T
k (m, m) = b + ”V T

k (m, m + 1)

for all 0 Æ m < s.
Rewrite using the definition of V T

k (m, m) and V T
k (m, m + 1)

”V T
k (s, s) > b + ”V T

k (s, s + 1)

as

◊(b + –s“Xsk + (1 ≠ –s“)”V T
k (s + 1, s + 1)) > b + ”V T

k (s, s + 1)

We observe that neither V T
k (s + 1, s + 1) nor V T

k (s, s + 1) depend on Xsk.
Hence it is possible to reduce Xsk by a small amount and still have the in-
equality holding. Since the principal’s profit is decreasing in Xsk, such an
adjustment increases the principal’s profit and hence it contradicts Xsk being
a part of the optimal bonus structure.

It remains to argue that none of the other constraints are violated as a
result of this change in Xsk. we observe that the expressions for V T

k (m, m) as
well as V T

k (m, m + 1) are not dependent on Xsk where m > s. Hence changing
Xsk has no impact on any of the inequalities for s + 1, s + 2...k ≠ 1.

What about the incentive constraints for m < s? We know that for all
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such m the following relation holds.

”V T
k (m, m) = b + ”V T

k (m, m + 1)

Reducing Xs by ‘ decreases ”V T
k (m, m) by ‘{◊s≠m”s≠m≠1(1 ≠ –m“)...(1 ≠

–s≠1“)–s“ while decreases ”V T
k (m, m + 1) by ‘{◊s≠m≠1”s≠m≠2(1 ≠ –m“)...(1 ≠

–s≠2“)–s≠1“. Observe that

(1 ≠ –s≠1“)–s = (1 ≠ “)–s≠1

and hence

(1 ≠ –m“)...(1 ≠ –s≠1“)–s“ = (1 ≠ –m“)...(1 ≠ –s≠2“)–s≠1“(1 ≠ “).

Thus the fall in ”V T
k (m, m) is smaller than the ”V T

k (m, m + 1) and hence the
incentive compatibility constraint for bad project continues to hold.

*Recurrence relation:

We have shown that all the IC-B–O-s need to hold with equality. We now
prove the following recurrence relation:

Xsk = b(1 ≠ ”)
”“–sp

+ Xs+1k + b

along with the boundary condition:

Xk≠1k = b(1 ≠ ”)
”“–k≠1p
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The IC-B-O-k ≠ 1 gives us

”V T
k (k ≠ 1, k ≠ 1) = b

∆ ◊”(b + –k≠1“Xk≠1,k) = b

∆ p”(b + –k≠1“Xk≠1,k) = b(1 ≠ ”(1 ≠ p)

Simplifying we get,

Xk≠1k = b(1 ≠ ”)
”“–k≠1p

.

To prove the recurrence relation we use induction on s.
For s = k ≠ 2, the IC-B-OS gives us

”V T
k (k ≠ 2, k ≠ 2) = b + ”V T

k (k ≠ 2, k ≠ 1)

This can be rewritten as

”p(b + –k≠2“Xk≠2 + (1 ≠ –k≠2“)”V T
k (k ≠ 1, k ≠ 1)) = b(1 ≠ ” + ”p) +

”V T
k (k ≠ 2, k ≠ 1)((1 ≠ ” + ”p)

To simplify the above expression, we observe

V T
k (k ≠ 2, k ≠ 1)(1 ≠ ” + ”p) = p(b + –k≠2“Xk≠1k)

and the IC-B-O-k ≠ 1 gives us

”V T
k (k ≠ 1, k ≠ 1) = b

Thus we get,

”pb + ”p–k≠2“Xk≠2k = b(1 ≠ ” + ”p) + ”p(b + –k≠1“Xk≠1k)
≠”p(1 ≠ –k≠2“)b
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which gives us

Xk≠2k = b(1 ≠ ”)
”p“–k≠2

+ Xk≠1k + b

which verifies the recurrence equation above for s = k ≠ 2.
We now assume that the recurrence relation holds for s+1, s+2..., k≠2, k≠1

and show that it holds for Xsk as well.
The IC-B-O-s gives us

”V T
k (s, s) = b + ”V T

k (s, s + 1)

We observe that

V T
k (s, s) = ◊(b + –s“Xsk + (1 ≠ –s“)”V T

k (s + 1, s + 1))

Hence

”◊(b + –s“Xsk + (1 ≠ –s“)”V T
k (s + 1, s + 1)) = b + ”V T

k (s, s + 1)

Multiplying throughout by 1 ≠ ” + ”p and simplifying we get,

”p–s“Xsk = b(1 ≠ ”) + (1 ≠ ” + ”p)”V T
k (s, s + 1)

≠”2p(1 ≠ –s“)V T
k (s + 1, s + 1)

We see that

(1 ≠ ” + ”p)V T
k (s, s + 1) = p[b + –s“Xs+1k

+p(1 ≠ –s“)”V T
k (s + 1, s + 2)]
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Inserting this in the above equation we get,

”p–s“Xsk = b(1 ≠ ”) + ”[pb + p–s“Xs+1k +
+p(1 ≠ –s“)(”V T

k (s + 1, s + 2) ≠ ”V T
k (s + 1, s + 1))]

We know that

”V T
k (s + 1, s + 1) = b + ”V T

k (s + 1, s + 2)

This gives us

”p–s“Xsk = b(1 ≠ ”) + ”[pb + p–s“Xs+1k

≠p(1 ≠ –s“)b]
= b(1 ≠ ”) + ”p–s“[Xs+1k + b]

which gives us

Xsk = b(1 ≠ ”)
”p–s“

+ Xs+1k + b

which proves the recurrence relation.

*Deriving the formula stated in the proposition

We thus see that

Xsk = b(1 ≠ ”)
”p–s“

+ Xs+1k + b

= b(1 ≠ ”)
”p–s“

+ b(1 ≠ ”)
”p–s+1“

+ Xs+2k + b + b

= (k ≠ 1 ≠ s)b +
k≠1ÿ

m=s

b(1 ≠ ”)
”p“–m

.
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* Showing this is su�cient to deter more complex o� path strategies
for the agent

We now verify that (Xsk)s=0,1..k≠1 we found above is su�cient to guarantee
that the agent won’t want to deviate from the prescribed strategy even if he
had access to more complex strategies than one deviations.

The idea is to use induction to show that (Xsk)s=0,1..k≠1 is enough to prevent
the agent from taking up bad projects regardless of the beliefs of the agent
and the principal - that is we show that

”Vk(m, s) Ø b + ”Vk(m, s + 1).

where m = 0, 1...s and s = 0, 1...k ≠ 1.
Note that it su�ces to make sure that the incentive compatibility condition

for the bad project holds since in that case, there is no gain to choosing not to
implement a project when the project available is good as in the next period
the agent’s payo� is going to be the same as the previous period but now
discounted.

Fix s = k ≠ 1. We want to show that for m = 0, 1...k ≠ 1

”Vk(m, k ≠ 1) Ø b.

One possible strategy for the agent is that he selects not to implement a
project if the project available is bad and implement the good project if it
is available. Since Vk(m, k ≠ 1) is the maximum payo� possible, it has to be
true that Vk(m, k ≠ 1) gives a weakly higher payo� than following the above
strategy that is

”Vk(m, k ≠ 1) Ø ”◊(b + –m“Xk≠1k)
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Since m Æ k ≠ 1, we get that –m Ø –k≠1 and hence

”Vk(m, k ≠ 1) Ø ”◊(b + –k≠1“Xk≠1k)

= ”◊(b + –k≠1“
b(1 ≠ ”)
”–k≠1“p

)

= ”◊b(1 + (1 ≠ ”)
”p

)

= ”◊b
1 ≠ ” + ”p

”p
= b

where the last line follows from noting ◊ © p
1≠”(1≠p) .

Fix s = k ≠ 2. We want to show that for m = 0, 1...k ≠ 2

”Vk(m, k ≠ 2) Ø b + ”Vk(m, k ≠ 1).

To reduce notation, we are going to refer to Vk(m, k ≠ 2) © Vm,k≠2 and so
on for the remaining part of this proof. One possible strategy for the agent is
that he selects the safe project if the risky project is bad and the risky project
if it is a good project. Since Vm,k≠2 is the maximum payo� possible, it has
to be true that Vm,k≠2 gives a weakly higher payo� than following the above
strategy that is

Vm,k≠2 Ø ◊(b + –m“Xk≠2k + (1 ≠ –m“)”Vm+1,k≠1).

Hence it is enough to show that

”(b + –m“Xk≠2k + (1 ≠ –m“)”Vm+1,k≠1) Ø 1
◊

(b + ”Vm,k≠1)

Simplifying the expression we get,

”–m“Xk≠2k + (1 ≠ –m“)”2Vm+1,k≠1 Ø b

◊
≠ ”b + ”

◊
Vm,k≠1
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We know that

Xk≠2k = b(1 ≠ ”)
”p“–k≠2

+ Xk≠1k + b

and

Vm,k≠1 = ◊(b + –m“Xk≠1k)

Using the above two equalities to simplify the previous inequality

”–m“Xk≠2k + (1 ≠ –m“)”2Vm+1,k≠1 Ø b

◊
≠ ”b + ”

◊
Vm,k≠1

which is the same as

–m

–k≠2

b(1 ≠ ”)
p

+ ”–m“b + (1 ≠ –m“)”2Vm+1,k≠1 Ø b

◊

which can be further simplified to yield

b(1 ≠ ”)
p

[ –m

–k≠2
≠ 1] ≠ ”b(1 ≠ –m“) + (1 ≠ –m“)”2Vm+1,k≠1 Ø 0

which gives us

b(1 ≠ ”)
p

[ –m

–k≠2
≠ 1] + ”(1 ≠ –m“)[”Vm+1,k≠1 ≠ b] Ø 0

But m Æ k≠2 which gives us –m Ø –k≠2 and we also get from the previous
step that ”Vm+1,k≠1 ≠ b Ø 0 which verifies that

b(1 ≠ ”)
p

[ –m

–k≠2
≠ 1] + ”(1 ≠ –m“)[”Vm+1,k≠1 ≠ b] Ø 0

and hence

”V (m, k ≠ 2) Ø b + ”V (m, k ≠ 1).
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We now want to show that if for all m = 0, 1...r and r = s + 1, s + 2...k ≠ 1

”V (m, r) Ø b + ”V (m, r + 1).

then the following relation holds for all m = 0, 1....s:

”V (m, s) Ø b + ”V (m, s + 1).

We proceed similarly as before. We know that

Vm,s Ø ◊(b + –m“Xs + (1 ≠ –m“)”Vm+1,s+1).

Hence it is enough to show that

”(b + –m“Xs + (1 ≠ –m“)”Vm+1,s+1) Ø 1
◊

(b + ”Vm,k≠1)

which is the same as showing

”–m“Xsk + (1 ≠ –m“)”2Vm+1,s+1 Ø b

◊
≠ ”b + ”

◊
Vm,s+1

We can use the induction assumption to get

Vm,s+1 = ◊(b + –m“Xsk + (1 ≠ –m“)Vm+1,s+2)

and also

Xsk = Xs+1k + b(1 ≠ ”)
”–s“p

+ b

to simplify the above inequality as

b(1 ≠ ”)
p

[–m

–s

≠ 1] + ”(1 ≠ –m“)[”Vm+1,s+1 ≠ b ≠ ”Vm+1,s+2] Ø 0

We get –m

–s
≠ 1 Ø 0 since m Æ s and also ”Vm+1,s+1 ≠ b ≠ ”Vm+1,s+2 > 0
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from the induction assumption. Hence we have verified that indeed

b(1 ≠ ”)
p

[–m

–s

≠ 1] + ”(1 ≠ –m“)[”Vm+1,s+1 ≠ b ≠ ”Vm+1,s+2] Ø 0

and this concludes the induction argument.

Proof of Lemma 1

The expression for MBSB
k is given by

MBSB
k = ◊k+1”k[

k≠1Ÿ

m=0
(1 ≠ –m“)][–k“(R ≠ Xkk+1) ≠ c]

The lemma follows from observing that each of the terms above are de-
creasing in k. We note that ” as well as ◊ lie between 0 and 1. Hence ◊k+1 and
”k are both decreasing in k.

Second, since (1 ≠ –i“) lies between 0 and 1, the product

k≠1Ÿ

m=0
(1 ≠ –m“)

also lies in between 0 and 1 and hence increasing k multiplies this with a
term which is between 0 and 1 and thus reduces it further.

From Bayes’ rule we get,

–k = (1 ≠ “)k–0
(1 ≠ “)k–0 + (1 ≠ –0)

.

and thus –k is a decreasing function of k.
Finally

≠Xkk+1 = ≠b(1 ≠ ”)
”“–kp

is also decreasing in k since –k is decreasing in k.
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Proof of Lemma 2

The expression for “marginal cost” is given as

MCSB
k =

kÿ

s=1
◊s”s≠1[–0(1 ≠ “)s≠1“(b + b(1 ≠ ”)

”–k“p
)]

We observe that

◊s”s≠1[–0(1 ≠ “)s≠1“(b + b(1 ≠ ”)
”–k“p

)]

is positive and is also increasing in k since –k is decreasing in k. Hence
increasing k leads to an increase in the marginal cost - first, each of the terms
above increase due to –k being a decreasing function of k and second, a positive
term gets added since we are summing from 1 to k.

Proof of Proposition 2

We see that

—�k = ◊k+1”k[
k≠1Ÿ

m=0
(1 ≠ –m“)][–k“(R ≠ Xk,k+1) ≠ c]

+
kÿ

s=1
◊s”s≠1–0(1 ≠ “)s≠1“(Xs≠1,k ≠ Xs≠1,k+1)

Using the definitions of marginal benefit and marginal cost as defined in
the text, we can see that this can be written as

—�k © MBSB
k ≠ MCSB

k

Lemma 1 says that MBSB
k is decreasing in k while lemma 2 says that

MCSB
k is increasing in k. Thus we get that —�k is decreasing in k.

As we increase k, –k“(R ≠ Xkk+1) ≠ c becomes negative for some finite k

which implies that the “marginal benefit” becomes negative for some finite k.
The “marginal cost” on the other hand is always positive and is strictly increas-
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ing. Assumption 2 guaranteed that MBSB
0 > 0 = MCSB

0 which suggested that
some experimentation is optimal in the second best. As we increase k, there
exists a value of k, say kú for which MBSB

kú Ø MCSB
kú and MBSB

kú+1 < MCSB
kú+1.

The optimal number of trials is given by kú. To see this, note that if k > kú,
the principal can increase expected payo� by reducing k since at such a k,
MBSB

k < MCSB
k . However if k < kú, then MBSB

k > MCSB
k and hence the

principal can increase expected payo� by increasing k.

Proof of Proposition 3

In the complete information benchmark, there are no bonuses paid. Hence
MCCI

k = 0 for all k while the marginal benefit is given by

MBCI
k = ◊k+1”k[

k≠1Ÿ

m=0
(1 ≠ –m“)][–k“R ≠ c]

Since Xkk+1 > 0 we see that MBCI
k > MBSB

k . Thus in the complete
information benchmark, both “marginal benefit” is higher and the “marginal
cost” is lower compared to the second best. Hence the optimal of trials will be
higher as well. Note that even if MBCI

k > MBSB
k it is still true that MBCI

k

is decreasing in k - the argument is similar to that presented in the proof of
Lemma 2 - and hence experimentation is terminated after a finite number of
failures even in the complete information benchmark.

Proof for the Comparative Statics

Comparative statics with respect to –0

Lemma A.5.1: MBSB
k is increasing in –0 for all k for which MBSB

k > 0.
Proof: We see that

MBSB
k © ◊k+1”k[

k≠1Ÿ

m=0
(1 ≠ –m“)][–k“(R ≠ Xkk+1) ≠ c]
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We examine separately the terms which are a function of –0:

[
k≠1Ÿ

m=0
(1 ≠ –m“)][–k“(R ≠ Xkk+1) ≠ c]

This can be simplified as

[
k≠1Ÿ

m=0
(1 ≠ –m“)]–k“(R ≠ Xk,k+1) ≠ [

k≠1Ÿ

m=0
(1 ≠ –m“)]c

We note that

k≠1Ÿ

m=0
(1 ≠ –m“)–k“ = –0(1 ≠ “)k“

and hence is increasing in –0.
From equation (1), we see that –k is also increasing in –0.
Finally

≠Xkk+1 = ≠b(1 ≠ ”)
”“–kp

is increasing in –0 since –k is increasing in –0. Thus [rk≠1
m=0(1≠–m“)][–k“(R≠

Xkk+1)] is increasing in –0.
Next we observe that

k≠1Ÿ

m=0
(1 ≠ –m“) = 1 ≠ –0 + –0(1 ≠ “)k

Taking derivative of this expression with respect to –0, we get ≠1 +
(1 ≠ “)k < 0 - hence rk≠1

m=0(1 ≠ –m“) is decreasing in –0which implies that
≠ rk≠1

m=0(1 ≠ –m“)c is increasing in –0. Thus both of the components in the
expression for MBSB

k is increasing in –0 which gives us the result.

Lemma A.5.2: Fix k Ø 1. An increase in –0 can lead to a increase in MCSB
k .
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Proof: We start by noting

MCSB
k =

kÿ

s=1
◊s”s≠1–0(1 ≠ “)s≠1“(b + b(1 ≠ ”)

”–k“p
)

= –0(1 + (1 ≠ ”)
”–k“p

)[
kÿ

s=1
◊s”s≠1b(1 ≠ “)s≠1“]

The portion that is dependent on –0 is given by –0(1 + (1≠”)
”–k“p

). The deriva-
tive of this expression with respect to –0 is given by

1 + {1 ≠ ”

”
.

1
“p

}{1 ≠ 1
(1 ≠ “)k≠1 }

which can be positive - hence an increase in –0 can lead to a increase in
MCSB

k .
Alternatively observe that for ” = 1, MCSB

k simplifies to qk
s=1 –0(1 ≠

“)s≠1“b which is an increasing function of –0.

Lemma A.5.3 : An increase in –0 leads to an increase in the expected payo�
for the principal.

The principal’s expected profit for k trials is given by

�k = ◊[–0“(R ≠ X0k) ≠ c] +
k≠1ÿ

s=1
◊s+1”s{

s≠1Ÿ

m=0
(1 ≠ –m“)}{–s“(R ≠ Xsk) ≠ c}

Fix k. Then an increase in –0 leads to an increase in the �k. The proof
is similar to showing that the “marginal benefit” is an increasing function of
–0(Lemma A.5.2). The only di�erence is we have Xsk where s = 0, 1...k ≠ 1 in
place of Xkk+1. However if we hold fixed k, then Xsk is a decreasing function of
–0 just as Xkk+1 is decreasing function of –0 and hence analogous arguments
hold.

Lemma A.5.4 : An increase in –0 leads to an increase in the number of trials
in the second best.

Define kú(–0)+1 as the optimal number of trials in the second best when
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initial prior about the agent being of high ability is given by –0.
We have �kú(–0)+1 ≠�kú(–0) © —�kú(–0) Ø 0 , since kú(–0)+1 is the optimal

number of trials when prior is given by –0. Using the expressions for MBSB
kú(–0)

and MCSB
kú(–0), we can rewrite this condition as

◊kú(–0)+1”kú(–0)(1 ≠ –0“)..(1 ≠ –kú(–0)≠1“)[–kú(–0)“(R ≠ Xkú(–0)kú(–0)+1) ≠ c]

+
kú(–0)ÿ

s=1
◊s”s≠1–0(1 ≠ “)s≠1“(Xs≠1 kú(–0) ≠ Xs≠1 kú(–0)+1) Ø 0

Since Xkk+1 = b(1≠”)
”–k“p

and Xs≠1 k ≠ Xs≠1 k+1 = ≠b ≠ b(1≠”)
”–k“p

, the above ex-
pression can be rewritten as

◊kú(–0)+1”kú(–0)–0(1 ≠ “)kú(–0)“R ≠ (1 ≠ –0 + –0(1 ≠ “)k)(b(1 ≠ ”)
”p

+ c)

≠
kú(–0)ÿ

s=1
◊s”s≠1–0(1 ≠ “)s≠1“(b + b(1 ≠ ”)

”–kú(–0)“p
) Ø 0

from which we obtain

◊kú(–0)+1”kú(–0)(1 ≠ “)kú(–0)R ≠
kú(–0)ÿ

s=1
◊s”s≠1(1 ≠ “)s≠1b > 0.

We can rewrite —�kú(–0) as

—�kú(–0) = ◊kú(–0)+1”kú(–0)–0(1 ≠ “)kú(–0)“R

≠(1 ≠ –0 + –0(1 ≠ “)kú(–0))(b(1 ≠ ”)
”p

+ c)

≠
kú(–0)ÿ

s=1
◊s”s≠1–0(1 ≠ “)s≠1“b

≠
kú(–0)ÿ

s=1
◊s”s≠1(1 ≠ “)s≠1 (1 ≠ –0 + –0(1 ≠ “)kú(–0))

(1 ≠ “)kú(–0)
b(1 ≠ ”)

”p
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Using the envelope theorem, we obtain

ˆ—�kú(–0)
ˆ–0

= ◊kú(–0)+1”kú(–0)(1 ≠ “)kú(–0)“R

≠(≠1 + (1 ≠ “)kú(–0))(b(1 ≠ ”)
”p

+ c)

≠
kú(–0)ÿ

s=1
◊s”s≠1(1 ≠ “)s≠1“b

≠
kú(–0)ÿ

s=1
◊s”s≠1(1 ≠ “)s≠1 (≠1 + (1 ≠ “)kú(–0))

(1 ≠ “)kú(–0)
b(1 ≠ ”)

”p

Since ≠1 + (1 ≠ “)kú(–0) < 0 and

◊kú(–0)+1”kú(–0)(1 ≠ “)kú(–0)R ≠
kú(–0)ÿ

s=1
◊s”s≠1(1 ≠ “)s≠1b > 0.

we obtain that

ˆ—�kú(–0)
ˆ–0

> 0

Hence an increase in –0 increases —�kú(–0). Since —�kú(–0) Ø 0, this
implies that an increase in prior leads to an increase in the number of trials
(from proposition 2).

Comparative statics with respect to c

Lemma A.5.5: MBSB
k is decreasing in c and MCSB

k is independent of c.

Hence an increase in c leads to a decrease in the number of trials.

The first part of the lemma follows from observing that

MCSB
k =

kÿ

s=1
◊s”s≠1–0(1 ≠ “)s≠1“(b + b(1 ≠ ”)

”–k“p
)
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is independent of c while

MBSB
k = ◊k+1”k[

k≠1Ÿ

m=0
(1 ≠ –m“)](–k“(R ≠ Xkk+1) ≠ c)

is clearly a decreasing function of c for a given value of k.
The second part of the lemma is a consequence of proposition 2.

Lemma A.5.6: An increase in c leads to a decrease in the expected payo� of
the principal.

Let cH > cL and let kú(c) denote the optimal number of trials when cost
of implementing a project is given by c. Let �k(c) denote the principal’s ex-
pected payo� from a k-trial contract when the cost of implementing project is
c. We observe that

�k(c) = ◊[–0“(R ≠ X0k) ≠ c] +
k≠1ÿ

s=1
◊s+1”s{

s≠1Ÿ

m=0
(1 ≠ –m“}{–s“(R ≠ Xsk) ≠ c}

Holding fixed k, we observe that�k(c) is a decreasing function of c.
From Lemma A.5.6, kú(cL) Ø kú(cH).
Next observe that �kú(cL)(cL) Ø �kú(cH)(cL), since kú(cL) denote the optimal
number of trials when cost of implementing a project is given by cL.
Thus we get �kú(cL)(cL) Ø �kú(cH)(cL) Ø �kú(cH)(cH) which concludes the
proof.
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