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A Cardinality Induced Disaggregated Formulation of the 

Generalized Assignment Problem and Its Facets  
 

 

Abstract 

 

We present a new disaggregated formulation of the Generalized Assignment Problem (GAP), 

consisting of O(mn2) variables and constraints, where m denotes the number of agents and n the 

number of jobs. In contrast, the traditional formulation consists of O(mn) variables and constraints. 

The disaggregated formulation is stronger than the traditional formulation; the linear programming 

relaxation of the disaggregated formulation provides tighter lower bounds. Furthermore, this new 

formulation provides additional opportunities for generalizations of the well-known Cover and (1, 

k)-Configuration inequalities that are not present in the traditional formulation.  Under certain 

restrictive conditions, both inequalities are shown to be facets of the polytope defined by feasible 

solutions of GAP. We introduce two classes of inequalities involving multiple agents that are 

specific to this formulation. One class of inequalities is called the Bar-and-Handle (1, kp̂
) 

Inequality, which under certain restrictive condition is a facet of the polytope defined by feasible 

solutions of GAP. Finally, we introduce another important class of inequality called the 2-Agent 

Cardinality Matching Inequality involving exactly two agents. Given the un-capacitated version 

of GAP in which each agent can process all jobs, we first show this inequality to be facets of the 

polytope defined by the associated bipartite graph. We then show how this inequality can be easily 

lifted to become a facet of the polytope defined by feasible solutions of GAP. Finally, we show 

that when m = 2, this inequality, along with trivial facets completely describe the polytope 

associated with the un-capacitated version of GAP. 

 

Keywords: Integer Programming, Generalized Assignment, Valid Inequalities, Integer 

Polytope. 
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1. Introduction 

The Generalized Assignment Problem (GAP) is a well-known problem in integer programming 

with numerous direct applications. More importantly, it appears as a sub-problem in many models 

for applications ranging from job scheduling and routing to facility location (Savelsberg 1997). 

Cattrysse and Van Wassenhove (1992) discuss these GAP applications and algorithms in detail.  

The problem is: Let M  = {1,…, m} denote a set of agents and N = {1,…, n} denote a set of jobs 

that need to be assigned to the agents in M. The number of units of a resource required for agent i 

to complete job j is aij, while the associated cost is cij. The capacity of each agent i is bi. Without 

loss of generality, we assume that aij ≤ bi for each iM and jN. The GAP is a decision problem 

that determines the minimum cost assignment of jobs in N to agents in M so that the total resources 

required of each agent in M does not exceed its capacity. Let xij = 1 if job j is assigned to agent i, 

0 otherwise. The integer programming formulation of GAP is  
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In (Ps), (1) enforces the capacity restriction for each agent iM, while (2) specifies that every job 

jN is assigned to exactly one agent in M. However, an agent may be assigned multiple jobs. 

Using the terminology in Gottlieb and Rao (1990a, 1990b), we refer to constraints (1) as knapsack 

constraints, and constraints (2) as specially ordered sets (SOS) constraints. The GAP is known to 

be NP-Hard and there has been considerable interest in developing algorithms to solve large 

instances of this problem in reasonable time.  

In this paper, we present a new disaggregated formulation of the GAP.  While this new formulation 

is larger than the one in (Ps), both in terms of the number of variables and the number of 

constraints, the following four reasons motivate us to examine this formulation.  First, the 



                                                                                                                                                  IIMB-WP N0. 560 

 

4 

 

disaggregated formulation is stronger than (Ps).  Every feasible solution to the LP relaxation of 

the disaggregated formulation is feasible to the LP relaxation of (Ps), but not vice-versa. Since the 

LP relaxation of the disaggregated formulation will provide tighter bounds, any enumeration based 

exact procedure for GAP can benefit from the reformulation.  Second, generalizations of the cover 

and (1, k)–configuration inequalities exist for the disaggregated formulation that are at least as 

strong as and far more ubiquitous than their counterparts in (Ps). Third, there exists classes of 

strong, valid inequalities involving multiple agents that are specific to the disaggregated 

formulation and that have no direct parallel in (Ps); we present two of these. Finally, even though 

the disaggregated formulation has more variables and constraints, the disaggregation can be done 

dynamically such that variables and constraints are added incrementally.  Such a strategy is 

particularly beneficial when the Euclidean distance between the optimal solution to (Ps) and the 

optimal solution to its LP relaxation is relatively small.  The success of most cutting plane methods 

relies on this observation and we describe such an approach in Section 6.   

The rest of the paper is organized as follows. Section 2 summarizes the literature on the GAP. 

Section 3 presents the disaggregated formulation and shows a) that it is stronger than the standard 

formulation (Ps) and b) that well-known cover inequalities and the (1, k)-configuration inequalities 

for the GAP can be generalized in the disaggregated formulation by taking advantage of its 

structure. In section 4, we introduce the Bar-and-Handle (1, kp̂ ) inequality, which is unique to the 

disaggregated formulation and is described on an appropriate sub-graph of the bipartite graph 

defined for the GAP. We show that under certain restrictive conditions, this inequality is a facet of 

the polytope defined by the feasible solutions of GAP. In section 5, we introduce the 2-Agent 

Cardinality Matching Inequality, which again has no parallel in the original formulation. In this 

section, we first show that this inequality is a facet of the polytope defined by the feasible solutions 

to the un-capacitated version of GAP. We then show how this inequality can be easily lifted to 

become a facet of the polytope defined by feasible solutions of GAP. Finally, we show that for the 

special case of GAP consisting of just two agents, the 2-Agent Cardinality Matching inequality, 

along with trivial facets completely describe the polytope defined by the feasible solutions of the 

un-capacitated version of GAP. Section 6 concludes with implications for future research. 
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2. Literature Review  

Algorithms to solve the GAP (Ps) typically involve procedures embedded in a branch-and-bound 

type enumeration scheme. One solution approach is to generate lower bounds by dualizing the 

SOS constraints (1) and solve the resulting set of knapsack problems (for example see, Ross and 

Soland (1975); Fisher et al. (1986); Guignard and Rosenwein (1989); Karabakal et al. (1992)). Of 

course, the knapsack problems themselves are NP-Hard and would require a branch-and-bound or 

dynamic programming procedure to solve, often employing appropriate heuristics to generate an 

upper bound. This basic approach is embedded in a branch-and-bound procedure to solve (Ps). 

The differences in the methodologies are largely due to the different approaches used to solve the 

Lagrangian dual problem. Another approach to solving the GAP is based on progressively adding 

columns and valid inequalities to the formulation. Savelsbergh (1997) proposed a branch-and-price 

algorithm for solving the GAP that involves a Dantzig-Wolf column generation scheme. This 

column generation scheme is embedded in a branch-and-bound procedure.  

Cattryse et al. (1998) use a branch-and-cut procedure by progressively adding lifted cover 

inequalities to the formulation. While Cattryse et al. (1998) used LP relaxation within a branch-

and-bound procedure, Nauss (2003) used Lagrangian relaxation by dualizing (1) and the cover 

inequalities. Avella et al. (2008) describes an approach that is similar to Cattryse et al. (1998), 

where facets of knapsack polytopes generated by (2) are added progressively that render the current 

LP solution infeasible.  

Finally, Gottlieb and Rao (1990a, 1990b) provide significant insights on the convex hull of feasible 

solutions to (1), (2) and (3). In particular, unlike the lifted cover inequalities or the facets of single 

knapsacks used by Avella et al. (2008), Gottlieb and Rao (1990a, 1990b) identify classes of strong 

inequalities that span more than one agent. In this paper, we extend the work of Gottlieb and Rao 

(1990a, 1990b) by identifying valid inequalities that span more than one agent in the disaggregated 

formulation.  
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3. Disaggregated Formulation of GAP 

For each agent iM, let Ki be the maximum number of jobs that agent i can handle in any feasible 

assignment associated with (Ps). We disaggregate the model (Ps) by separating each agent into Ki 

agent-cardinality combinations. More precisely, the following binary variables are now defined: 
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In (Pd), constraint set (4) represents the knapsack constraints defined for each agent-cardinality 

combination. In addition, these constraints ensure that if an agent with a given cardinality is not 

used then the capacity becomes zero. Constraint set (5) represents the SOS constraints for each 

job. Constraint set (6), called cardinality constraints, ensures that if an agent with a given 

cardinality is used, then the number jobs assigned to it matches its cardinality. Constraint set (7) 

ensures that for each agent, at most one cardinality type is used. Finally, constraint set (8), called 
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variable upper bound (VUB) constraints, ensures that if an agent-cardinality combination is not 

used, then no job can be assigned to it.  

3.1 Comparing (Ps) and (Pd)  

The number of variables and constraints in (Ps) are both O(mn), while in (Pd) both are O(mn2) 

since Ki ≤ n for all iM. We now show that (Ps) and (Pd) are equivalent. Thus, given a feasible 

solution to one, a feasible solution to the other can be constructed with the same objective function 

value as follows.  

Let x+ )}3()1(|{)(  satisfiesxRxsP mn
 and for each iM, J(i) = {jN| 

ijx  = 1}. By 

definition, (i) J(i1) J(i2) =  for all i1, i2 M, i1i2, (ii) NiJ
Mi
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

 )( , and (iii) 
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constructed as follows. For each iM, if J(i)  , then for k(i) = | J(i)|, yik(i) =1 and 1)( iijkz  for 

all jJ(i), 0 ijkik zy for all kk(i). Clearly, f(z+,y+) =f(x+). Conversely, for every (z+,y+)P(d), 

a x+P(s) can be constructed with f(x+) = f(z+,y+) as follows:  
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We now show that the LP relaxation of (Pd) provides a tighter bound than the LP relaxation of 

(Ps). Consider the following polytopes:  
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Proposition 1. Let (LP(s)) = Min {f(x)| xLP(s)} and (LP(d)) = Min {f(z,y)| (z,y)LP(d)}. Then 

(LP(s)) ≤ (LP(d)). 
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Proof: For every (z, y)LP(d), there exists an xLP(s) such that f(z, y) = f(x).  By counterexample, 

we show that the reverse is not true.  

For each (z, y)LP(d), a solution x+LPa(s)  is obtained by aggregating z as described in (10) and 

aggregating y to obtain, 
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Further, since the costs cij do not vary with k,  f(x+, y+) = f(z, y). Since yi≤1 for all iM, x+LP(s) 

with f(x+) = f(x+, y+) = f(z, y). Thus, the above argument shows that LPa(s)  LP(s).  

The following counter-example shows that in fact LPa(s)  LP(s). Consider a x̂ LP(s) having the 

following characteristics:  

i) Agents i1, i2M, with associated sets J(i1)N, J(i2)N and J(i1)J(i2) = , such that 
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constraints in (6) over k, the right-hand-side obtained for agent i1 is 




1'

1
1

ˆ
k

k

kiyk . From iii) it is equal 
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Due to the above, every knapsack constraint (4) associated with agent i1 and cardinality k = 1,…, 
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is not possible to satisfy both the knapsack constraint (4) and the cardinality constraint (6). Thus, 

)(ˆ sLPx a , and LPa(s)  LP(s).         

3.2 Cardinality-Constrained Cover Inequality for (Pd) 

We now present generalizations of the Cover inequalities for (Pd). Cover inequalities are a well-

known set of inequalities derived from (1), which we generalize for (Pd). Let the convex hull of 

the 0-1 vertices of (Ps) and (Pd) be, 
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Using notation similar to that in Gottlieb and Rao (1990), suppose that associated with agent i, 
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For any (ni, ri)-cover inequality (11), it follows that the inequality, 
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one for each ri < k  Ki, is valid for H(d).  

To simplify subsequent exposition, we introduce the following optimization problem in generic 

terms and refer to it several times later in the paper.  

Definition 1. Consider a set DN of jobs with each job jD requiring aj units and an integer k 

such that |D| ≥ k ≥ 0. Define V*(D, k) = },|{ ||D
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This problem is easy to solve as it involves selecting the k smallest jobs in D. In (Pd), consider an 

agent i with a cardinality of k ≥2. Suppose that there exists a set Ni   N, which for some ikr̂ < Min 

{ni, k} satisfies the conditions 
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Then associated with each inequality (13) is a (ni, k,
 ikr̂ )-cover inequality of the form 
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that is valid for H(d). Since aij  bi for all jN, for the same set Ni, several distinct (ni, k,
 ikr̂ )-cover 

inequalities, one for each k ≥ 2 can be derived. Since 0)1ˆ,ˆ( 1
*   ikik rkRNV , it follows that 

ikr̂  ri and (16) dominates (13). The following property shows that the bounds obtained from 

adding (ni, k,
 ikr̂ )-cover inequalities to (Pd) are indeed tighter than bounds obtained from adding 

the (ni, ri)-cover inequalities to (Ps). 
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Proposition 2 Let 
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Proof: Let LPs(d) = {(z, y)Rp| (z, y) satisfies (7), (8) and (16) for every iM, Ni  N and k} and 

LPs(s) = {xRmn| x satisfies (10) for each (z, y)LPs(d)}. By definition, LP*(d) = LP(d)LPs(d) 

and therefore LP*(s) = LPa(s)LPs(s). Aggregating constraints in (16) over k gives  
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Therefore, LPs(s)  {xRmn | x satisfies (12) for every iM, Ni  N, 0x1}. From Proposition 

2.1, LPa(s)  LP(s). Thus, LP*(s)    LP(s)  {xRmn | x satisfies (12) for every iM, Ni  N, 

0x1}.             

The following example illustrates Proposition 2.2. 

Example 1 Given agent i with capacity bi = 40, the requirements aij on i in sorted order is {10, 10, 

10, 10, 9, 9, 5, 5, 5, 3, 3, 3, 3, 3, 3}. For Ni = {1, 2,…,6}, the (6, 4)-cover inequality is 4
 iNj

ijx
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. Given that, 9)3,ˆ(*  ikRNV , 12)4,ˆ(*  ikRNV , 18)6,ˆ(*  ikRNV  and 23)7,ˆ*  kRNV , 

the set of (ni, k, ikr̂ )-cover inequalities that can be derived for Ni are: 

i) 55 3 i
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Consider the partial LP solution (z, y): 1,1 8,148,138,128,118,108  iiiiii zzzzzy , 

75.08,78,68,58,4  iiii zzzz , and 0 ijkik zy for all k8. This solution satisfies constraints 

(4), (6), (7) and (8) associated with agent i, but violates the (ni, k,
 ikr̂ )-cover inequality iv) listed 

above. From (z, y), a solution xLPa(s) can be obtained by aggregating as described in (10). This 

solution satisfies the (ni, ri)-cover inequality 4
 iNj

ijx .      

As seen in Example 1 above, given a set Ni, several (ni, k,
 ikr̂ )-cover inequalities can be derived, 

one for each k. In a (ni, k,
 ikr̂ )-cover inequality, it is possible for ikr̂ = 0. For instance, in Example 

1 above, suppose that Ni = {jN: aij ≥ 13}, then for k = 9, 9îr = 0. The resulting (ni, k,
 ikr̂ )-cover 

amounts to a simple preprocessing step of setting 0ijkz  for all jNi. In general, this 

preprocessing step can be operationalized as follows. 

Preprocessing Step: 

For each k ≥ 2, and iM, jN, determine )1,(*  kjNV . Set zijk=0 if .)1,(*

iij bkjNVa   

Let Nik  N be the set of z variables remaining after the preprocessing step for each i-k combination 

with |Nik| = nik. The polytope 

})},9()6(),5(),4(),(|),{()(
1 1


 

 
m

i

K

k

ik

p
i

npsatisfiesyzRyzConvdH ,  (17) 

where (5≤) represents constraints (5) in less-than-or-equal-to form. Due to (6), Dim {H(d)≤} = p.  
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Without loss of generality, assume the indices of N to be ordered such that 1 ijij aa  for j = 1,.., n-

1. Using terminology similar to that as in Balas (1975), suppose that for some Si  Nik, with |Si| = 

si, if iiiik

Sj

ij bskSNVa
i




),(* , but for all ikR̂ Si, | ikR̂ | = ikr̂  and

iikikik

Rj

ij brkRNVa
ik




)ˆ,ˆ(*

ˆ

, then the (ni, k,
 ikr̂ )-cover inequality obtained by setting Ni = Si 

and ikr̂  = si - 1 is minimal. The set E(Si) = Si  S’i with S’i = {jNik-Si | aij ≥ 
1ija }, where 

1ija  = Max 

{aij| jSi}, is called an extension of Si onto Nik.  

Definition 2. A minimal (si, k, ikr̂ )-cover is strong, if and only if either E(Si) = Nik, or for the set 

S”i = Si – { j1}  {j}, iiiik

Sj

ij bskSNVa
i




),"(*

"

 for all jNik-E(Si). 

We now proceed to show conditions under which the (ni, k,
 ikr̂ )-cover inequality (16) is a facet of 

H(d)≤. An inequality gx ≤ g0 is a facet of a polytope F, if it is valid and if Dim {xF: gx = g0} ≥ 

Dim {F} – 1. Even though our interest is in identifying facets of H(d), as shown in Gottlieb and 

Rao (1990a), by introducing artificial variables in (5), an equivalent formulation of (Pd) converts 

it into a packing problem in which (5) is replaced by (5≤). Therefore, it suffices to examine facets 

of H(d)≤.  

Theorem 3 The (ni, k,
 ikr̂ )-cover inequality (16) is a facet of H(d)≤ if the following conditions are 

met:  

a) for some Si  N, Ni = E(Si) with Si being a strong minimal cover and |Si| = ikr̂ +1,  

b) iiki

Tj

ij brkSNVa
i




)ˆ,"(* , for S”i = {1}Si – {j1, j2}, where j1 and j2 are the first two 

indices in Si,  

c) 
i

n

rknj

ij

jSj

ij baa
k

iki

 




1

1ˆ}\{ 1

, and  
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d)
'

1

1

'

'

''

i

n

Knj

ji ba
iK

iiK






, for each i’M. 

Proof: It suffices to identify (p-1) linearly independent, non-zero solutions (z,y)   = {H(d)≤| 

(16) is satisfied as an equality}, since (0, 0) H(d)≤ and satisfies (16) as an equality. 

The p-1 solutions are displayed as matrix Y-Z, with each row representing a (z,y)   and each 

column a variable y or z is 





























m

i

P

Q

P

P

ZY

.........,.........0

0........................

0,.......,........0

.........................

0.,.........0,,0

0.....,.........0,

2

1

.         (18) 

In Y-Z, sub-matrix Pi’ represents non-zero solutions associated with i’ ≠ i, while Qi represents non-

zero solutions corresponding to i. In turn, sub-matrix Pi’ consists of Ki’ sub-matrices Al, also having 

a block-angular structure as 























'
.........,.........0

0........................

0.,.........0,,0

0.....,.........0,

2

1

'

iK

i

A

A

A

P ,           

with Al composed of ni’l rows and ni’l+1 columns, for l = 1,.., Ki’ . Sub-matrix Qi has the same 

structure as Pi’, except that Ak is replaced by Bk comprising of nik-1 rows and nik+1 columns. In 

Al(Bk), the first column represents yil(yik) and the remaining columns represent variables zijl(zijk) in 

increasing order of j. 

In Al, the first column has all entries being one, i.e. representing yil = 1. The remaining nil columns 

in Al are associated with the z variables and can be partitioned as  
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









l

l
l

D

CI
K

0

1 ’ 

where
1I is an identity matrix of order nil-l-1, Cl is of dimension (nil-l-1)  (l+1), Dl is of dimension 

(l+1)  (l+1), and 0 a matrix of zeroes of an appropriate dimension. Each row in Cl = (cij) is 

identical consisting of ‘0’ in the first two entries and ‘1’ in the rest, i.e, ci = (0, 0, 1,…, 1). In Dl, 

all diagonal entries have ‘0’ and ‘1’ in all other locations, i.e.,  Dl = (dij) with dij = 0 if i = j, 1 

otherwise. In Bk, the first column is composed of all entries being one, i.e. yik = 1. The columns 

associated with variables ijkz  are partitioned as 





















44

33

232

112

00

00

0

0

FE

FE

FIE

FEI

k .        

The columns in [E1,..,E4]
T correspond to indices jSi, while the columns in [F1,..,F4]

T correspond 

to the last (k- ikr̂ +1) indices in Nik. I2 is an identity matrix of order s’i = |S’i|. Its columns belong to 

indices in S’i = {jNi-Si}, where Ni = E(Si). I3 is an identity matrix of order (nik-ni-k+ ikr̂ -1) whose 

columns are associated with indices j = ni+1,…, nik-k+ ikr̂ -1. In k, 0 represents matrices of zeroes 

of appropriate dimension. Each row in E1 is of the form (0, 0, 1, …, 1), while each row in E2 and 

E4 is of the form (0, 1,…,1). E3 is a ( ikr̂ +1)  ( ikr̂ +1) matrix with diagonal entries being zero and 

all other entries being one. Each row in F1 and F3 is identical with the first entry being zero and 

the rest being one. In F2 the first two entries are zero and the rest are ones. Finally, F4 = (ij) is a 

(k- ikr̂ )  (k- ikr̂ +1) matrix with ij = 0 if j = i+1, 1 otherwise. 

It is clear from the structure of Y-Z that each solution listed has exactly one yil = 1 and the rest of 

the y variables set to equal zero. Since every row in Kl has exactly l entries of one and yil = 1, 

solutions in Al satisfy (5≤), (6) and (8), respectively. Due to the preprocessing step, 
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iij bljNVa  )1,(*
for 1j(nil-l-1) and for each 2  l  Ki. These solutions correspond to rows 

in [I1 Cl] which satisfy the knapsack constraints (4). Due to d), 
i

n

lnj

ij ba
il

il






1

1

 for 2  l  Ki-1. 

Therefore, the solutions that correspond to [0 Dl] also satisfy (4). Finally, for solutions in Al, yik = 

0 and ijkz = 0 for all jNik, Therefore, (16) is satisfied as an equality. In k, since Ni = E(Si), the 

indices in Ni correspond to columns in [I2 0 0 0]T and [E1,.., E4]
T. Thus all solutions in Bk satisfy 

(14) as an equality. All solutions in Bk also satisfy (5≤), (6) and (8). Condition b) describes the 

solution in the first row of [I2 E1 0 F1] satisfying (4). Therefore, the rest of the solutions listed in 

[I2 E1 0 F1] also satisfy (4). The solutions listed in [0 E2 I3 F2] satisfy (4) since Si represents a 

strong minimal cover.  For the same reason, the solutions in rows of [0 E3 0 F3] also satisfy (4). 

Condition c) implies that the solution listed in the last row of [0 E4 0 F4] satisfies (4). Hence, the 

remaining solutions in [0 E4 0 F4] satisfy (4) as well. Thus, each solution in Y-Z belongs to , 

which are p-1 in number. 

Given the block diagonal structure of Y-Z, in order to establish the linear independence of solutions 

in Y-Z, it is suffices to show that each Al consists of a non-singular (nil  nil) sub-matrix and Bk 

consists of a non-singular (nik-1)  (nik-1) sub-matrix. The structure of Kl is such that it is non-

singular if Dl is non-singular. Dl is non-singular since Dl
-1 = (ij) exists and is defined as: ij = 1/l 

– 1, if i = j, 1/l otherwise. Considering the sub-matrix k, suppose that by removing first column 

of [F1,..,F4]
T the remaining columns are labeled [F’1,..,F’4]

T. Further, by switching the columns 

sets [E1,.., E4]
T  and [0 I3 0 0]T, the resulting sub-matrix obtained is ’k, which is non-singular if 

the (k+2)(k+2) sub-matrix 









44

33

'

'

FE

FE
 is non-singular. The inverse of  exists and is defined 

as 















42

111

I
, 
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where X1, X2, H1 and –I4 are of the same dimension as E3, E4, F’3 and F’4, respectively. X1 = (ij), 

where a) for j = 1, ij = (1-k)/ ikr̂  if i=1, ( ikr̂ -k+1)/ ikr̂  otherwise, b) for j ≥ 2, ij = 1/ ikr̂ -1 if i=j, 1/

ikr̂  otherwise. Each row in X2 is of the form (1, 0,…,0), while each entry in H1 is 1/ ikr̂ .   

It is instructive to note that if a (ni, ri)-cover inequality (12) is a facet of H(s)≤, then for the same 

Ni, a (ni, k,
 ikr̂ )-cover inequality (16) with ikr̂ = ri is a facet of H(d)≤. This occurs only if for some 

k, i

Rj

ij ba
ik


 1

ˆ

for all 1
ˆ

ikR   Ni in (15). For instance, in Example 1, if aij = 2 for all j = 7,…, 14, 

the (ni, ri)-cover inequality, 4
 iNj

ijx with Ni = {1,…,6}, is a facet of H(s)≤, while the (ni, k,
 ikr̂ )-

cover inequality 55 4 i

Nj

ij yz
i




 is a facet of H(d)≤. Note also that the two inequalities are equivalent 

in the sense that for any solution x+P(s) that satisfies the former inequality as an equality, there 

is a (z+, y+)P(d) that satisfies the latter as an equality, with x+ and (z+, y+) satisfying (10). However, 

when i

Rj

ij ba
ik


 1

ˆ

 in (15), the inequality in H(s)≤ that is equivalent to the (ni, k,
 ikr̂ )-cover inequality 

is non-canonical. For instance, consider the inequality 77 3yz
iNj

ij 


 in Example 1, where in

i

Rj

ij ba
ik


 1

ˆ

, and is a facet of H(d)≤ when aij = 2 for all j = 7,…,14. The equivalent inequality in 

H(s)≤ is 133
14

7

6

1


 j

ij

j

ij xx , which is a facet of H(s)≤ , but non-canonical. Thus, for several facet 

defining (ni, k,
 ikr̂ )-cover inequalities, the equivalent inequalities in H(s)≤ are knapsack in nature. 

Herein lies the value of (ni, k,
 ikr̂ )-cover inequalities in that they are easier to identify than their 

knapsack counterparts in H(s)≤. 

3.3 Cardinality Constrained (1, kp̂ )-configuration Inequalities in (Pd) 

The (1, k)-configuration inequality is a well-known inequality used to describe the polytope of 0-

1 knapsack constraints and introduced by Padberg (1980). Since in our exposition, k denotes 
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cardinality, the same inequality is referred to as (1, p)-configuration inequality. To introduce this 

inequality associated with agent i, consider NiN, with |Ni| = ni and qN\Ni, such that 

(i) ,i
Nj

ij ba
i




         (19) 

(ii) for all sets PNi, with |P| = p and 2 ≤ p ≤ ni, i
qPj

ij ba 


, but   (20) 

(iii)  for all sets P(p-1)Ni, with |P(p-1)| = p-1, i
qpPj

ij ba 
 )1(

.   (21) 

If Rik(ri)  Ni denotes a set of cardinality ri satisfying p ≤ri ≤ ni, then the (1, p)-configuration 

inequality in (Ps) is,  

i
rRj

ijiqi rxxpr
iik

 
 )(

)1( .         (22) 

It follows that for each k ≥ ri, the equivalent (1, p)-configuration inequality 

iki

rRj

ijkiqki yrzzpr
iik

 
 )(

)1( ,        (23) 

is valid for H(d). We now present a generalization of the (1, p)-configuration inequality that is 

stronger than (23).  Suppose that for some agent-cardinality combination i-k, Nik denotes the set of 

jobs remaining after the preprocessing step and that Ni  Nik with k ≥ ni and qNik\Ni. Then, 

i) iiiik

Nj

ij bnkNNVa
i




),(* ,       (24) 

ii) for every kP̂  Ni, with | kP̂ | = kp̂ , 
ikkik

qPj

ij bpkqPNVa
k




)1ˆ,ˆ(*

ˆ

,     (25) 

iii) but for all )1ˆ(ˆ kk pP Ni, | )1ˆ(ˆ kk pP | = kp̂ -1, 

ikkkik

qpPj

ij bpkqpPNVa
kk




)ˆ,)1ˆ(ˆ(*

)1ˆ(ˆ

.     (26) 

For every Rik(ri)  Ni of cardinality kp̂  ri   ni, with Ni satisfying (24), (25) and (26), the following 

(1, kp̂ )-configuration inequality is valid for H(d) 

iki

rRj

ijkiqkki yrzzpr
iik

 
 )(

)1ˆ( .         (27) 

The validity of (27) follows from, i) all (z, y)H(d) with yik = 0 satisfying (27) due to (8), ii) all (z, 

y)H(d) with yik = 1 and ziqk = 0 satisfying (27), since it follows from (24) that
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iiiikik

rRj

ij brkrRNVa
iik




)),((*

)(

, and iii) all (z, y)H(d) with yik = 1, ziqk = 1 satisfying (27) 

due to (26).  

By definition, )1ˆ,ˆ(*  kkik pkqPNV ≥ 0. Therefore, kp̂ p and (27) dominates (23). 

Furthermore, several distinct (1, kp̂ )-configuration inequalities can be constructed from the same 

set Rik(ri)q, one for each k ≥ ri with 
2

ˆ
kp 

1
ˆ kp  for k2k1. To obtain the integer kp̂ , set kp̂  = p. If 

)ˆ,)((*

kiikik pkqrRNV  + )1ˆ),((* kiik prRV  + aiq > bi, then set kp̂  = kp̂ -1, and repeat until  

)ˆ,)((*

kiikik pkqrRNV  + )1ˆ),((* kiik prRV  + aiq ≤ bi.  

Proposition 4 below highlights the fact that the (1, kp̂ )-configuration inequalities provide a tighter 

description of H(d) than the (1, p)-configuration inequalities for H(s), the proof of which can be 

constructed along the same lines as that for Proposition 2.  

Proposition 4. Let LP1p(s) = {xLP(s)| x satisfies all (1, p)-configuration inequalities (20)} and 

)( ˆ1 dLP p  = {(z, y)LP(d)| (z, y) satisfies all (1, kp̂ )-configuration inequalities (27)}. Further, 

|{)( ˆ1
mn

p RxsLP   x satisfies (10) for each (z, y) )( ˆ1 dLP p }. Then, )( ˆ1 sLP p  LP1p(s). 

Let },...,ˆ|{)1ˆ( ikkikki npknjjpkL  , i.e, the last )1ˆ(  kpk  indices in Nik. Given that 

with  iki NpkL )1ˆ( , we denote Tik = qNpkL iki  )1ˆ( . We now define the polytope 



kidH )( = Conv{(z, y)Rp| (z, y) satisfies (4), (5≤), (6)-(9), zijk=0,  j{Nik\Tik}},  (28)  

where 
 


m

i

K

k

ki

i

np
1' 1

'

'

. Thus, Dim{


kidH )( } = pi-k = p-(nik-tik), where tik = |Tik|.   

Theorem 5. The (1, kp̂ )-configuration inequality (27) is a facet of 


kidH )(  if,  

a) for some 
)1(

ˆ
kP Ni with | )1(

ˆ
kP | = kp̂ -1, 

i

n

pknj

ij

qPj

ij baa
k

kkk

 


 

1

1ˆˆ
)1(

, and  
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b)
'

1

1

'

'

''

i

n

Knj

ji ba
iK

iiK






 for all i’M.  

Proof: The proof follows reasoning very similar to that in Theorem 3. Thus, (pi-k-1) linearly 

independent, non-zero solutions (z,y)i-k = {


kidH )( | iki

rRj

ijkiqkki yrzzpr
iik

 
 )(

)1ˆ( } are 

identified, which are denoted in matrix form as Y-Z(1, kp̂ ). Matrix Y-Z(1, kp̂ ) is identical to Y-Z 

in (18), except that Qi is replaced by Q’i. Matrix Q’i is identical to Qi except that B’k replaces Bk, 

with the first column associated with yik and the remaining columns associated with zijk for each 

jTik. Thus, it suffices to show that B’k contains a (tik-1)  (tik-1) sub-matrix ’k, which is non-

singular. All the columns of ’k fall under z variables with indices belonging to Tik, which are 

arranged from left to right in the order, { )1ˆ(  ki pkL , q , Rik(ri), Ni\Rik(ri)}. The tik-1 solutions 

(z,y)i-k that make up the rows of B’k  are listed in the same order below. They are: 

i) (z, y)1l : For each l = 1,..,k- kp̂ , yik = 1, 0
1


 kijl
z , jl+1 )1ˆ(  ki pkL , zijk = 1 for each

})1ˆ({ 1 lki jpkLj where jl is the lth index in )1ˆ(  ki pkL , ziqk = 1, zijk = 1 for each j

)1ˆ( kik pL  where )1ˆ( kik pL  are the last )1ˆ( kp  indices in Rik(ri). The rest of the z variables are 

set to zero. There are (k- kp̂ ) such solutions. They are feasible due to condition a).  

ii) (z, y)2: yik = 1, zijk = 1 for the last (k-ri) indices in )1ˆ(  ki pkL , zijk = 1 for each jRik(ri). The 

rest of the z variables are set to zero. There is one such solution, which is feasible due to (24). 

iii) (z, y)3l: yik = 1, zijk = 1 for the last (k- kp̂ ) indices in )1ˆ(  ki pkL  and ziqk = 1. For each 1 ≤ l ≤ 

ri, if l+ kp̂ ≤ ri , then for juRik(ri), 1kiju
z  for each l ≤ u ≤ l+ kp̂ , 0kij l

z  otherwise. Else if l+ kp̂

> ri, then 1kijl
z  for each l ≤ u ≤ ri and 1 ≤ u ≤ l+ kp̂ -ri, 0kij l

z  otherwise. The z values for j 

Rik(ri) is illustrated in Figure 1 below. There are ri such solutions, all of whom satisfy (26). 
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

















1001

1100

0110

0011

 

Figure 1. Illustration of z values of (z, y)3l for jRik(ri) when ri = 4 and kp̂ =2. 

iv) (z, y)4l: yik = 1, zijk = 1 for the last (k-ri-1) indices in )1ˆ(  ki pkL , zijk = 1 for each jRik(ri). 

For each 1 ≤ l ≤ ni-ri, 1kijl
z  for jl{Ni\Rik(ri)}. The rest of the z variables are set to zero. There 

are ni-ri such solutions, all of whom are feasible as they satisfy (24). 

The matrix ’k is obtained by removing the columns under yik and the first index in ).1ˆ(  ki pkL

Consequently, ’k has the following structure: 

.

0

01

010

01

'

444

33

2

11





















IFE

FE

E

FE

k
           

In ’k, column [1 0 1 0]T is associated with variable iqkz , while columns [0 0 0 I4]
T correspond to 

z variables in Ni\Rik(ri). Square matrix E1 is of size (k- kp̂ ), consisting of zeros along the diagonal 

and ones elsewhere, while E2 is a single row consisting of ones only in the last k-ri positions. Each 

row in E4 consists of ones only in the last (k-ri-1) positions, while E3 consists only of ones. Matrix 

F1 consists of ones only in the last )1ˆ( kp  positions in each row. The structure of F3 is as 

illustrated in Figure 1, and is non-singular. Matrix F4 contains only ones in all positions, while I4 

is an identity matrix. 

Using elementary row operations, a square matrix ”k, is obtained from ’k as follows. Observe 

from Figure 1 that the (ri- kp̂ +2)th row of F3 consists of ones only is positions corresponding to 

)1ˆ( kik pL . The (ri- kp̂ +2)th row of [E3 1 F3 0] is subtracted from each row in [E1 1 F1 0] to obtain 

[I’1 0 0 0], where I’1 is an identity. In ”k, [I’1 0 0 0] replaces [E1 1 F1 0]. Next, rows in [E3 1 F3 
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0] are added and the result divided by ( kp̂ -1), which is then subtracted from [E2 0 F2 0] to obtain, 

[E’2 -ri/( kp̂ -1) 0 0]. This row replaces [E2 0 F2 0] in ”k. Since ”k is a lower triangular matrix, 

consisting of sub-matrices I’1, -ri/( kp̂ -1), F3 and I4, along the diagonal, all of whom are non-

singular, ”k is also non-singular.         

It is evident from (28) that if Nik\Tik = , and if the conditions specified in Theorem 5 are satisfied, 

then (1, kp̂ )-configuration inequality is a facet of H(d)≤. If Nik\Tik ≠ , then the variables belonging 

to this set can be brought into the (1, kp̂ )-configuration inequality using a sequential lifting 

procedure, which is well described in Hammer et al. (1976). Specifically, in a sequential lifting 

procedure, the variables in Nik\Tik are brought in one by one to eventually obtain an inequality of 

the form 

iki
TNj

ijkijk
rRj

ijkiqkki yrzzzpr
ikikiik


 \)(

)1ˆ(  .      (29) 

Let Vl  Nik\Tik denote the index set of l variables brought in after l iterations. The lifting procedure 

determines kijl 1
 (coefficient of the next variable in sequence) by solving the problem,  

kijl 1
 = Min { |)1ˆ(

)(





liik Vj

ijkijk

rRj

ijkiqkkiiki zzzpryr  (4), (5≤), (6)-(9), 1
1


 kijl
z , zijk = 0 for 

all j{ Nik-Tik-Vl-jl+1}}.  

Suppose that q = 1, i.e. the largest item in terms of aij values, and 2Rik(ri) (the 2nd largest item). 

Then, regardless of the sequence, ijk = 0 or 1, for each jNik\Tik. Note that if either 

i) )1ˆ},)({( 1

*   klliikik pkjqVrRNV + )1ˆ,)((*  kliik pVrRV + aiq ≤ bi-
1lija , or   (30) 

ii) 
 )( iik rRj

ija  +  )1},)({( 1

*   illiikik rkjVrRNV  ≤ bi-
1lija ,      (31) 

then kijl 1
 = 0, else kijl 1

 = 1. In the latter case, the result is obtained by removing item 2 from 

Rik(ri). Thus, after lifting, (29) not only maintains the structure of the (1, kp̂ )-configuration 
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inequality, it is also a facet of H(d)≤. This is of computational significance, as (1, kp̂ )-configuration 

inequalities that are facets of H(d)≤ can be identified by first setting q = 1 and ensuring that 

2Rik(ri). Then the resulting (1, kp̂ )-configuration inequality can be lifted by applying conditions 

(30) and (31) (which is computationally cheap) to obtain a facet of H(d)≤.  

The following example illustrates such an instance. 

Example 2. Consider agent i with bi = 40 and Nik = {1,.., 15}. The requirements aij in sorted order 

are {18, 10, 10, 10, 9, 9, 5, 5, 5, 3, 3, 3, 3, 3, 3}. For Ni = {2,…,6} and q = 1, one possible (1, p)-

configuration inequality is: 2xi1+xi3+xi4+xi5+xi6  4. After sequentially lifting in sorted order, it 

becomes 2xi1+xi2+xi3+xi4+xi5+xi6+xi7  4, which is a facet of H(s)≤. The equivalent (1, kp̂ )-

configuration inequality with k = 4 is, 2zi1k+zi2k+zi3k+zi4k+zi5k+zi6k+zi7k ≤ 4yik, which is a facet of 

H(d)≤. However, several more (1, kp̂ )-configuration inequalities can be derived for other values of 

k. The inequality 2zi1k+zi2k+zi3k+zi4k+zi5k+zi6k ≤ 3yik is a facet of H(d)≤, both for k=5 and k=6. For 

k=7, 2zi1k+zi2k+zi3k+zi4k+zi5k ≤ 2yik and 2zi1k+zi2k+zi3k+zi4k+zi6k ≤ 2yik are two distinct facets of H(d)≤. 

Consider the partial LP solution (z, y): yi6 = zi26 = zi66 = zi12,6 = zi13,6 =zi14,6 = 0.5, zi1,6 = 0.3, zi15,6 = 

0.2, yi7 = zi11,7 = zi12,7 = zi13,7 = zi14,7 = zi15,7 = 0.5, zi1,7 = zi2,7 = zi6,7 = zi10,7 = 0.25. While this solution 

satisfies (4), (5≤), (6) and (8), the (1, kp̂ )-configuration inequality listed for k=6 above is violated. 

Also, the LP solution x, obtained by aggregating (z, y) as in (10), satisfies the (1, p)-configuration 

inequality listed above as well. That is because the inequality equivalent to the (1, kp̂ )-

configuration inequality for k=6 in H(s)≤ is not a (1, p)-configuration inequality, but a more 

complicated knapsack inequality, which is 923
15

7

6

2

1  
 j

ij

j

iji xxx . Clearly, in terms of a 

separation algorithm, identifying a useful (1, kp̂ )-configuration inequality would be easier than the 

knapsack inequality listed above. Herein lies the value of the (1, kp̂ )-configuration inequality. 

4.0 The Bar-and-Handle (1, kp̂ ) Inequality 

We now introduce a new class of inequalities that involve more than one agent. These inequalities 

are defined over a ‘principal’ agent, along with one or more ‘auxiliary’ agents. Specifically, 
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existing (1, kp̂ )-configuration inequalities on the principal agent and cover inequalities on the 

auxiliary agents are used to derive the inequalities. The jobs associated with the principal agent 

and those associated the auxiliary agents together have a ‘bar-and-handle’ graph representation, 

hence the name.   

Consider a principal agent ip with a cardinality of k. There exists a job q and a set 
piN  qN \ , 

over which several (1, kp̂ )-configuration inequalities of type (27) exists, one for each )(
pp iki rR 

piN . In addition, there is a non-empty set H  N-{q
piN } of jobs to which the (1, kp̂ )-

configuration inequality does not extend. Specifically, for each )1ˆ( kki pR
p

 )(
pp iki rR ,  

pp

kk

p ikkk

Hj

ji

qpPj

ji bhpkqHpPNVaa 


)ˆ,)1ˆ(ˆ(*

)1ˆ(ˆ

,    (32) 

with | )1ˆ( kki pR
p

| = kp̂ -1.  

 

 

Figure 2: Illustration of Bar-and-Handle Inequalities 
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There also exists a set W  {M \ ip} of agents, called auxiliary agents, whose number |W| ≤ h. For 

each agent iW, and with each cardinality 1≤ki≤Ki, there either is a (ni(ki), ki,
iikr̂ )-cover inequality 

(16) defined over a set Ni(ki)  N-{qH} with 
iikr̂ ≤ ki-1, or that ni(ki)=

iikr̂ = ki-1. However, if 

the (ni(ki), ki,
iikr̂ )-cover exists, it does not extend to either q or any jH. That is, 

V*(Ni(ki),
iikr̂ ) + V*(N- Ni(ki)- ĵ , ki-

iikr̂ -1) iji
ba  ˆ ,      (33) 

for any Hjˆ  or qj ˆ . On the other hand, if 
iikr̂ ≤ ki-2, then 

V*( Ni(ki),
iikr̂ ) + V*( N- Ni(ki)- ĵ -q, ki-

iikr̂ -2) ijiji
baa 

21
ˆˆ      (34) 

holds for every Hj 1
ˆ , }{ˆ

2 qHj   and 21
ˆˆ jj  .  

The set of jobs H and q are shared by both the principal agent and the auxiliary agents. Figure 2 

shows the graph of jobs associated with the principal agent and the auxiliary agents. In this figure, 

W = {i1, i2}, H = {l1, l2}. The set )( 11
kN i  = {g1, g2, g3} and )( 22

kN i = {p1, p2}. It is evident from 

the figure that the jobs, {q )(
pp iki rR H} represent the ‘bar’, while the jobs {q )( ii kN H} 

represent the ‘handle’ associated with each auxiliary agent i. Thus, the bar and the handles are 

connected at q and H. Proposition 6 describes the Bar-and-Handle (1, kp̂ ) inequality for (Pd). 

Proposition 6 Let there exist: 

i)  A principal agent ip, a set NN
pi   and a job q }{

pi
NN  that satisfy conditions (24), (25) 

and (26), and therefore for each )(
pp iki rR 

piN , a (1, kp̂ )-configuration inequality (27) can be 

constructed; 

ii)  A non-empty set HN-{q
piN } such that (32) is satisfied with 1 ≤ h  (k- kp̂ ) and; 

iii)  if kr
pi
  , then 

ppppp

pikpi

p iiikiji
rRj

ji brkrRNVaa 


)1),((*
ˆ

)(

 for each ĵH; 

iv)  A set WM\ip of agents, with |W| = w ≤ h, so that for each iW and each 1 ≤ ki ≤ Ki, there 

exists either a (ni(ki), ki,
iikr̂ )-cover inequality (16) defined over a set Ni(ki)  N-{qH} with 

iikr̂ ≤ ki-1 which satisfies (33) and (34), or that ni(ki) =
iikr̂ = ki-1. 
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Then the inequality  



  

 

  





Wi

K

k

ikikkii

Wi HkNqj

K

k

ijk

Hj

jki

rRj

jkiqkiki

i

i

iipp

ii

i

i

ip

pikpi

ppp

hyryr

zzzzpr

1

})({ 1)(

ˆ                   

)1ˆ(

     (35) 

is valid for H(d). 

Proof: To show that (35) is valid, consider a feasible solution (z’, y’)P(d). It suffices to show 

that (z’, y’) violates (35) only if one or more conditions in i),.., iv) are not satisfied.  

Define H1 = {jH| 1' jkip
z  } and H2 = {jH| 1' 

iijkz  for some iW, 1≤ki≤Ki}, with h1 = |H1| and 

h2 = |H2|. Due to (5), h1+h2 ≤ h. It follows that (z’, y’) can violate (35) only if either 

1

)(

'''')1ˆ( hyrzzzpr kii

Hj

jki

rRj

jkiqkiki ppp

pikpi

ppp
 



,       (36) 

or 

  
   


Wi

K

k

ikik

Wi HkNqj

K

k

ijk

i

i

ii

ii

i

i

i
hyrz

1

2

})({ 2

'ˆ' .       (37) 

Since 1' hz
Hj

jkip




, (36) implies that either (24) or (26) of condition i), or condition ii) is not 

satisfied. Let W2 = {iW| 1'
1




i

i

i

K

k

iky }. One way for (37) to occur is if the (ni(ki), ki,
iikr̂ )-cover 

inequality is violated for at least one iW2 or that ni(ki)> ki-1. Another way is for |W2| = h2 with 

each jH2 assigned to a different agent iW2, as well as job q assigned to some agent iW2. In 

either case, condition iv) is violated. A third possibility is when |W2| > h2, which occurs when all 

jobs in )(
pp iki rR  are assigned to ip, in addition to h1≥1 jobs in H. This allows job q to be assigned 

to an agent iW2. However, this would violate iii).       

 

Example 3 Consider the instance, W = {1, 2}, q = 1, H = {7, 8}, )(4 pp ii rR  = {2, 3, 4}, )( 11
kN i = 

{5, 6, 9}, )( 22
kN i = {6, 11}, k1 = 3, k2 = 2. The requirements on ip are [15, 12, 12, 11, 11, 9, 7, 7, 

6, 5, 5], 41
pib . The requirements, 126,15,1  aa , 89,1 a , 31,1 a , 68,17,1  aa , b1 = 30, a21 
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= 5, a2,6 = 9, a2,11 = 7, a2,7 = a2,8 = 5, b2 = 15. The Bar-and-Handle (1, kp̂ ) inequality obtained is

.223

2

221342,11,22,8,22,7,2

2,6,22,1,23,9,13,8,13,7,13,6,13,5,13,1,14,84,74,44,34,24,1





yyyzzz

zzzzzzzzzzzzzz

p

pppppp

i

iiiiii

Consider the LP solution, 4piy =1.0, 4,74,34,,24,1 pppp iiii zzzz  = 0.5, 4,4piz = 1.0, 4,10piz = 1.0, y13 

= 1.0, 3,6,13,5,1 zz  = 1.0, 3,8,13,7,1 zz  = 0.5, y22 = 1.0, 2,11,2z = 0.5, 2,8,22,1,2 zz  = 0.5. While this 

solution satisfies (4), (5) (6), (7) and (8), the Bar-and-Handle (1, kp̂ ) inequality is violated. Note 

that the (1, kp̂ )-configuration inequality, 44,4,4,2,4,1 32
pppp iiii yzzz  , as well as the (ni(ki), ki,

iikr̂

)-cover inequalities, 133,9,13,6,13,5,1 2yzzz   and 222,10,22,6,2 yzz   are all satisfied exactly. 

What this suggests is that when the (1, kp̂ )-configuration inequality is added, its violation is 

removed by increasing the z values of variables in H for agent ip. Similarly, the violation of (ni(ki), 

ki,
iikr̂ )-cover inequalities for agents iW is removed by increasing the z values of variables in H 

and q. However, the resulting LP solution violates the Bar-and-Handle (1, kp̂ ), and herein lies its 

value.  

The Bar-and-Handle (1, kp̂ ) inequality is akin to the multi-agent (1, p) Configuration inequality 

presented by Gottlieb and Rao (1990a, 1990b). Apart from the fact that the inequality presented in 

Gottlieb and Rao (1990a, 1990b) is defined over x, the principal difference is that the set of jobs 

shared by the principal agent and the auxiliary agents in the one presented in Gottlieb and Rao 

(1990a, 1990b) are {q )(
pp iki rR }, while in this paper the set of shared jobs are {qH}. Note as 

well, that the Bar-and-Handle (1, kp̂ ) inequality includes the special case in which 
pik rp ˆ . This 

results in the ‘bar’ becoming a cover. 

Before characterizing the strength of the Bar-and-Handle (1, kp̂ ) inequalities, we first present a 

general result on facets of a polytope generated by agents, MsM and jobs NsN. Consider a sub-

problem of (Pd) defined over a restricted set (zr, yr), with zr = { issijk KkNjMiz  1,, }, 

and yr = { iisik KkMiy  1, }. The feasible set S1(d)≤ = {(zr, yr)Bx | (4), (5≤), (6), (7), (8) and 
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(9)}, where x =   
  s s

i

Mi Nj

K

k
ik

1

, and the corresponding convex hull of S1(d)≤ is 

})(),{()( 11

  dSyzConvdHS . 

Proposition 7 For the feasible set S1(d)≤ defined by agents MsM and jobs NsN, any nontrivial 

facet of H1(d)≤ is an inequality of the form 

,0
11

   
    s

i

s s

i

Mi

K

k
ikik

Mi Nj

K

k
ijkijk yz          (38) 

with 0ijk , 0ik  and 00   for all iMs, jNs and 1kKi. 

Proof: Since (z, y) = (0,0)S1(d)≤, it follows that for (38) to be valid, 0≥0. Suppose that ijk<0 for 

some iMs, jNs and k. Clearly then (38) is obtained as a positive combination of inequalities that 

include –zijk ≤ 0, which will later be shown as a trivial facet. If so, then (38) cannot be a facet. 

Hence, ijk≥0, for all iMs, jNs and 0≤k≤Ki. Suppose that ik < 0, for some iMs and k. Now 

consider a feasible solution (zr1, yr1)S1(d)≤ in which yik = 1 and zijk = 1 for each jNk where NkN 

and |Nk| = k. Clearly, there must exist another solution (zr2, yr2)S1(d)≤ which is identical to (zr1, 

yr1), except that yik = 0 and zijk = 0 for each jNk. If (z
r2, yr2) satisfies (38) exactly, then since ik < 

0 and ijk ≥ 0, (zr1, yr1) must violate (38), implying that (38) is not valid. If however, (zr1, yr1) 

satisfies (38) exactly, then yik = 1 for all (z, y)H1(d)≤. Clearly, yik ≤ 1 is not a facet, as it is 

dominated by (7). Hence, ik ≥ 0 for all iMs and 0≤k≤Ki.        

We now show conditions under which the Bar-and-Handle (1, kp̂ ) inequalities are facets of H(d)≤. 

Recall that )1ˆ(  ki pkL
p

 consists of the last )1ˆ(  kpk  indices in 
piN  in decreasing order of 

jip
a  and that 

piT  = {q
piN  )1ˆ(  ki pkL

p
}. Similarly, )1ˆ( 

iikii rkL  denotes the last ki-
iikr̂ +1 

indices in 
iikN for each iW and 1 ≤ ki ≤ Ki. The complete variable set (zc, yc) comprises of, zc = 

},...,1,,{ iiikijk KkNjMiz
ii

  and yc = },...,1,{ iiik KkMiy
i

 , while the restricted variable 

set (zr, yr) comprises of yr = },...,1,,{ iiikki KkWiyy
ip

  and zr = ],[{ HTjz
pp ijki   
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 jWiz
iijk , [qNi(ki)H )1ˆ( 

iikii rkL ], ki = 1,…,Ki}. Let S2(d)≤  = {(z, y)Rp| (4), (5≤), (6), 

(7), (8), (9),  0
iiky y{yc-yr}, 

iijkz z{zc-zr}}, where 
 


m

i

n

j

i

ik

kp
1 1

)1( . Its convex hull, 

H2(d)≤ = Conv(S2(d)≤). Since H2(d)≤ is full dimensional, Dim{H2(d)≤} = x = 
pi

n +h+ )1ˆ(  kpk +1+


 


Wi

K

k

ikiii

i

i

i
rkkn

1

)1ˆ)(( . 

Proposition 8 In addition to i) to iv) of Proposition 6, if the conditions:   

1) for any 
ppp iiki NrR )( , if )}(|{

1 pppp ikijiji rRjaMaxa  , then for any j’H, 

),(*

'

)( 1

ppp

pikpi

p iiji

jrRj

ji rkNNVaa 


≤ 
pi

b ; 

 2) w = h;  

3) for each iW, 1≤ki≤Ki and )(ˆ
iiik kNR

i
 , a) 

iikiiikiq

Rj

ij brkqkNNVaa
ii

iik




)1ˆ,)((*

ˆ

, 

b) 
iikiiikij

Rj

ij brkjkNNVaa
ii

iik




)1ˆ,')((*

'
ˆ

 for each j’H, c) for some j1

),(ˆ
iiik kNR

i
  

iikiiikiqij

jRj

ij brkqjkNNVaaa
ii

iik




)2ˆ,')((*

'
ˆ

1

 for each j’H; and  

4) For each pair i1i2, i1, i2W, there exists a )(
1111 iiki kNR

i
  and )(

2222 iiki kNR
i
 such that


2211 ii kiki RR ;  

are satisfied, then (35) is a facet of H2(d)≤. 

Proof: Consider solutions (zl, yl)S2(d)≤, l=1,…,x that satisfy (35) exactly. Let *
zzr ≤ *

yyr + *
0 

be a facet inequality of H2(d)≤ for which (zl, yl)S2(d)≤, l=1,…,x are satisfied exactly. If so, then 

*
zzr ≤ *

yyr + *
0 must be a linear multiple of (35), implying that (35) is a facet of H2(d)≤. The 

following are a set of partial solutions, which will be used to construct (z, y)S2(d)≤ that also satisfy 

(35) exactly. Variables not mentioned in the listing below are set to zero. 
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1) 1),(
pp ii zy  = { 1kip

y , 1qkip
z , )1ˆ(1  kkijki pRjz

pp
 where )()1ˆ(

ppp ikikki rRpR   with 

1ˆ|)1ˆ(|  kkki ppR
p

, )ˆ(1 kijki pkLjz
pp

  where )1ˆ()ˆ(  kiki pkLpkL
pp

 with 

|)ˆ(| ki pkL
p

 = kpk ˆ }, which satisfies the (1, kp̂ )-configuration inequality exactly. 

2) 
2),(

pp ii zy  = {same as 
1),(

pp ii zy , except that in addition, '1 jHjz jkip
  and 0' kjip

z , 

while )1ˆ(1  hpkLjz kijki pp
}, which is feasible due to (32). 

3) 
3),(

pp ii zy  = { 1kip
y , 1jkip

z )(
pp iki rRj  and )(1

ppp iijki rkLjz   for some 

)1ˆ()(  kiii pkLrkL
ppp

}, which also satisfies the (1, kp̂ )-configuration inequality exactly. 

4)  
4),(

pp ii zy  = { 1kip
y , for )(1 pp iki rRj   such that )}(|{

1 pppp ikijiji rRjaMaxa   and any j2H, 

1)(1 jrRjz
ppp ikijki  , 1

2
kjip

z  and )(1
ppp iijki rkLjz   for some 

)1ˆ()(  kiii pkLrkL
ppp

}, which is feasible due to condition 1). 

5)  
5),(

pp ii zy  = {same as 
3),(

pp ii zy , except that 1ˆ 
kjip

z  for some )(\ˆ
ppp ikii rRNj  and 

)1(1 
ppp iijki rkLjz  for some )1ˆ()1(  kiii pkLrkL

ppp
. 

6) 
1),(

ii ikik zy  = { 1
iiky , )ˆ(ˆ1

iii ikikijk rRjz   for some )()ˆ(ˆ
iiikik kNrR

ii
  and 1

iijkz

)ˆ(
iikii rkLj  , for some )1ˆ()ˆ( 

ii ikiiikii rkLrkL  where iM and 1≤ki≤Ki}, which satisfies 

the (ni(ki), ki,
iikr̂ )-cover inequality exactly. 

7) 
2),(

ii ikik zy = {same as
1),(

ii ikik zy , except that 1)( 
ikiijz  for some j(i)H and 1

iijkz

)1ˆ( 
iikii rkLj , for some )1ˆ()1ˆ( 

ii ikiiikii rkLrkL }, satisfying condition 3b.  

8)   
3),(

ii ikik zy = {same as
1),(

ii ikik zy , except that 1iqkz  and 1
iijkz )1ˆ( 

iikii rkLj , for some 

)1ˆ()1ˆ( 
ii ikiiikii rkLrkL }, satisfying condition 3a. 
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9)   
4),(

ii ikik zy = {same as 
2),(

ii ikik zy , except that for some )ˆ(ˆ"
ii ikik rRj   and 1≤ki≤Ki, 0" 

ikijz , but 

1iqkz }, satisfying condition 3c. 

We now introduce (zl, yl)S2(d)≤ that satisfy (35) exactly and progressively solve the equations 

zzl = yyl + 0, l = 1,..,x, to obtain (*
z, *

y, 
*
0). 

I) Consider the solution 
2),(

ii ikik zy  for each iW such that j(i1) ≠ j(i2) if i1 ≠ i2. This along 

with 
1),(

pp ii zy  satisfies (35) exactly. Keeping 
2),(

ii ikik zy  fixed, 
pi

r  affinely independent solutions 

are obtained by varying
1),(

pp ii zy . This is achieved by appropriately choosing that many different 

selections of )1ˆ( kki pR
p

 from )(
pp iki rR . Further, for a fixed )1ˆ( kki pR

p
, kpk ˆ  affinely 

independent solutions are obtained by selecting that many sets of )ˆ( ki pkL
p

  from ).1ˆ(  ki pkL
p

Next, the solution 
2),(

ii ikik zy  for each iW along with
3),(

pp ii zy , also satisfies (35) exactly. 

Similarly, the solution consisting of  
2),(

ii ikik zy  for each iW along with
5),(

pp ii zy  also satisfy 

(35) exactly. Here, (
pp ii rn  ) affinely independent solutions are generated, by fixing all except 

choosing a different )(\ˆ
ppp ikii rRNj  for each 

5),(
pp ii zy . Finally, 

2),(
ii ikik zy  for each iW, along 

with 0kip
y and Njz jkip

 0 also satisfies (35) exactly. Let S3(d)≤ = {(z, y)S2(d)≤ | 
2),(

ii ikik zy  

for each iW} and H3(d)≤ = Conv{S3(d)≤}. Given 
2),(

ii ikik zy  for each iW, the inequality *
zzr ≤ 

*
yyr + *

0 reduces to  

0)(

)1ˆ()(ˆ)1ˆ()(

)(    
  Wi

iij

rkLj

ijk

kRj
iijk

Wi

ikkii

pkLj

jkijki

rRj

jkijkiqkiqki

iikii

i

ii

ipp

kpi

pp

pikpi

pppp
yzzz , 

which is a facet of H3(d). We know that the (1, kp̂ )-configuration inequality (27) defined over {q, 

piN , )1ˆ(  ki pkL
p

} is also a facet of H3(d)≤, which the (
pin + kpk ˆ +2) solutions listed above 
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satisfy exactly. It then follows that 0jkip
  for )({

ppp ikii rRNj  , )1ˆ(  ki pkL
p

},  kijki pp
 

for )(
pp iki rRj , kikiqki ppp

pr  )1ˆ(   and kiii ppp
r   . 

II) Consider 
2),(

pp ii zy , 
2

'' ),(
'' ii kiki zy for some i’W and 

1),(
ii ikik zy  for all '\ iWi . Here, 

0)'( kijip
z , while 1

')'( 
ip kijiz . By keeping 

2),(
pp ii zy , 

2

'' ),(
'' ii kiki zy  and 

1),(
ii ikik zy  for all 

}ˆ,'{ iiWi  fixed, and varying 
1

ˆˆ ),(
ˆˆ ii

kiki
zy , if in fact a ( )ˆ,),( ˆˆˆˆ iiii

rkkn -cover inequality exists, then 

)ˆ)(( ˆˆˆˆ iiii
rkkn   affinely independent solutions are obtained that satisfy (35) exactly.  The )( ˆˆ ii

kn

solutions are obtained by fixing the selection of )ˆ(
ˆ

ˆˆˆ
i

kiii
rkL  , but making )( ˆˆ ii

kn  independent 

selections of )ˆ(ˆ
ˆˆ

ˆˆ
ii

kiki
rR from )( ˆˆ ii

kN . Similarly, by fixing )ˆ(ˆ
ˆˆ

ˆˆ
ii

kiki
rR , 

i
kii

rk
ˆ

ˆˆ ˆ independent selections 

of )ˆ(
ˆ

ˆˆˆ
i

kiii
rkL   from )1ˆ(

ˆ
ˆˆˆ 

i
kiii

rkL  provide the remaining 
i

kii
rk

ˆ
ˆˆ ˆ  solutions. Finally, the 

perturbation with ,0
ˆ

ˆ 
i

ki
y  

ii
kijki

Njz
ˆˆ

ˆˆ ,0  also satisfies (35) exactly. Thus, after substituting 

out 
2),(

pp ii zy , 
2

'' ),(
'' ii kiki zy  and 

1),(
ii ikik zy  for all }ˆ,'{ iiWi   in *

zzr ≤ *
yyr + *

0, the resulting 

inequality has to be a linear multiple of the ( )ˆ,),( ˆˆˆˆ iiii
rkkn -cover inequality. Thus, ,0

ˆ
ˆ 

i
jki



)1ˆ(
ˆ

ˆˆˆ 
i

kiii
rkLj , ,ˆˆ

ˆ ijki
i

   )( ˆˆ ii
kNj  and 

ikiki
ii

r ˆˆˆ
ˆˆ

ˆ   . Since the choice of Wi ˆ is arbitrary 

and the above holds for all 
ii

Kk ˆˆ1  , ,0
iijk  for all )1ˆ( 

iikii rkLj , iijk i
   for all 

)( ii kNj  and iikik ii
r  ˆ , for each iW. Suppose that for some Wi' , ''1 ii Kk  , )ˆ(ˆ

'' '' ii kiki rR =

)( '' ii kN  and 
''

ˆ
ikir = 'ik -1 in (35). If so, then consider

3),(
pp ii zy , 

4

'' ),(
'' ii kiki zy for some i’W and 

2),(
ii ikik zy  for all '\ iWi . Note that in 

4

'' ),(
'' ii kiki zy , 0

'"' 
ikjiz  for some j” )ˆ(ˆ

'' '' ii kiki rR . By 

keeping 
3),(

pp ii zy  and 
2),(

ii ikik zy  fixed for all }'{ iWi   and vary 
4

'' ),(
'' ii kiki zy  by j”, we get 

1' ik  solutions, all of which satisfy (35) exactly. The choice of i’ being arbitrary, here as well, 

iijk i
   for all )( ii kNj  and iikik ii

r  ˆ , for each iW. 
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III) Consider again
2),(

pp ii zy , 
2

'' ),(
'' ii kiki zy for some i’W and 

1),(
ii ikik zy  for all '\ iWi , with 

1
'1' 

ikjiz , i.e., j(i’) = j1. If this solution is perturbed by setting 0
'1' 

ikjiz  and 1
1
kjip

z , then it 

satisfies (35) exactly as well. Comparing both solutions we get, .
'11 ' ip kjikji    Since the choice of 

j1 and i’ is arbitrary, kikji pi
 

'1'  for all j1H and i’W. 

IV) Now consider 
3),(

pp ii zy , 
3

ˆˆ ),(
ˆˆ ii

kiki
zy for some Wi ˆ , iWizy

ii ikik
ˆ\),( 2  . Since w = h, 

there is a job j’H which is unassigned. This solution is perturbed by setting 0
ˆ

ˆ 
i

qki
z  and ,1

ˆ'ˆ 
i

kji
z

which also satisfies (35) exactly. By comparing the two solutions we get 
ii

kjiqki ˆˆ 'ˆˆ   for j’H. 

Since the choice of j’H and Wi ˆ  is arbitrary, it follows that kikjiqki pii

 
ˆˆ 'ˆˆ  for each j’H, 

Wi ˆ and 
ii

Kk ˆˆ1  . Finally, from the perturbed solution we obtain kip
h 0 . 

V) Consider, 
3),(

pp ii zy , 
4

ˆˆ ),(
ˆˆ ii

kiki
zy for some Wi ˆ , iWizy

ii ikik
ˆ\),( 2  . By comparing this 

solution to that in IV) we get kikjikji pii

 
ˆˆ 'ˆ"ˆ  for each )(" ˆˆ ii

kNj   and j’H. Since the choice 

of Wi ˆ is arbitrary, it follows that kiiijk pi
  for each iW and jNi(ki).  

This establishes *
zzr ≤ *

yyr+*
0 to be a scalar multiple of (35) and therefore (35) is a facet of 

H2(d)≤.                   

We now proceed to show conditions under which the Bar-and-Handle (1, kp̂ ) inequality (35) is a 

facet of H(d)≤, the largest dimensioned polytope. We now define a knapsack polytope 
)(ˆ dH

i
 = 

Conv{
)(ˆ dS

i
}, where 

)(ˆ dS
i

 = {(z, y)Rp| (4), (5≤), (6), (7), (8), (9), 0
iiky and 0

iijkz  for all

i ≠ î , j N and 1 ≤ ki ≤ Ki}, where 
 


m

i

n

j

i

ik

kp
1 1

)1( . 

Theorem 9 The Bar-and-Handle (1, kp̂ ) inequality (35) is a facet of H(d)≤, if in addition to 

conditions 1), 2), 3) and 4) of Proposition 8, it also satisfies conditions:   

1)  the (1, kp̂ )-configuration inequality (27) defined over {q, )(
pp iki rR } is a facet of )(dH

pi
; 
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2)  the (ni(ki), ki,
iikr̂ )-cover inequality (16) for each iW and 1 ≤ ki ≤ Ki is a facet of )(dH i ; 

3) for each },{ˆ
piWMi  , a) 

i
K ˆ ≤ (

i
Ki

n
ˆ

ˆ -h), b) 
ijiiKi

baKjHNV
i

ˆˆ̂ˆˆ
* )1,ˆ(

ˆ
  for each

}{ˆ
ˆ

ˆ HNj
i

Ki
  and c) 

ijiiKi
baKqHNV

i
ˆˆ̂ˆˆ

* )1,(
ˆ

  for each Hjˆ ; 

4) if kK
pi  , then a) )( hnK

pipp Kii  , b) 
ppppip ijiiKi baKjHNV  ˆ

* )1,ˆ(  for each 

}{ˆ HNj
pipKi   and c) 

ppppip ijiiKi baKqHNV  ˆ
* )1,( for each Hjˆ . 

Proof: Starting with (35), a sequential lifting procedure will lift coefficients of variables yik{yc-

yr} and zijk{zc-zr}, the lifted coefficients being ik and ijk, respectively. The resulting inequality 

obtained will be a facet of H(d)≤. It therefore suffices to show that the lifted coefficients of 

variables in {yc-yr} and {zc-zr} are all zero.  

Let Uy and Uz denote the index set of all y and z variables in {yc-yr} and {zc-zr}, respectively, while 

VyUy and VzUz represent those that have already been lifted. If the coefficient of )(ly
iik  for 

l{Uy-Vy} is to be lifted next, then it can be determined by solving the problem 

}}.{,0)(},{,0)(,1)(

 ,)9(),8(),7(),6(),5(),4(|)()()()(

)1ˆ(ˆ{)(

})({ 1

)(1

zzijkyyikik

Vs
ijkijk

Vs
ikik

Wi HkNqj

K

k
ijk

Hj
jki

rRj
jkiqkiki

Wi

K

k
ikikkiiik

VUsszlVUssyly

szssysz

zzzprhyryrMinl

i

zyii

i

i

i

p

pikpi

ppp

i

i

iippi



  

  



  

 





             (39) 

To determine )(l
iijk , for l{Uz-Vz}, the problem solved is the same as in (39), except that 

1)( lz
iijk  and 0)( szijk , s{Uz-Vz-l}. 

Consider first the coefficients of variables )(
ˆ

ˆ ly
i

ki
 in which l{Uy-Vy} and },{ˆ

piWi  . For the first 

variable selected, the solution to (39) is 
2

11 ),( ii zy  for each iW in which 11)( iijz  for j(i)H with 

j(i1)≠j(i2) if i1≠i2, and 01ˆ
1  ii kr  for each iW. Observe that with this solution, due to 
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conditions 3a) and 3b), it is possible to feasibly assign 
ii

Kk ˆˆ   jobs to î , from the set }.{
ˆ

ˆ HN
i

Ki


Consequently, )1(
ˆ

ˆ
i

ki
 =0. The coefficients of subsequent variables )(

ˆ
ˆ ly

i
ki

 in which l{Uy-Vy} and 

},{ˆ
piWi   will also be zero, since 0)(

ˆ
ˆ s

i
ki

 for sVy, and therefore the same solution to (39) 

holds good. Due to 3b), the same solution holds for variables )(
ˆ

ˆ̂ lz
i

kji
 in which î {W, ip} and ĵ 

H . Therefore, the lifted coefficients of these variables are zero as well. For variables )(
ˆ

ˆ̂ lz
i

kji
 in 

which î {W, ip} but ĵ H , the optimal solution to (39) is 
2

11 ),( ii zy  for each i{W\i’} in which 

11)( iijz  for j(i)H with j(i1)≠j(i2) if i1≠i2 and 
3

1'1' ),( ii zy for i’ in which 11' qiz . Due to condition 

3c), with this solution it is possible to assign 
ii

Kk ˆˆ   jobs to î , which includes ĵ . Therefore, 

0)(
ˆ

ˆ̂ l
i

kji
 for each l{Uz-Vz} in which },{ˆ

piWi   and ĵH . 

Consider next the variables )(ly
pipki  in which l{Uy-Vy} and kk

pi  . If  
pp ii Kk  , then the optimal 

solution to (39) is also 11)( iijz  for each j(i)H with j(i1)≠j(i2) if i1≠i2, and 01ˆ
1  ii kr  for each 

iW. Here, due to 4a) and 4b), 
pi

K  jobs from }{ HN
pipKi   can be feasibly assigned to pi . 

Therefore, the same holds true for any 
pp ii Kk   and 0)( l

pipki  for all kk
pi  . The same solution 

also applies for variables )(lz
pip jki  for each j }{ HN

pipKi   and therefore their lifted coefficients 

will be zero due to 4b). For variables )(lz
pip jki  in which jH, the optimal solution to (39) is 

2

11 ),( ii zy  for each i{W-i’} in which 11)( iijz  for j(i){H-j} with j(i1)≠j(i2) if i1≠i2 and 
3

1'1' ),( ii zy

for i’ with 11' qiz . Due to 4c), one can assign 
pp ii Kk   jobs from the set }}\{{ jHN

pipKi   to ip, 

which includes jH. Therefore, 0)( l
pip jki  for each jH, l{Uz-Vz}. 

For variables )(lz jkip
 in which l{Uz-Vz} and j ,,{{

pp iki NqN  )1ˆ(  ki pkL
p

,H}}, since 

)1ˆ( kki pR
p


ppp iiki NrR )( , it follows from 1), that )1ˆ),((* kiki prRV

pp
+ qip

a + jip
a +
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)1ˆ),1ˆ((*  kki pkpkLV
p

≤
pi

b . Otherwise, either )(
pp iki rRj , or that the (1,

kp̂ )-

configuration inequality defined over {q, )(
pp iki rR } is a not facet of 

)(dH
pi

. Given the above, 

the optimal solution to (39) is 
2),(

ii ikik zy  for each iW in which 11)( iijz  for j(i)H with j(i1)≠j(i2) 

if i1≠i2, and 
1),(

pp ii zy , with 1)( lz jkip
. This results in 0)( ljkip

  for each l{Uz-Vz} and j

,,{{
pp iki NqN  )1( 

pp ii rkL ,H}}. For variables )(lzijk , in which iW, j{ )( iiik kNN
i
 } and 

l{Uz-Vz}, due to condition 2), ijikii arkNV
i
)ˆ),((*

+ iikiikii brkrkLV
ii

 )1ˆ),1ˆ((*
, for each 

j{ )( iiik kNN
i
 }. Otherwise, either jNi(ki) or that the (ni(ki), ki,

iikr̂ )-cover inequality is not a 

facet of  )(dH i . Thus, 0)( l
iijk  for each l{Uz-Vz} and j )}1ˆ()({  iiiiiik rkLkNN

i
.     

 

5.0 2-Agent Cardinality Matching Inequality 

The 2-Agent Cardinality Matching Inequality presented in this section is derived from an un-

capacitated version of (Pd), i.e. one without the knapsack constraints (4). The intuition behind the 

inequality is to account for how jobs are matched to agents. The left-hand-side of the inequality 

describes the revealed potential assignment of jobs to agents in terms of the z variables. The right-

hand-side represents the total available assignment slots described in terms of y variables.  

5.1 Construction of 2-Agent Cardinality Matching Inequality 

Consider an agent pair W = {i1, i2} and a set of jobs HN with the following specifications: 

1) Agents i1 and i2 are identified with specific cardinalities of k1 and k2 respectively, such 

that either i) k1  (n+1)-Ki2, ii) k2  n-Ki1 but iii) k1+k2  n, or that k1 and k2 is determined 

by the support 0<
11kiy <1, and 0<

22kiy <1, but with k1+k2n. 

2) HqN, with Hq = {jq1, jq2, jq3, jq4}, 

3) Ki1+Ki2  n, i.e, agents i1 and i2 alone can completely accommodate all jobs. 
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To help explain the construction of the 2-Agent Cardinality Matching inequality, consider the 

following equality, obtained by aggregating the cardinality constraints (6) over i and k: 

)40(
1111
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First, a set of z variables are selectively removed from the left-hand-side of (40) as follows. They 

are: i) z variables that assign job jq1 to agent-cardinality combinations (i1, ki1) for 1  ki1  k1-1, (i2, 

ki2) for ki2  k2+1 or to all the agent-cardinalities in M-W, ii) z variables that assign job jq2 to the 

agent-cardinality combinations (i2, ki2) for 1  ki2  k2, (i1, ki1) for k1  ki1  Ki1, or to all the agent-

cardinalities in M-W, iii) z variables that assign job jq3 to agent-cardinality combinations (i1, ki1) 

for 1  ki1  k1-1, (i2, ki2) for 1  ki2  k2, or to all the agent-cardinality combinations in M-W, and 

iv) z variables that assign job jq4 to agent-cardinality combinations (i1, ki1) for k1  ki1  Ki1-1, (i2, 

ki2) for k2+1  ki2  Ki2-1, and to all agent-cardinality combinations (i, ki), where iM-W and 1ki

k̂ = n-k1-k2-1. 

Figure 3. Illustration of hidden assignments in 2-Agent Cardinality Matching Inequality 

We refer to these removed variables as ‘hidden’ assignments. The graph in Figure 3 illustrates 

some of these hidden assignments.  
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Next, the coefficients of variables 
1,1 ikiy and

2,2 ikiy , decrease by 1, i.e. becomes ki1-1 and ki2-1, 

respectively. Finally, a constant of 1 is added to the right-hand-side. The 2-Agent Cardinality 

Matching Inequality can be stated as: 
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Proposition 10 Consider, i) an agent pair W = {i1, i2} associated with specific cardinalities {k1, 

k2} such that k1+k2  n, ii) k1  (n+1)-Ki2, k2  n-Ki1 and k̂ = n-k1-k2-1, and iii) HqN consists of 

nodes {jq1, jq2, jq3, jq4}. Then the 2-Agent Cardinality Matching Inequality (41) is valid for H(d). 

Proof: The argument below shows that all feasible solutions to (Pd) satisfy (41). The feasible 

solutions to (Pd) can be categorized into the following cases, each satisfying (41). 

Case I: Consider feasible solutions in which no agent in W is used. Then, due to (8), (41) reduces 

to 1
11

   
    WMi

K

k
iki

WMi HNj

K

k
ijk

i

i

i

q

i

i

i
ykz , which is satisfied due to (6) and (8). 

Case II: Consider feasible solutions that use agent-cardinalities (i1, ki1) and (i2, ki2), where ki1  k1 

and ki2  k2. Due to (5), all n jobs are assigned. Observe that due to (6), agents in M-W with 

appropriate cardinalities are used so as to accommodate n-ki1-ki2 jobs. Consequently, the right-

hand-side of (41) is (ki1-1)+(ki2-1)+(n-ki1-ki2)+1 = n-1. Observe also that the assignment job jq2 is 

hidden. Therefore, the left-hand-side of (41) is at most n-1, and the constraint is satisfied.  

Case III:  Consider feasible solutions that use agent-cardinalities (i1, ki1) and (i2, ki2), with ki1  k1-

1 and ki2  k2+1. Here, as with Case II, due to (5), the left-hand-side of (41) is at most n-1, since 

the assignment of jq1 is hidden, while the right-hand-side is n-1.  

Case IV: Consider feasible solutions that use agent-cardinalities (i1, ki1) and (i2, ki2), with ki1  k1-

1 and ki2  k2. Here as well, the right-hand-side of (41) is (ki1-1)+(ki2-1)+(n-ki1-ki2)+1 = n-1. 

However, since the assignment of job jq3 is hidden, the left-hand-side is at most (n-1). 
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Case V: Consider feasible solutions using agent-cardinalities (i1, ki1) and (i2, ki2), with ki1  k1 and 

ki2  k2+1. Note that in this situation, only agent-cardinalities (i, ki), where iM-W, kki
ˆ  can be 

used. Further, ki1+ki2  n. If so, then as before, the right-hand-side of (41) is (ki1-1)+(ki2-1)+(n-ki1-

ki2)+1 = n-1. Since the assignment of jq4 is hidden from (i1, ki1), (i2, ki2) and all agents in M-W, the 

left-hand-side is at most n-1. 

Case VI: Consider feasible solutions where exactly one agent-cardinality belonging to either i1 or 

i2 are used. The rest of the agent-cardinalities used belong to {M-W, K}. If agent-cardinality (i1, 

ki1) is used with ki1  k1, then the assignment of jobs jq1 and jq3 are hidden. If (i1, ki1) is used with 

ki1  k1+1, then the assignment of jobs jq2 and jq4 are hidden. Similarly, if agent-cardinality (i2, ki2) 

is used with ki2  k2-1, then the assignment of jobs jq2 and jq3 are hidden, while if ki2  k2, then jobs 

jq2 and jq3 are hidden. In all the four cases above, the left-hand-side of (41) is at most n-2, while 

the right-hand-side is n.          

Example 6: This example illustrates a feasible LP solution that violates (41). Let W = {i1, i2}, N = 

{1, 2, 3, 4, 5, 6, 7, 8}, Hq = {jq1, jq2, jq3, jq4} = {2, 3, 4, 5}, k1 = k2 = 3. The partial LP solution is: 

5.0233 1422
 iiii yyyy

ii
, 0.12 ci

y  (here icM-W), 5.02,32,13,43,23,1 11111
 iiiii zzzzz , 

Figure 4. Illustration of Example 6. 
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5.03,63,53,24,64,54,44,3 2222222
 iiiiiii zzzzzzz , 12,82,7 

cc ii zz . This LP solution 

satisfies (5), (6), (7) and (8). The left-hand-side of (41) is 8, while the right-hand-side is 7.0. Hence, 

(41) is violated. This example is illustrated in Figure 4 above. 

5.2 Strength of 2-Agent Cardinality Matching Inequality 

We now examine the strength of the 2-Agent Cardinality Matching Inequality. Let 

})1()},9()6(),5(),(|),{()(  




Mi
i

p KnpsatisfiesyzRyzConvdHU   (42) 

Note that HU(d)≤ describes that polytope of an un-capacitated version of GAP, i.e. without 

knapsack constraints (4). We now make an important, but reasonable assumption that Ki  n-4 for 

each iM.  

Proposition 11. Dim {HU(d)≤} = 
Mi

inK . 

Proof:  We identify the following integer solutions (z,y)HU(d)≤ which are linearly independent 

noting that (0, 0) is also feasible. For each iM, 1≤k≤Ki, yik = 1, zijk = 1 for each jNk, where NkN 

with |Nk| = k, and the rest of the integer (z,y) variables set to zero. Note that it is possible to make 

n linearly independent selections of Nk from N as long as k < n. Since Ki  n-3 for each iM, the 

number of such linearly independent solutions is 
Mi

inK .           

Proposition 12. The inequalities, a) xijk ≥ 0 for all iM, jN, 1kKi, b) zijk ≤ yik for all iM, jN, 

1 ≤ k ≤ Ki, c) SOS constraints (5), and d) constraint (7) for each iM are trivial facets of HU(d)≤. 

Proof: For a) and b), we identify 
Mi

inK -1 linearly independent integer solutions in HU(d)≤ that 

satisfy the respective inequalities as an equality, noting that (0, 0) also satisfies them as an equality.  

Consider first the inequalities, xijk ≥ 0 for all iM, jN, kKi. Here, for each i’ ≠ i, as well as i’ = 

i, but k’ ≠ k, we identify solutions as described in the proof for Proposition 11. For the case where 

i’ ≠ i, there are 
 }{'

'
iMi

inK  such solutions. For the case where i’ = i and k’ ≠ k, there are (Ki-1)n such 

solutions. Finally, for i’ = i and k’ = k, we can make n-1 linearly independent selections of Nk from 
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N-j since k < n-1, giving us n-1 additional integer solutions in HU(d)≤. This results in a total of 


Mi

inK -1 linearly independent integer solutions.  

Consider next the inequalities zijk ≤ yik for all iM, jN, 1 ≤ k ≤ Ki. We first set yik = zijk = 0. Then, 

for each i’ ≠ i, as well as i’ = i, but k’ ≠ k, we identify some of those solutions described in the 

proof for Proposition 11. The total number of such solutions are 
 }{'

'
iMi

inK + n(Ki-1). We now set yik 

= zijk = 1, and yi’k’ = 0, zi’j’k’ = 0 for all i’≠i, as well as for i’=i but k’≠k. Let Nk-1{N-j} with |Nk-1| 

= k-1. Along with yik = zijk = 1, we set zij’k = 1 for each j’Nk-1. Clearly, there are n-1 independent 

selections of Nk-1 possible from {N-j}. Thus, a total of 
Mi

inK -1 linearly independent integer 

solutions are obtained. 

Now consider the SOS constraint (5) for some jN. We identify 
Mi

inK  affinely independent 

solutions in HU(d)≤ that satisfy it an equality, which does not include (0, 0). Consider first the 

case, k = 1. Here, yi1 = 1, zij1 = 1, and 1
1,1 
 iKiy  and 

1,',1  iKjiz = 1 for each j’
1iKN {N-j}, for 

some 1im-1, satisfies (5) exactly. Since Ki+1  n-3, it is possible to obtain n-1 linearly 

independent selections of 
1iKN from {N-j}. In addition, the solution, yi1 = 1, zij1 = 1 alone satisfies 

(5) exactly as well. This set of solutions can be recreated by varying i from 1 to m-1. For i = m, 

let ym1 = 1, zmj1 = 1, 1
1,1 Ky  and 

1,',1 Kjz  = 1 for each j’
1iKN {N-j}. Here again, it is possible to 

obtain n-1 linearly independent selections of 
1iKN from {N-j}. In addition, consider the solution 

ym1 = 1, zmj1 = 1 alone. Thus, from this class, a total of mn solutions are obtained.  Now consider 

cases where 2kKi. Here, let yik = 1, zijk =1, zij’k = 1 for each j’Nk-1, where |Nk-1| = k-1, Nk-1{N-

j}. There are n-1 linearly independent selections of Nk-1 from {N-j}, resulting in n-1 solutions. In 

addition, for i  m-1, the solution yi+1,1 = 1, zi+1,j”,1 = 1 for j”{N-Nk-1-j} is appended to yik = 1, zijk 

=1, zij’k = 1 for each j’Nk-1, for some selection Nk-1. For i=m, the solution y1,1=1, z1,j”,1 = 1 for 

j”N’n-k-1={N-Nk-1-j} is appended. Thus, by varying k from 1 to Ki, for each iM, a total of 
Mi

inK  
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solutions are obtained.  If all the 
Mi

inK  solutions identified were placed in sorted order of indices 

i, j and k, it is easy to see that it has a block-angular structure, and hence affinely independent.   

Finally, consider constraint (7) for some i’M.  As with the SOS constraints, we identify 
Mi

inK  

affinely independent solutions in HU(d)≤ that satisfy it an equality. For agent i’, 1≤k≤Ki’, yi’k = 1, 

zi’jk = 1 for each jNk, where NkN with |Nk| = k, and the rest of the integer (z,y) variables set to 

zero. Given that n linearly independent selections of Nk from N can be made, a total of nKi’ affinely 

independent solutions are obtained. Next, for each iM-i’ and 1 ≤ ki ≤ Ki, we let yi’1 = 1, zi’11 = 1, 

1,1 
ii ijkik zy  for each 

ikNj , where 
ikN {N-1} with |

ikN | = ki, and the rest of the integer (z,y) 

variables set to zero. For each ki, one obtains n-1 affinely independent solutions. Therefore, add 

the solution, yi’1 = 1, zi’21 = 1, yi”1 = 1, zi”11 = 1. Thus, we obtain a total of 
 }'{ iMi

inK linearly 

independent solutions.          

Let the complete variable set (zc, yc) comprises of, zc = },...,1,,{ iiikijk KkNjMiz
ii

 and yc = 

},...,1,{ iiik KkMiy
i

 . We now redefine the restricted variable set (zr, yr)Bx, as consisting of 

all z and y variables that appear in constraint (41). Specifically, zr is obtained by removing from 

zc, all hidden z variables, while yr = yc.  

Proposition 12 Let S4(d)  = {(z, y)Rx| (5), (6), (7), (8), (9),  0
iijkz z{zc-zr}}, with x of 

appropriate dimension. The 2-Agent Cardinality Matching Inequality (41) is a non-trivial facet of

})(),{()( 44

  dSyzConvdH . 

Proof: Let *
zzr ≤ *

yyr + 0 be a non-trivial facet inequality of H4(d). Using solutions (zl, 

yl)S4(d), that satisfy (41) exactly, we show that *
zzr = *

yyr + 0 must be a linear multiple of 

(41) as an equality, implying that (41) is a facet of H4(d). The inequality, *
zzr ≤ *

yyr + 0 in 

expanded form is 
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We now examine feasible solutions to S4(d) that satisfy (41), as well as (43) exactly. All listings 

of feasible solutions below mention only non-zero variables. 

Consider a feasible solution (z, y)1: i) 122 21
 ii yy , ii) 1

iiky  for a permutation of each 

iMwM-W and cardinalities ki chosen such that 4


nk
WMi

i
, iii) jobs jq2 and jq4 are assigned to 

(i1, 2),  jq1 and jq3 are assigned to (i2, 2), and iv) the remaining jobs in N-Hq are assigned to agents 

in MW. Note that since the assignment of jq3 is hidden, (41) is satisfied exactly. This solution is 

perturbed by choosing another job jN-Hq that is currently assigned to agent-cardinality ),ˆ(
î

ki , 

where WMi ˆ  and exchange its assignment with jq3. That is, j is assigned to (i2, 2), while jq3 is 

assigned to ),ˆ(
î

ki . The perturbed solution satisfies (41) and therefore (43) exactly as well. 

Therefore, 
i

jkiji
ˆ2 ˆ2   for 

ii
Kk ˆˆ1  . A similar result, where 

i
jkiji

ˆ1 ˆ2    for 
ii

Kk ˆˆ1   can be 

obtained if in (z, y)1, jq3 were assigned to (i1, ki1) in place of jq4. Since the choice of WMi ˆ  and 

i
k ˆ  is arbitrary, it follows that jjki

a
i

 
ˆ

ˆ  for all î MW, j{N-Hq} and 
ii

Kk ˆˆ1  . Another 

perturbation of (z, y)1 occurs by exchanging the assignment of jq3 and jq4, wherein jq3 is now 

assigned to (i1, ki1). This perturbation shows that 22 4241 qq jiji   . This result can be generalized for 

any ki1  k1-1 and ki2  k2, which results in jkjikji a
iqiq

 
242141

 for all ki1  k1-1 and ki2  k2. 

Consider a feasible solution (z, y)2:  i) 1
2211


ii kiki yy , where k1ki1Ki1-1, 1ki2k2 and ki1+ki2n-

1, ii) 1
iiky  each iMwM-W and cardinalities ki chosen such that 

21 ii
Mi

i kknk
W




1, iii) ki1 

jobs in {N-jq2-jq4}, including jq1 and jq3 are assigned to (i1, ki1), iv) remaining ki2 jobs from {N-jq1-
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jq3}, including jq2 and jq4 are assigned to (i2, ki2). This solution is perturbed by selecting a job j that 

is currently assigned to iMW, and reassigning it to (i2, ki2), in place of jq2. Both solutions satisfy 

(41) and therefore (43) exactly, as the assignment of jq2 is hidden. The choice of j{N-jq3-jq4-jq2} 

is arbitrary, as is the choice of (i, ki) for iM-i2 to which it is assigned to. Therefore 

jjkijki b
ii

 
2211

 for each j{N-jq3-jq4-jq2} and k1ki1Ki1-1, 1ki2k2. Note that this includes

jji b 22
. Therefore, from the earlier result, it follows that jj ab    for each j{N-jq3-jq4-jq2} 

and k1ki1Ki1-1, 1ki2k2. Note that if (i1, Ki1) is used in (z, y)2, then since the assignment of jq4 is 

not hidden, it can be shown that jjkijKi a
ii

 
2211

 for each j{N-jq3-jq2}. Next, consider (z, y)3:  

i) 1
2211


ii kiki yy , where k1ki1Ki1-1, k2+1ki2Ki2-1 but ki1+ki2n-1, ii) 1
iiky  for each 

iMwM-W and cardinalities ki chosen such that 
21 ii

Mi
i kknk

W




1, and iii) jobs jq1 and jq3 are 

assigned to (i1, ki1), while jq2 and jq4 are assigned to (i2, ki2). Here, the assignment of jq4 is hidden, 

and therefore (41) and (43) are satisfied exactly. By exchanging the assignment of jq4 with that of 

a job j currently assigned to an iMW, as well as exchanging it with jq3, it is easy to show that 

jjkijki a
ii

 
2211

 for each j{N-jq1-jq2-jq4} and k1ki1Ki1-1, k2+1ki2Ki2-1. Finally, consider 

(z, y)4, the complement of (z, y)3, where agent-cardinality combinations (i1, ki1) and (i2, ki2) are 

used, with 1ki1k1-1 and k2+1ki2Ki2-1. In this assignment, jq1 is hidden. Using a perturbation 

similar to that in (z, y)3
, it can be shown that jjkijki a

ii
 

2211
 for each j{N-jq1-jq3-jq4} and 

1ki1k1-1, k2+1ki2Ki2-1.  Thus, from the perturbations of (z, y)1, (z, y)2, (z, y)3 and (z, y)4
, we 

show that the coefficients of the z variables in (43) are each equal to ja , one for each jN. 

Consider again a variant of (z, y)2, wherein a set of jobs HN, with HqH, are to be assigned to 

(i1, ki1) and (i2, ki2) alone. That is, ki1+ki2=|H|=h. Further, jq3 is assigned to (i1, ki1), while jq4 is 

assigned to (i2, ki2). However, jobs in N-H are unassigned. For such a feasible solution, (41) reduces 

to 

)44(3
}{}{ 32

22

42

11




hzz
qq

i

qq

i
jjHj

jki
jjHj

jki  

The corresponding constraint (43) becomes 
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)45(
}{}{ 32

22

42

11
Czaza

qq

i

qq

i
jjHj

jkij
jjHj

jkij 


  

where C denotes the composite value obtained after fixing the values of y and z as described above. 

Specifically,  

)46(0432211
 

qqii jjkiki aaC  

By definition, every feasible solution that satisfies (44) exactly, satisfies (45) exactly as well. There 

are h-3 linearly independent selections of ki1 jobs from the set {H-jq2-jq4}. Consequently, there are 

h-3 linearly independent solutions that satisfy both (44) and (45) exactly, implying that (45) is a 

scalar multiple of (44). Thus, aa j    for each j{H-jq2-jq3-jq4}. Since the selection of H-Hq from 

N-Hq is arbitrary, it follows that aa j    for each j{N-Hq}. In addition, aa jq  1 .  

As was done with (z, y)2 above, starting with (z, y)1, (z, y)3 and (z, y)4,   where HN jobs are assigned 

to (i1, ki1) and (i2, ki2), including jobs in Hq, it can be shown that aa jq  3 , aa jq  2  and 

aa jq  4 , respectively. Further, C = ah )3(  . 

Consider another variant of (z, y)2, where in addition to a designated set of jobs in H assigned to 

(i1, ki1) and (i2, ki2), ki>0 jobs in N-H are assigned to agent-cardinality (i, ki) for some iM-W. As 

a result, the left-hand-side of (45) increases by aki . This is so for any iM-W and 1kiKi. 

Therefore, akiik i
   for any iM-W and 1kiKi. Now consider a solution (z, y)5, where agent-

cardinality (i1, ki1) alone is used, where 1ki1Ki1. In addition, all ki1 jobs that are assigned to i1 

come from the set N-Hq. Such an assignment is certainly possible as Ki1  n-4. This solution 

satisfies (41) exactly as there are no hidden assignments. Therefore, akk iii  1011
  for all 

1ki1Ki1. In a similar fashion, it can be shown that akk iii  2022
  for all 1ki2Ki2. We now 

refer back to (z, y)2, where the set of jobs H, with HqH, are assigned to (i1, ki1) and (i2, ki2) alone, 

with ki1+ki2 = h, jq3 assigned to (i1, ki1) and jq4 is assigned to (i2, ki2). Here,  021 21
 iiii kk

akk ii )1( 21  . From the three equations, we get a 0 , akiki i
 )1( 111

  and 
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akiki i
 )1( 222

 . This concludes the argument that (43) is a scalar multiple of (41) and therefore 

(41) non-trivial facet of H4(d)≤.          

Theorem 13 The 2-Agent Cardinality Matching Inequality (41) is a non-trivial facet of HU(d). 

Proof: Starting with (41), a sequential lifting procedure to increase the coefficient values of 

variables zijk{zc-zr}. The resulting inequality obtained will be a facet of HU(d)≤. It therefore 

suffices to show that after lifting, the coefficients of variables in {zc-zr} all remain zero. 

Let Uz denote the index set of all z variables in {zc-zr}, while VzUz represents those whose 

coefficients have already been lifted. At stage l of the sequential lifting procedure, the coefficient 

of )(lzijk  for l{Uz-Vz} is lifted by solving the optimization problem:  

ijk(l) = Min{1+ycy
c-zr-r(Vz)zr(Vz)| (5

≤), (6), (7), (8), (9), zijk(l) = 1, zijk(s) = 0,s{Uz-Vz}}, (47) 

where (1+ycy
c) represents the right-hand-side of (41), zr the left-hand-side of (41) and r(Vz) the 

lifted coefficients of variables in Vz till iteration l-1. Observe that for the lifted inequality to remain 

valid, ijk(l)≥0. Therefore, in each iteration l, it suffices to identify a feasible solution to (47) whose 

objective function value is zero. 

Consider first the sequence of variables )(
111

lz
iq kji , l{Uz-Vz}, for some 1ki1k1-1. Starting with 

l=1, with say ki1=k1-1, the optimal solution to (47) is, 112211
 kiki yy

i
, and the rest of the y 

variables set to zero. First, (ki1-1) jobs from N-{jq2, jq3}, including jq4, are assigned to agent-

cardinality (i1, ki1). Note that jq1 is assigned to (i1, ki1). Next, from the remaining unassigned jobs, 

(k2+1) jobs, which includes jq2 and jq3 are assigned to (i2, k2+1). This results in 0)1(
11

jki . In 

subsequent iterations, for other values of ki12, the same lifting solution gives 0)(
111

l
iq kji . For 

ki1=1, agent-cardinality (i2, Ki2) is used in place of (i2, k2+1). Here, jq4 as well is assigned to (i2, 

Ki2), resulting in 0)(1,11
l

qji .  Consider next the lifting of coefficients of )(
212

lz
iq kji , for ki2k2+1. 

Here, the optimal solution is 1
2211 

ikii yy , with the rest of the y variables set to zero. Job jq4 is 

assigned to (i1, 1), while (ki2-1) jobs from N-jq4, including {jq1, jq2, jq3} are assigned to (i2, ji2), 
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resulting in 0)(
212

l
iq kji , for all k2+1ki2Ki2. Finally, associated with jq1, consider lifting of 

coefficients of )(
1

lz
iq kij , for some iM-W. Here, the optimal solution is 111 221

  iikkii yyy . 

While jq1 is assigned to (i, ki), for iM-W, jq4 is assigned to (i1, 1) and {jq2, jq3} assigned to (i2, 

jk2+1). The rest of the jobs are selected from N-Hq to match the cardinality requirement. This ensures 

that )(
1

l
iq kij =0 for all iM-W and 1kiKi. 

For the sequence of variables, )(
121

lz
iq kji  for k1ki1Ki1, )(

222
lz

iq kji  for 1ki2k2 and )(
12

lz kijq
 for iM-

W and 1kiKi, it is easy to show that the corresponding coefficients are all zero. The lifting of the 

coefficients involving assignment of jq2 is a complement of the assignment of jq1 described earlier. 

Now consider the sequence of variables, )(
131

lz
iq kji , l{Uz-Vz}, for some 1ki1k1-1. Here, the 

optimal solution is, 12211
 iki yy

i
, and the rest the y variables set to zero. Jobs jq3 is of course is 

assigned to (i1, ki1). The rest of the (ki1-1) jobs are drawn from N-Hq. Similarly, two jobs from N-

Hq are assigned to (i2, 2). Clearly, this solution results in )(
131

l
iq kji =0 for 1ki1k1-1. For the 

sequence of variables, )(
232

lz
iq kji , l{Uz-Vz}, 1ki2k2, the optimal solution is, 1

221 2 
ikii yy , and 

the rest the y variables set to zero. Here, jq3 is assigned to (i2, ki2), while the remaining available 

slots for (i2, ki2) and (i1, 2) are filled up by jobs from N-Hq. This results in )(
232

l
iq kji =0 for 1ki2k2. 

For lifting of coefficients of variables, )(
3

lz
iq kij , the optimal solution used is 121 21


iikii yyy , 

and the rest of the y variables set to zero. Here, jq1 is assigned to (i1, 1), jq2 and jq4 are assigned to 

(i2, 2), while jq3 and (ki-1) jobs from N-Hq are assigned to (i, ki). This results in )(
3

l
iq kij =0 for all 

iM-W and 1kiKi. 

Consider next obtaining )(
141

l
iq kji  for k1ki1Ki1-1. The optimal solution to (47) is, 

112211
 kiki yy

i
with jq2 and jq4 assigned to (i1, ki1), jq1 and jq3 assigned to (i2, k2+1), while the rest 

of the (ki1+k2-3) jobs are drawn from N-Hq and assigned to (i1, ki1) and (i2, k2+1), consistent with 

their cardinalities. This results in )(
141

l
iq kji =0 for k1ki1Ki1-1. Similarly, for obtaining )(

242
l

iq kji  

for k2+1ki2Ki2-1, the optimal solution used is, 1
2211


ikiki yy , with jq2 and jq3 assigned to (i1, k1), 
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jq1 and jq4 assigned to (i2, ki2), and (k1+ki2-4) jobs from N-Hq assigned to (i1, k1) and (i2, ki2), 

consistent with their cardinalities. Thus, )(
242

l
iq kji =0 for k2+1ki2Ki2-1. Finally, it can be shown 

that )(
4

l
iq kij =0, for all iM-W and 1kiKi, by using the optimal solution, 112211

  iikkiki yyy

, in which jq4 is assigned to (i,ki), jq2 is assigned to (i1, k1), jq1 and jq3 assigned to (i2, k2+1), and 

(k1+k2+ki-3) jobs from N-Hq assigned to (i1, k1), (i2, k2+1) and (i,ki), respectively. Thus, the 

coefficients of all variables in {zc-zr} remain zero after lifting.           

    

5.2 Lifting of 2-Agent Cardinality Matching Inequality for H(d) 

While the 2-Agent Cardinality Matching inequality is a non-trivial facet of HU(d), it need not be 

for H(d) (defined in (17)), due to the presence of knapsack constraints (4). We now show how 

(41) can be lifted to become a non-trivial facet of H(d). A sequential lifting procedure is employed 

for each of the coefficients of the missing z variables in (41). The optimization problem that needs 

to be solved is essentially the same as that in (47), except that the knapsack constraints (4) have to 

be satisfied as well. With the inclusion of (4), the sequential lifting procedure boils down to solving 

a bin packing problem for each coefficient.  

To begin with, consider the missing z variables associated with jq1. To determine )(
111

l
iq kji , for 

1ki1k1-1, we determine a set N(i1,ki1-1){N-jq1-jq3}, which consists of the first ki1-1 jobs in {N-

jq1-jq3} after sorting them in  non-decreasing order in terms of ai1,j. If the assignment of jobs in 

N(i1,ki1-1) and jq1 to (i1, ki1) satisfies (4), then the optimal solution is: 1
11


ikiy  and 1
11


ijkiz  for all 

j{N(i1,ki1-1), jq1}, and 112
iy , 1141


qjiz  since aijbi for all iM, jN. The rest of the y and z 

variables are set to zero. This results in, )(
111

l
iq kji  = (ki1-1)+0+1-(ki1-1)+1 = 0. If the assignment 

of N(i1,ki1-1) and jq1 to (i1, ki1) violates (4), then N(i1,ki1-1) is modified by replacing the largest job 

in it by jq3. If the resulting solution is feasible, then since jq3 is hidden from (i1, ki1) as well, 

)(
111

l
iq kji =1. However, if even with jq3, (4) is violated, then the formulation itself can be 

strengthened by setting 0
111


iq kjiz . Essentially, the same steps are used to determine )(
212

l
iq kji , 
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where k2+1ki2Ki2, except that N(i2,ki2-1){N-jq1-jq4} is assigned initially. If infeasible, then 

N(i2,ki2-1) is constructed by including jq4. Thus, here as well, )(
212

l
iq kji  is either 0 or 1, or that

0
212


iq kjiz . To determine )(
1

l
iq kij  where iM-W and 1kiKi, the set N(i,ki-1){N-Hq}, consisting 

of the first ki-1 jobs in N-Hq sorted in non-decreasing order in terms of aij is obtained. If N(i,ki-1) 

and jq1, upon being assigned to (i, ki) satisfy (4), then the solution 1
1


ikiy  and 1
1


ijkiz  for all j{ 

N(i,ki-1), jq1}, 111
iy , 1141


qjiz , 112

iy , 1122


qjiz , and the rest of the y and z variables set to zero, 

results in )(
1

l
iq kij =0. If the above assignment is infeasible, then we consider assignments where 

one job from the set {jq2, jq3, jq4} is included in N(i,ki-1). If a feasible assignment exists then 

)(
1

l
iq kij =1. If no feasible assignment exists above, then solutions in which two jobs from the set 

{jq2, jq3, jq4} are included in N(i,ki-1). If a feasible assignment is found, then this results in )(
1

l
iq kij

=2. If not, an assignment in which all three jobs in {jq2, jq3, jq4} being included in N(i,ki-1) is 

explored. If feasible, then )(
1

l
iq kij =3, else the formulation is strengthened by setting 

iq kijz
1

=0. 

The process of lifting of coefficients that correspond to missing variables associated with jq2 mirror 

in a complementary way those associated with jq1 described above and therefore need no 

elaboration. In the case of jq3, we begin with the determination of )(
131

l
iq kji , for 1ki1k1-1. Here, 

we first determine the set N(i1,ki1-1){N-jq1-jq3}, as was done to determine )(
111

l
iq kji . If the 

assignment of N(i1,ki1-1) and jq3 to (i1, ki1) satisfies (4), then )(
131

l
iq kji =0, else we consider 

modifying the set N(i1,ki1-1) to include jq1. If such an assignment is found to be feasible, then 

)(
131

l
iq kji =1, else the formulation is strengthened by setting 

131 iq kjiz =0. The process of determining 

)(
231

l
iq kji , for 1ki2k2 is identical to that for )(

131
l

iq kji . The process of determining )(
3

l
iq kij  

closely mirrors )(
1

l
iq kij  described earlier. The difference is that initially, jq3 along with N(i,ki-1) is 

assigned to (i, ki) instead of jq1. If found feasible, )(
3

l
iq kij =0. If infeasible, then in subsequent 

steps, the inclusion of additional jobs into N(i,ki-1) is done from the set {jq1, jq2, jq4}. Thus, here as 
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well, in subsequent steps, )(
3

l
iq kij  can take one of the three values: 1, 2 or 3, or that the constraint 

iq kijz
3

= 0 is added to the formulation. 

Finally, consider lifting of coefficients of missing variables associated with jq4. To determine 

)(
141

l
iq kji  for k1ki1Ki1, initially the set N(i1,ki1-1){N-jq2-jq4} is determined to check if it along 

with jq4 can satisfy (4), if assigned to (i1, ki1). If so, then by assigning jq2 to (i2, 1) as well, an optimal 

solution is obtained with )(
141

l
iq kji = 0. If such an assignment is not possible, then the set N(i1,ki1-

1) is modified by including jq2 in it. If, as a result, a feasible solution is found, then )(
141

l
iq kji =1, 

otherwise the constraint 
141 iq kjiz =0 is added to the formulation. The process of determining 

)(
242

l
iq kji  for k2+1ki2Ki2, exactly mirrors that used for )(

141
l

iq kji  and therefore needs no 

elaboration. Similarly, the process of determining )(
4

l
iq kij  where iM-W and 1kiKi, closely 

mirrors the process used for determining )(
1

l
iq kij , )(

2
l

iq kij  or )(
3

l
iq kij . Thus, )(

4
l

iq kij  can take 

one of four values: 0, 1, 2, 3, or that 
iq kijz

4
=0.        

It needs to be emphasized that the optimization used in the sequential lifting procedure are all easy, 

since each one of them involve solving a bin-packing problem with one bin. Thus, without much 

computational effort, the 2-Agent Cardinality matching inequality (41) can lifted to obtain an 

inequality that is a facet of H(d). 

5.3 The 2-Agent Cardinality Matching Inequality when m = 2 

We now consider the special case of (GAP) consisting of just two agents. If any one agent can 

accommodate all the jobs, then (4) becomes redundant and the problem becomes trivial. Hence, 

we assume that both agents are needed to accommodate all the jobs. Thus for instances where M 

= {i1, i2}, the 2-Agent Cardinality Matching Inequality (41) can be further strengthened to become 
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Observe that when M = {i1, i2}, the use of agent-cardinalities (i1, ki1) and (i2, ki2) should be such 

that ki1+ki2 = n. Consequently, the smallest feasible cardinality associated with i1 is n-Ki2, and with 

i2, n-Ki1. This also rules out the possibilities, i) ki1  k1-1 and ki2  k2, and ii) ki1  k1 and ki2  k2+1. 

In the former case, the need to define jq3, as a job whose assignment is hidden from (i1, ki1) and (i2, 

ki2) is no longer required. Similarly, in the latter case, the need to define jq4 is unnecessary.  

Since (48) is a special case of (41), it is a non-trivial facet of HU(d) when m=2. Note that starting 

from Proposition 11, where m = 2, the dimension of HU(d) becomes 2n(Ki1+Ki2-n), and therefore 

the dimension of the hyperplane (48) is 2n(Ki1+Ki2-n)-1. Since every SOS constraint (5) is a trivial 

facet of HU(d), the dimension of HU(d) is 2n(Ki1+Ki2-n)-n. 

Theorem 14: Consider the polytope HU(d) defined by agents, M = {i1, i2} and a set N consisting 

of a finite number of jobs. The 2-Agent Cardinality Matching Inequality (48), along with trivial 

facets, a) xijk ≥ 0, b) zijk ≤ yik, and c) constraints (7), as described in Proposition 12, completely 

describe the polytope HU(d). 

Proof: Let LPU(d) = {(z, y)Rp|(z, y) satisfies (5)-(8), z0, y0}, p = 2(n+1)(Ki1+Ki2-n)}, the LP 

relaxation of (Pd) without the knapsack constraints (4). Clearly, every extreme point of HU(d) is 

also an extreme point of LPU(d). However, in addition, LPU(d) consists of extreme points which 

are fractional in nature. Every extreme point of HU(d) is characterized by the following: 

1
2211


ii kiki yy , ki1+ki2 = n, 1
11


ijkiz  for all j
1ikN , 1

22


ijkiz  for all j
2ikN , where 

1ikN 
2ikN = 

N, 
1ikN 

2ikN = , |
1ikN | = ki1 and |

2ikN | = ki2. Given this structure, there are two possible sets of 

solutions. In one set, ki1  k1-1 and ki2  k2+1, while in the other, ki1  k1 and ki2  k2.  
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Each inequality in (48) is uniquely defined by k1, k2 and a selection of jq1 and jq2 from N. It is 

indeed easy to verify that every inequality in (48) passes through all the extreme points of HU(d), 

i.e., every extreme point of HU(d) satisfies (48) as an inequality. This is indeed possible since as  

Figure 5: Illustration of movement from one integer solution to an adjacent integer solution. 

observed earlier, the dimension of HU(d) is 2n(Ki1+Ki2-n)-n, while that of (48) is 2n(Ki1+Ki2-n)-1.  

Given the above, it suffices to show that (48) violates every fractional extreme point of LPU(d). 

In turn, since (48) passes through every extreme point of HU(d), it is sufficient to identify fractional 

extreme points of LPU(d) that are adjacent to integer extreme points, and show that they violate 

(48).  

Note that, including slack variables associated with (7) and (8), LPU(d) is defined by a total of 

2(2n+1)(Ki1+Ki2-n)+2 variables and 2(n+1)(Ki1+Ki2-n)+n+2 constraints. However, since any 

integer extreme point of LPU(d) consists of exactly n non-zero variables, it is highly degenerate. 

To explore adjacent extreme points, one perturbation of an integer extreme point of LPU(d) is to 

increase the value of the non-basic variable 
22 ijkiz  by >0, where j

1ikN  and therefore 1
11


ijkiz . 

To satisfy (5), 
11 ijkiz  is decreased by . To satisfy the cardinality constraints at (i1, ki1) and (i2, ki2), 

a j’
2ikN is chosen wherein, 1

22 ' ikjiz , while 
11 ' ikjiz . This is illustrated in Figure 5, where 

 

(i1,4) 

(i1,2) 

(i2,3) 

(i2,1) 

041
iy  

132
iy  

012
iy  

121
iy  

1 2 

3 
4 

5 

+ + 

- 

- 
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j=2 and j’=3. In the limiting case, this perturbation ends with =1, at which point 
22 ' ikjiz becomes 

non-basic. The resulting extreme point solution is also integer wherein there is an exchange of 

assignments of j and j’. Thus, in this perturbation, 1
2211


ii kiki yy  remains. 

Another perturbation to explore adjacent extreme points is to increase the value of 
11 'ikiy where k’i1 

≠ ki1 given that 1
11


ikiy . Alternately, 
22 'ikiy can be chosen for perturbation visa-vis 

22 ikiy  in the 

same way. Here, the value of 
11 'ikiy , which is currently zero is increased it by . Simultaneously, 

the value of 
22 'ikiy where k’i2 = n-k’i1 is also increased by . Naturally, to satisfy (7), the values of 

11 ikiy and 
22 ikiy are decreased by . Let 

1'ikN  and 
2'ikN be defined such that, i) 1' '||

1 ik kN
i
  and 

2' '||
2 ik kN

i
 , ii) 

1'ikN 
2'ikN = N and iii)  

1'ikN 
2'ikN = . We now let i) 

11 'ijkiz  for each j
1'ikN , 

ii) 
22 'ijkiz  for each j

2'ikN , iii) 1
11 ijkiz  for each j

1ikN  and iv) 1
22 ijkiz  for each j

2ikN . Such a perturbation is certainly possible as constraints (5), (6) and (7) are satisfied exactly. 

Here as well, an adjacent extreme point is found when  = 1, which is also integer, with 

1
2211 '' 

ii kiki yy  with jobs in 
1'ikN and 

2'ikN assigned to (i1, k’i1) and (i2, k’i2) respectively.  

The only other perturbation that is possible is identical to the previous one, except that 
1'ikN 

2'ikN

≠  . Therefore, |
1'ikN 

2'ikN | < n. Let 
21 '' ii kkN =

1'ikN 
2'ikN , while 

121 '' iii kkkN = 
21 '' ii kkN 

1ikN and 

221 '' iii kkkN = 
21 '' ii kkN 

2ikN . Similarly, let 
21 '' ii kkN = }{

21 '' ii kk NNN  , while 
121 '' iii kkkN = 

21 '' ii kkN 

1ikN and 
221 '' iii kkkN = 

21 '' ii kkN 
2ikN . Clearly, 

21 '' ii kkN = 
121 '' iii kkkN 

221 '' iii kkkN , 
21 '' ii kkN = 

121 '' iii kkkN 

221 '' iii kkkN  and |
21 '' ii kkN | = |

21 '' ii kkN |. Here, the integer solution 1
2211


ii kiki yy , 1
11


ijkiz  for all j

1ikN , 1
22


ijkiz  for all j
2ikN is perturbed in part as follows: i) 

11 'ikiy , 
11 'ijkiz  for each j

1'ikN , ii) 
22 'ikiy , 

22 'ijkiz  for each j
2'ikN  and iii)  1

2211 ii kiki yy . Note that the 

perturbation described in i) and ii) satisfy (6) and (8) exactly. What remains is to specify the values 

of 
11 ijkiz for each j

1ikN  and 
22 ijkiz for each j

2ikN  such that (5), (6) and (8) are satisfied.  
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Since 
11 'ijkiz  and 

22 'ijkiz  for each 
21 '' ii kkNj , it follows that to satisfy (5),  21

11 ijkiz  and 

 21
22 ijkiz , for each j

121 '' iii kkkN  and j
221 '' iii kkkN , respectively. Further, to satisfy (5) and (8), 

1
11 ijkiz , 

22 ijkiz  for every j
121 '' iii kkkN , and 

11 ijkiz , 1
22 ijkiz  for every j

221 '' iii kkkN . 

By definition, |
121 '' iii kkkN | - |

221 '' iii kkkN | = |
121 '' iii kkkN | - |

221 '' iii kkkN | = DIFF. Thus at (i1, ki1), the 

cumulative value of z variables accounted for from 
21 '' ii kkN and 

21 '' ii kkN  is |
121 '' iii kkkN |(1-2) + |

121 '' iii kkkN |(1-) + |
221 '' iii kkkN | = (|

121 '' iii kkkN |+|
121 '' iii kkkN |)(1-) – DIFF*, while at (i2, ki2) it is 

DIFF* + (|
221 '' iii kkkN |+|

221 '' iii kkkN |)(1-). If DIFF > 0, then an arbitrary set NDiff  {
2ikN -

221 '' iii kkkN

-
221 '' iii kkkN } is selected with |NDiff| = DIFF. We now set  21

22 ijkiz  and 
11 ijkiz  for each 

jNDiff, 1
22 ijkiz  for each j{

2ikN -
221 '' iii kkkN -

221 '' iii kkkN -NDiff}, and 1
11 ijkiz  for each j{

1ikN -
121 '' iii kkkN -

121 '' iii kkkN }. Conversely if DIFF < 0, then NDiff {
1ikN -

121 '' iii kkkN -
121 '' iii kkkN } is 

selected such that |NDiff| = -DIFF, and we set  21
11 ijkiz  and 

22 ijkiz  for each jNDiff, 

1
11 ijkiz  for each j{

1ikN -
121 '' iii kkkN -

121 '' iii kkkN -NDiff}, and 1
22 ijkiz  for each j{

2ikN -

221 '' iii kkkN -
221 '' iii kkkN }. Such a perturbation satisfies (5) at each jNDiff, and (6) exactly, both at (i1, 

ki1) and (i2, ki2). This perturbation is suitably illustrated in Figure 6 below. 

In the illustration above, ki1 = 3, k’i1 = 4, ki2 = 3, k’i2 = 2, 
121 '' iii kkkN = {3}, 

221 '' iii kkkN = {4}, 
121 '' iii kkkN

= , 
221 '' iii kkkN = {5, 6}. Given the above, DIFF = -1 and NDiff = {2}. It is evident from this 

illustration that when  = 0.5, an adjacent extreme point is found that is fractional. It is worth 

noting at when  = 0.5, then any node in 
21 '' ii kkN (nodes 3 and 4 in Figure 6) can be chosen as jq1, 

while any node in 
21 '' ii kkN  (nodes 5 and 6 in Figure 6) can be chosen jq2. Clearly, the fractional 

solution is such that jq1 is hidden from (i1, k’i1) and (i2, k’i2), while jq2 is hidden from (i1, ki1) and 

(i2, ki2). This ensures that it violates (48).         
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Figure 6: Illustration of movement from one integer solution to an adjacent non-integer 

solution. 

 

6.0 Concluding Remarks and Future Research Possibilities 

In this paper, we have presented a new disaggregated formulation of GAP that uses the idea of 

cardinality for each agent. The LP relaxation of this formulation is shown to be stronger than the 

LP relaxation of the standard formulation (Ps) used in earlier works such as Cattrysse et al. (1998) 

and Nauss (2003). The disaggregated formulation reveals generalizations of the well-known Cover 

and (1, p)-configuration inequalities that provide a much tighter description of the polytope, as 

well as being far more ubiquitous. Furthermore, this formulation reveals strong inequalities 

involving multiple agents. We present two such classes of inequalities: the Bar-and-Handle (1, kp̂

) Inequality and the 2-Agent Cardinality Matching Inequality. Under certain restrictive conditions, 

the Bar-and-Handle (1, kp̂ ) inequality is shown to be a facet of the polytope defined by the feasible 

solutions of GAP. In the case of 2-Agent Cardinality Matching inequality, it first shown that it is 

a facet of the polytope defined by the feasible solutions to the un-capacitated version of GAP. 

                                                                                                              1- 
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More importantly, it is shown that the lifting procedure needed to lift this inequality to become a 

facet of the polytope for the capacitated version is easy to solve. Finally, it is shown that for the 

special case of GAP consisting of just two agents, the 2-Agent Cardinality Matching inequality, 

along with trivial facets completely describe the polytope defined by the feasible solutions of the 

un-capacitated version of GAP. For the above reasons, we believe that these new inequalities, 

which are unique to the disaggregated formulation, are a significant contribution of this paper.  

A disadvantage of the disaggregated formulation is its increased size, even though the increase is 

polynomially bounded. This can be a significant concern for large problems. One way to address 

it is to employ a dynamic reformulation that adds variables and constraints incrementally. Initially, 

we can start with a modified version of the traditional formulation (Ps) and then progressively 

move towards the disaggregated formulation. In the initial modified version of (Ps), variables 

yi{0, 1} for all iM are introduced. Constraint (1) is replaced by the constraints: 

Miybxa ii
Nj

ijij 


,       (49) 

and the VUB constraints  

NjMiyx iij  , ,       (50) 

are introduced. After solving the LP relaxation, we measure 
Nj

ijx for each iM.  Suppose that for 

some i, this aggregation is fractional and of value ri. This agent is split into at most four 

cardinalities. The four cardinalities are: i)   11  ii rk , ii)  ii rk 2 , iii)   13  ii rk  and iv) 

  24  ii rk . The variable yi is split into four variables wherein, iikikikik yyyyy
iiii


4321
. 

Similarly, each variable xij is split into four such that ijijkijkijkijk xzzzz
iiii


4321
. Accordingly, 

constraints (49) and (50) are also broken into four separate constraints for the agent that is split. 

The knapsack and the VUB constraints take the form: 

4,3,2,1


lybza
il

il

iki
Nj

k

ijij        (51) 

4,3,2,1,  lNjyz
il

il

ik

k

ij .      (52) 

Finally, the following cardinality constraints are introduced for the agent that is split: 
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,
1

1

1 i

i

iki
Nj

k

ij ykz 


          (53) 

3,2, 


lykz
il

il

ikil
Nj

k

ij        (54) 

.
44

4

iiki
Nj

k

ij ykz 


          (55) 

With the introduction of cardinality constraints (53) and (54), the Cover inequalities as well as (1, 

kp̂ )-Configuration inequalities discussed in Section 2 can now be applied on agents that have been 

split. The Bar-and-Handle inequalities and the 2-Agent Cardinality Matching inequalities can also 

be applied to agents that have been split. This form of judicious disaggregation can achieve the 

desired strength in the formulation without making the model unnecessarily large. Of course, the 

challenge lies in the implementation where rows and columns are added progressively, and this is 

a topic for future research.  

An important future research issue from a computational standpoint is the separation problem 

associated with the various inequalities presented in this paper. As can be expected, the separation 

problems associated with these inequalities can be challenging. Another interesting idea worth 

exploring is to extend the 2-Agent Cardinality Matching inequalities to three agents. Once we have 

Cardinality Matching inequalities consisting of three agents, one can ‘concatenate’ sets of 2-Agent 

and 3-Agent Cardinality Matching inequalities to derive cardinality matching inequalities 

consisting of larger number of agents. Finally, similar disaggregation approaches can be 

investigated for other NP-Hard problems such as the Capacitated Concentrator Location Problem, 

or the Capacitated Network Design problem in which each commodity is either wholly assigned 

or not at all to each link in the network. 
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