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A Cardinality Induced Disaggregated Formulation of the
Generalized Assignment Problem and Its Facets

Abstract

We present a new disaggregated formulation of the Generalized Assignment Problem (GAP),
consisting of O(mn2) variables and constraints, where m denotes the number of agents and n the
number of jobs. In contrast, the traditional formulation consists of O(mn) variables and constraints.
The disaggregated formulation is stronger than the traditional formulation; the linear programming
relaxation of the disaggregated formulation provides tighter lower bounds. Furthermore, this new
formulation provides additional opportunities for generalizations of the well-known Cover and (1,
k)-Configuration inequalities that are not present in the traditional formulation. Under certain
restrictive conditions, both inequalities are shown to be facets of the polytope defined by feasible
solutions of GAP. We introduce two classes of inequalities involving multiple agents that are

specific to this formulation. One class of inequalities is called the Bar-and-Handle (1, pk)
Inequality, which under certain restrictive condition is a facet of the polytope defined by feasible
solutions of GAP. Finally, we introduce another important class of inequality called the 2-Agent
Cardinality Matching Inequality involving exactly two agents. Given the un-capacitated version
of GAP in which each agent can process all jobs, we first show this inequality to be facets of the
polytope defined by the associated bipartite graph. We then show how this inequality can be easily
lifted to become a facet of the polytope defined by feasible solutions of GAP. Finally, we show
that when m = 2, this inequality, along with trivial facets completely describe the polytope
associated with the un-capacitated version of GAP.

Keywords: Integer Programming, Generalized Assignment, Valid Inequalities, Integer
Polytope.
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1. Introduction

The Generalized Assignment Problem (GAP) is a well-known problem in integer programming
with numerous direct applications. More importantly, it appears as a sub-problem in many models
for applications ranging from job scheduling and routing to facility location (Savelsberg 1997).
Cattrysse and VVan Wassenhove (1992) discuss these GAP applications and algorithms in detail.

The problem is: Let M = {1,..., m} denote a set of agents and N = {1,..., n} denote a set of jobs
that need to be assigned to the agents in M. The number of units of a resource required for agent i
to complete job j is ajj, while the associated cost is cij. The capacity of each agent i is bi. Without
loss of generality, we assume that ajj < b; for each ieM and jeN. The GAP is a decision problem
that determines the minimum cost assignment of jobs in N to agents in M so that the total resources
required of each agent in M does not exceed its capacity. Let x;; = 1 if job j is assigned to agent i,
0 otherwise. The integer programming formulation of GAP is

(Ps) Minimize f(x)= iicij Xij
i=1 j=1

st. zn:aij Xjj<b;, VieM “
j=1
m
2xj=L  VjeN “
i=1
x;; €{0,5} VieM,jeN ©

In (Ps), (1) enforces the capacity restriction for each agent ieM, while (2) specifies that every job
jeN is assigned to exactly one agent in M. However, an agent may be assigned multiple jobs.
Using the terminology in Gottlieb and Rao (1990a, 1990b), we refer to constraints (1) as knapsack
constraints, and constraints (2) as specially ordered sets (SOS) constraints. The GAP is known to
be NP-Hard and there has been considerable interest in developing algorithms to solve large

instances of this problem in reasonable time.

In this paper, we present a new disaggregated formulation of the GAP. While this new formulation
is larger than the one in (Ps), both in terms of the number of variables and the number of

constraints, the following four reasons motivate us to examine this formulation. First, the
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disaggregated formulation is stronger than (Ps). Every feasible solution to the LP relaxation of
the disaggregated formulation is feasible to the LP relaxation of (Ps), but not vice-versa. Since the
LP relaxation of the disaggregated formulation will provide tighter bounds, any enumeration based
exact procedure for GAP can benefit from the reformulation. Second, generalizations of the cover
and (1, k)—configuration inequalities exist for the disaggregated formulation that are at least as
strong as and far more ubiquitous than their counterparts in (Ps). Third, there exists classes of
strong, valid inequalities involving multiple agents that are specific to the disaggregated
formulation and that have no direct parallel in (Ps); we present two of these. Finally, even though
the disaggregated formulation has more variables and constraints, the disaggregation can be done
dynamically such that variables and constraints are added incrementally. Such a strategy is
particularly beneficial when the Euclidean distance between the optimal solution to (Ps) and the
optimal solution to its LP relaxation is relatively small. The success of most cutting plane methods

relies on this observation and we describe such an approach in Section 6.

The rest of the paper is organized as follows. Section 2 summarizes the literature on the GAP.
Section 3 presents the disaggregated formulation and shows a) that it is stronger than the standard
formulation (Ps) and b) that well-known cover inequalities and the (1, k)-configuration inequalities
for the GAP can be generalized in the disaggregated formulation by taking advantage of its

structure. In section 4, we introduce the Bar-and-Handle (1, p, ) inequality, which is unique to the

disaggregated formulation and is described on an appropriate sub-graph of the bipartite graph
defined for the GAP. We show that under certain restrictive conditions, this inequality is a facet of
the polytope defined by the feasible solutions of GAP. In section 5, we introduce the 2-Agent
Cardinality Matching Inequality, which again has no parallel in the original formulation. In this
section, we first show that this inequality is a facet of the polytope defined by the feasible solutions
to the un-capacitated version of GAP. We then show how this inequality can be easily lifted to
become a facet of the polytope defined by feasible solutions of GAP. Finally, we show that for the
special case of GAP consisting of just two agents, the 2-Agent Cardinality Matching inequality,
along with trivial facets completely describe the polytope defined by the feasible solutions of the

un-capacitated version of GAP. Section 6 concludes with implications for future research.
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2. Literature Review

Algorithms to solve the GAP (Ps) typically involve procedures embedded in a branch-and-bound
type enumeration scheme. One solution approach is to generate lower bounds by dualizing the
SOS constraints (1) and solve the resulting set of knapsack problems (for example see, Ross and
Soland (1975); Fisher et al. (1986); Guignard and Rosenwein (1989); Karabakal et al. (1992)). Of
course, the knapsack problems themselves are NP-Hard and would require a branch-and-bound or
dynamic programming procedure to solve, often employing appropriate heuristics to generate an
upper bound. This basic approach is embedded in a branch-and-bound procedure to solve (Ps).
The differences in the methodologies are largely due to the different approaches used to solve the
Lagrangian dual problem. Another approach to solving the GAP is based on progressively adding
columns and valid inequalities to the formulation. Savelsbergh (1997) proposed a branch-and-price
algorithm for solving the GAP that involves a Dantzig-Wolf column generation scheme. This
column generation scheme is embedded in a branch-and-bound procedure.

Cattryse et al. (1998) use a branch-and-cut procedure by progressively adding lifted cover
inequalities to the formulation. While Cattryse et al. (1998) used LP relaxation within a branch-
and-bound procedure, Nauss (2003) used Lagrangian relaxation by dualizing (1) and the cover
inequalities. Avella et al. (2008) describes an approach that is similar to Cattryse et al. (1998),
where facets of knapsack polytopes generated by (2) are added progressively that render the current
LP solution infeasible.

Finally, Gottlieb and Rao (1990a, 1990b) provide significant insights on the convex hull of feasible
solutions to (1), (2) and (3). In particular, unlike the lifted cover inequalities or the facets of single
knapsacks used by Avella et al. (2008), Gottlieb and Rao (1990a, 1990b) identify classes of strong
inequalities that span more than one agent. In this paper, we extend the work of Gottlieb and Rao
(19904, 1990b) by identifying valid inequalities that span more than one agent in the disaggregated

formulation.
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3. Disaggregated Formulation of GAP

For each agent ieM, let K be the maximum number of jobs that agent i can handle in any feasible
assignment associated with (Ps). We disaggregate the model (Ps) by separating each agent into Ki

agent-cardinality combinations. More precisely, the following binary variables are now defined:

_ |1 if k jobs are assigned to agent i,
Yik =10, otherwise !

. 1, if job j is assigned to agent i with a cardinality of k,
%10, otherwise. '

The disaggregated formulation is:

K,
(Pd) Minimize f(z,y)=> > > ¢,z
ieM jeN k=1
subject to: Y a;zy <by, Vik =1..,K, (4)

jeN

Z ZI Zy =1 )

ieM k=1

Dz =ky, VieM,k=1.K, (6)
JI:IN

PR VieM (7)
;i;Syik VieM,jeNk=1..K, 8)
Zy, ¥y {01} 9)

In (Pd), constraint set (4) represents the knapsack constraints defined for each agent-cardinality
combination. In addition, these constraints ensure that if an agent with a given cardinality is not
used then the capacity becomes zero. Constraint set (5) represents the SOS constraints for each
job. Constraint set (6), called cardinality constraints, ensures that if an agent with a given
cardinality is used, then the number jobs assigned to it matches its cardinality. Constraint set (7)

ensures that for each agent, at most one cardinality type is used. Finally, constraint set (8), called
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variable upper bound (VUB) constraints, ensures that if an agent-cardinality combination is not

used, then no job can be assigned to it.

3.1 Comparing (Ps) and (Pd)

The number of variables and constraints in (Ps) are both O(mn), while in (Pd) both are O(mn?)
since Kj < n for all ieM. We now show that (Ps) and (Pd) are equivalent. Thus, given a feasible
solution to one, a feasible solution to the other can be constructed with the same objective function

value as follows.

Let x*e P(s) ={xe R™ | x satisfies (1) - (3)} and for each ieM, J(i) = {jeN| x; = 1}. By

definition, (i) J(i1)n J(i2) = & for all iy, i2 €M, is=iz, (i) JJI (i) =N, and (iii) ¥ ajj <bj for all
icM jed ()

ieM. An equivalent solution (z*y")e P(d)={(z,y) e R™ | (z,y) satisfies (4)—(9)} can be
constructed as follows. For each ieM, if J(i) = &, then for k(i) = | J(i)|, yikq) =1 and Zy;, =1 for
all jed(i), Yi =z = Ofor all k=k(i). Clearly, f(z*,y*) =f(x"). Conversely, for every (z*,y") eP(d),

a x*eP(s) can be constructed with f(x*) = f(z*,y*) as follows:
Ki

Xi = Zy.,, foreachieM, jeN. (10)
k=1

We now show that the LP relaxation of (Pd) provides a tighter bound than the LP relaxation of

(Ps). Consider the following polytopes:

LP(s) ={x e R™ | x satisfies (1) —(2),x >0},

LP(d)={(z,y) e R |(z,y) satisfies (4)—(8),z>0,y >0}, p :%Ki (n+1) and
LP,(s) ={x e R™ | x satisfies (10) for each (z,y) e LP(d),x>0}.

Proposition 1. Let v(LP(s)) = Min {f(x)| xeLP(s)} and v(LP(d)) = Min {f(z,y)| (z,y) eLP(d)}. Then
V(LP(s)) < v(LP(d)).
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Proof: For every (z, y) eLP(d), there exists an xe LP(s) such that f(z, y) = f(x). By counterexample,
we show that the reverse is not true.

For each (z, y)eLP(d), a solution x"eLPa(s) is obtained by aggregating z as described in (10) and

Ki
aggregating y to obtain, yf = Vi« for each ieM. By aggregating the constraints in (4), (5), (7)
k=1

and (8) over k, it can be seen that (x*,y*) satisfies the constraints:

n

2% <byy;, forallieM

i1

m -

2 X =1 forall jeN

i=1

Xij <Yi forallieM,jeN
XijZ0,0SyigL forallieM, jeN.

Further, since the costs cjj do not vary with k, f(x*, y*) =f(z, y). Since yi<1 for all ieM, x"eLP(s)
with f(x™) = f(x*, y") = f(z, y). Thus, the above argument shows that LPa(s) < LP(s).
The following counter-example shows that in fact LPa(s) < LP(s). Consider a X eLP(s) having the
following characteristics:

1) Agents i1, i2eéM, with associated sets J(ir)cN, J(iz)cN and J(i1)nJ(i2) = &, such that

jed (i) jed(iz)

ii) A job jieN{J(i)ud(ix)} such that 3 & +a,, >b

e hh iy
jed (i)

iii)(a) X;; =1 forall jeJ(i1) and X; ; =1 for all jeJ(i2), (b) 2. =A=(b, - > a,)/a, and

jed (i)

(c) %,;, =1-A, with Z(: )aizj +(1-A)a,; <b,.
jed(ip

K;
By contradiction, suppose that X eLPa(s). Then there exists a (Z , § ) eLP(d) such that X; = Z Zix
k=1

for all ieM, jeN. Let £’ = [J(i1)|. The number of ﬁillvariables that are positive is k£ '+1. Therefore,

due to enforcement of constraints (6) and (8), yilk = 0 for k = k'+2,.., K; . While aggregating
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k'+1

constraints in (6) over k, the right-hand-side obtained for agent i1 is Zkyilk . From iii) it is equal
k=1

to (k’+A)>k’. Due to (7) it follows that ix+1>0. Also, X satisfies the knapsack constraint (2)

associated with agent i1 as an equality. Therefore, it can be written as

K'+1 k'+1 kK'+1
Z a (Z Zj. ik )+ &, (Z Ziijlk) = bi1 (z yilk) :
€3y k=1 k=1 k=1

Due to the above, every knapsack constraint (4) associated with agent iy and cardinality k= 1,...,

k'+1, is also satisfied as an equality. However, for k = k’+1, since > a;;+a,; >b, , dueto (8), it
jed (i)

is not possible to satisfy both the knapsack constraint (4) and the cardinality constraint (6). Thus,

X ¢ LP,(s), and LPa(s) c LP(s). 0

3.2 Cardinality-Constrained Cover Inequality for (Pd)

We now present generalizations of the Cover inequalities for (Pd). Cover inequalities are a well-
known set of inequalities derived from (1), which we generalize for (Pd). Let the convex hull of
the 0-1 vertices of (Ps) and (Pd) be,

H(s) = Conv{x e R™ | x satisfies (1) - (3)} and

H(d) =Conv{(z,y) e R" | (z,y) satisfies (4)—(9)},p= i K,(n+1)}. (11)

i=1
Using notation similar to that in Gottlieb and Rao (1990), suppose that associated with agent i,
there exists a subset Nj < N of jobs with |Ni| = ni, such that

0) forall Ric Ni, [Ri| =ri, > a; <b;,

ieR;

(i)  forallRisscNi |Rist| =1i+l, ¥ a;>b.

jeRin
Then, the following (ni, ri)-cover is a valid inequality for H(s):
2 X <K (12)

jeN;

For any (nj, ri)-cover inequality (11), it follows that the inequality,
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Z Zig < 1Y, (13)

jeN;
one for each ri < k <Kj, is valid for H(d).

To simplify subsequent exposition, we introduce the following optimization problem in generic

terms and refer to it several times later in the paper.

Definition 1. Consider a set DcN of jobs with each job jeD requiring a; units and an integer k

such that |D| > k > 0. Define V'(D, k) = Min{3> a;x; | 3. x; =k,x e B}.
jeD

jeD

This problem is easy to solve as it involves selecting the k smallest jobs in D. In (Pd), consider an
agent i with a cardinality of k >2. Suppose that there exists a set Ni N, which for some f;, < Min

{ni, k} satisfies the conditions

(@  forsome Ry cNi |Ry|=fix, X a;+V (N-Ry,k—F)<b, but (14)
ieRi

(b)  forall Ry; < Niy [Ryal = fix+1, ¥ 3 +V (N=Ry, . k—f =D >b. (15

i€Ri

Then associated with each inequality (13) is a (ni, k, f;y )-cover inequality of the form

zzijk < fik Yic » (16)

jeN;

that is valid for H(d). Since ajj < bi for all jeN, for the same set N, several distinct (ni, k, f )-cover
inequalities, one for each k > 2 can be derived. Since V(N =R, ,;,k —Ff, —1)>0, it follows that
fii < ri and (16) dominates (13). The following property shows that the bounds obtained from

adding (ni, k, fi )-cover inequalities to (Pd) are indeed tighter than bounds obtained from adding

the (ni, ri)-cover inequalities to (Ps).

10
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Proposition 2 Let
LP"(d) ={(z,y) e R”|(z,y) satisfies (4)—(8) and (16) for every ie M,N, = N and K} where

p=3K.(n+1),and LP"(s) ={x e R™ | x satisfies (10) for each (z,y) < LP"(d)}. Then, LP*(s)
i=1
< LP(s) »n {xeR™ | x satisfies (11) for every ieM, Ni < N, 0<x<1}.

Proof: Let LPs(d) = {(z, y)eRP"| (z, y) satisfies (7), (8) and (16) for every ieM, N; c N and k} and
LPs(s) = {xeR™| x satisfies (10) for each (z, y)eLPs(d)}. By definition, LP*(d) = LP(d)LPs(d)
and therefore LP™(s) = LPa(s)nLPs(s). Aggregating constraints in (16) over k gives

K;
Z XI] < kaylk
while aggregating constraints in (13) over k gives

Ki
2 X S 20 Vi -
k=1

jeN;

Due to (7) and that [ k< ri, it follows that

Ki Ki
2 hYik S 2 hYi <KL
ka1 ka1

Therefore, LPs(s) < {xeR™ | x satisfies (12) for every ieM, Ni = N, 0<x<1}. From Proposition
2.1, LPa(s)  LP(s). Thus, LP*(s) < LP(s) n {xeR™ | x satisfies (12) for every ieM, Ni c N,
0<x<1}. O

The following example illustrates Proposition 2.2.

Example 1 Given agent i with capacity b; = 40, the requirements ajj on i in sorted order is {10, 10,

10,10,9,9,5,5,5,3,3, 3, 3, 3, 3} For Ni = {1, 2,...,6}, the (6, 4)-cover inequality is Y, X; <4
jeN;

11
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. Given that, V'(N-R, ,3)=9, V(N-R, 4)=12, V' (N-R, ,6) =18 and V'N -R,,7) =23,

the set of (n;, k, fiy )-cover inequalities that can be derived for N; are:

i) ZzijS <3Y;s, i) Zzijﬁ < 3Yje, i) Zziﬁ <37, V) ZzijS <2y and V) Zzijg < VY-

jeN; jeN; jeN; jeN; jeN;

Consider the partial LP solution (z, y): VYig=1 Zitog = Zinng = Zinng = Zinsg = Liag =1,
Zisg = Zisg = Zigg = Zizg =0.79, and Yy = Zy, = Ofor all k=8. This solution satisfies constraints

(4), (6), (7) and (8) associated with agent i, but violates the (ni, k, ﬁk)-cover inequality iv) listed
above. From (z, y), a solution xeLPa(s) can be obtained by aggregating as described in (10). This

solution satisfies the (i, ri)-cover inequality Y, Xij <4. 0
jeN;

As seen in Example 1 above, given a set Ni, several (nj, k, i )-cover inequalities can be derived,
one for each k. In a (n;, k, fiy )-cover inequality, it is possible for f = 0. For instance, in Example

1 above, suppose that N; = {jeN: ajj > 13}, then for k = 9, lig= 0. The resulting (ni, k, ﬁk)-cover

amounts to a simple preprocessing step of setting Zy =0 for all jeNi. In general, this

preprocessing step can be operationalized as follows.

Preprocessing Step:
Foreach k>2, and ieM, jeN, determine V" (N — j,k —1). Set zj=0 if a; +V(N=-j, k=D >h.

Let Nik< N be the set of z variables remaining after the preprocessing step for each i-k combination
with |Nik| = nik. The polytope

H(d)* =Conv{(z,y) € R" | (z,Y) satisfies (4),(57),(6)-(9)},p = iinik}, (17)

i=1 k=1
where (5%) represents constraints (5) in less-than-or-equal-to form. Due to (6), Dim {H(d)=} = p.

12
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Without loss of generality, assume the indices of N to be ordered such that & 2 Qg forj=1,.,n-
1. Using terminology similar to that as in Balas (1975), suppose that for some Si — Nik, with |Si| =

s, if Sa,+V'(N,-S,k-s)>b, but for al RycS, |Ryl = fx and

i€S;

> a; +V (N, — Ry, k—f,) <b;, then the (i, k, fi )-cover inequality obtained by setting Ni = S;

jeRy
and fy =si- 1 isminimal. The set E(Si) = Si U S’ with S’ = {jeNik-Si | aij > a;; }, where a;; = Max

{aij| jeSi}, is called an extension of Sj onto Nik.

Definition 2. A minimal (si, k, ﬁk)-cover is strong, if and only if either E(Si) = Nik, or for the set
S"i=Si—{ju{i}, Dla; +V (N, —S" k—s)<b forall jeNi-E(S).

jes™;
We now proceed to show conditions under which the (n;, k, ﬁk )-cover inequality (16) is a facet of

H(d)=. An inequality gx < go is a facet of a polytope F, if it is valid and if Dim {xeF: gx = go} >
Dim {F} — 1. Even though our interest is in identifying facets of H(d), as shown in Gottlieb and
Rao (1990a), by introducing artificial variables in (5), an equivalent formulation of (Pd) converts
it into a packing problem in which (5) is replaced by (5%). Therefore, it suffices to examine facets
of H(d)".

Theorem 3 The (nj, k, fy )-cover inequality (16) is a facet of H(d)= if the following conditions are

met:
a) for some Si — N, Ni = E(S;) with S being a strong minimal cover and |Si| = ﬁk +1,

b) Zaij +V (N -S8", k=1, ) <b, for $”i = {1}USi — {j1, j2}, where ji and j; are the first two
JeT;
indices in Sj,
n 1
) >a+ >a<b,and

iSivid j=ny—k+fi-1

13
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Ng;. 1
d) Zai,j <bh,, foreachi’eM.
i=ng;. K1
Proof: It suffices to identify (p-1) linearly independent, non-zero solutions (z,y) € ® = {H(d)"|
(16) is satisfied as an equality}, since (0, 0)e H(d)= and satisfies (16) as an equality.

The p-1 solutions are displayed as matrix Y-Z, with each row representing a (z,y) € ® and each

column a variable y or z is

PL0s ] 0
0,P,,0,........ 0

NS — | 18
0 Q0 (18)
...................... 0
O P,

In Y-Z, sub-matrix P; represents non-zero solutions associated with i’ # i, while Qi represents non-
zero solutions corresponding to i. In turn, sub-matrix P;- consists of Ki- sub-matrices Ay, also having

a block-angular structure as

[ALO,n 0

0, A0 0
R e 0

(L A, |

with Aj composed of n;; rows and n;;+1 columns, for | = 1,.., K;» . Sub-matrix Qi has the same
structure as P;, except that Ax is replaced by Bx comprising of nik-1 rows and nix+1 columns. In
Ai(By), the first column represents yii(yi) and the remaining columns represent variables zij(zijx) in

increasing order of j.

In A, the first column has all entries being one, i.e. representing yi = 1. The remaining ni columns

in A are associated with the z variables and can be partitioned as

14
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K| _ I1CI s
0 D,

where|,is an identity matrix of order ni-I-1, Cy is of dimension (ni-I-1) x (I+1), D is of dimension

(I+1) x (I+1), and 0 a matrix of zeroes of an appropriate dimension. Each row in C; = (cjj) is
identical consisting of ‘0’ in the first two entries and ‘1’ in the rest, i.e, ¢i = (0, 0, 1,..., 1). In Dy,
all diagonal entries have ‘0’ and ‘1 in all other locations, i.e., Dy = (dij) withdij =0 ifi=j, 1

otherwise. In By, the first column is composed of all entries being one, i.e. yik = 1. The columns

associated with variables Zj are partitioned as

1, E0F ]|
0E, I, F,
0E, 0 F,
0E,0F,

The columns in [Ez,..,E4]" correspond to indices jeSi, while the columns in [Fa,..,F4]T correspond

to the last (k- ﬁk +1) indices in Nik. |2 is an identity matrix of order s’ = |S"i|. Its columns belong to
indices in S'i = {jeNi-Si}, where Ni = E(Si). I3 is an identity matrix of order (nik-ni-k+ fi -1) whose

columns are associated with indices j = ni+1,..., nik-k+ fik -1. In Ax, O represents matrices of zeroes
of appropriate dimension. Each row in E1 is of the form (0, 0, 1, ..., 1), while each row in E> and
E4 is of the form (0, 1,...,1). Esisa (fik +1) x (fik +1) matrix with diagonal entries being zero and

all other entries being one. Each row in F1 and F3 is identical with the first entry being zero and

the rest being one. In F the first two entries are zero and the rest are ones. Finally, F4 = (¢jj) is a

A

(k- Fi ) x (k- Fi +1) matrix with ¢ij = 0 if j = i+1, 1 otherwise.

It is clear from the structure of Y-Z that each solution listed has exactly one yi = 1 and the rest of
the y variables set to equal zero. Since every row in K has exactly | entries of one and yi = 1,
solutions in Ay satisfy (5°), (6) and (8), respectively. Due to the preprocessing step,

15
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ayj +V (N = j,1=1) <b; for 1<j<(ni-1-1) and for each 2 < | < Ki. These solutions correspond to rows
n, -1
in [l2 Ci] which satisfy the knapsack constraints (4). Due to d), Zaij <hb for 2 < | < Ki-1.
j=my—1-1
Therefore, the solutions that correspond to [0 Di] also satisfy (4). Finally, for solutions in Ay, yik =
0 and Zj = 0 for all jeNik, Therefore, (16) is satisfied as an equality. In Ak, since Ni = E(Si), the

indices in Nj correspond to columns in [I2 0 0 0]" and [Ex,.., E4]™. Thus all solutions in By satisfy
(14) as an equality. All solutions in By also satisfy (5%), (6) and (8). Condition b) describes the
solution in the first row of [l E1 0 F1] satisfying (4). Therefore, the rest of the solutions listed in
[I2 E1 O F1] also satisfy (4). The solutions listed in [0 E2 I3 F] satisfy (4) since S; represents a
strong minimal cover. For the same reason, the solutions in rows of [0 E3 0 F3] also satisfy (4).
Condition c¢) implies that the solution listed in the last row of [0 E4 O F4] satisfies (4). Hence, the
remaining solutions in [0 E4 0 F4] satisfy (4) as well. Thus, each solution in Y-Z belongs to ©,

which are p-1 in number.

Given the block diagonal structure of Y-Z, in order to establish the linear independence of solutions
in Y-Z, it is suffices to show that each A consists of a non-singular (nii x ni;) sub-matrix and By
consists of a non-singular (nik-1) x (nik-1) sub-matrix. The structure of K, is such that it is non-
singular if Dy is non-singular. Dy is non-singular since D! = () exists and is defined as: ;= 1/1
— 1, if i =, 1/l otherwise. Considering the sub-matrix Ak, suppose that by removing first column
of [F1,..,F4]" the remaining columns are labeled [F1,..,F’s]". Further, by switching the columns
sets [E1,.., E4]" and [0 I3 0 0], the resulting sub-matrix obtained is A’x, which is non-singular if
the (k+2)x(k+2) sub-matrix r:{E3 IES} is non-singular. The inverse of I" exists and is defined
4 4

as

1—~—1: Xl Hl
X2 _|4
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where X1, X2, H1 and —l4 are of the same dimension as Es, Es, F'’3 and F s, respectively. X1 = (&ij),
where a) for j = 1, g = (1-k)/ fy if i=1, (fy -k+1)/ [y otherwise, b) for j > 2, & = 1/ fy -1 if i=j, 1/

i, otherwise. Each row in X is of the form (1, 0,...,0), while each entry in Hy is 1/ . [

It is instructive to note that if a (nj, ri)-cover inequality (12) is a facet of H(s)=, then for the same

Ni, a (ni, k, fik )-cover inequality (16) with fik = r; is a facet of H(d)=. This occurs only if for some

K, Zaij > b, for all ﬁim c Niin (15). For instance, in Example 1, if aj =2 forall j=7,..., 14,

JjeRia

the (ni, ri)-cover inequality, Y. Xij <4with Ni= {1,...,6}, is a facet of H(s)=, while the (ni, k, ﬁk)-
jeN;

cover inequality Z z;5 < 4y, is a facet of H(d)=. Note also that the two inequalities are equivalent
jeN;

in the sense that for any solution x*eP(s) that satisfies the former inequality as an equality, there

isa(z', y") eP(d) that satisfies the latter as an equality, with x" and (z*, y*) satisfying (10). However,

when Zaij <b, in (15), the inequality in H(s)" that is equivalent to the (n;, k, fik)-coverinequality

i€Ric

IS non-canonical. For instance, consider the inequality sz <3y, in Example 1, where in
jeN;

Zaij <b,, and is a facet of H(d)* when a;; = 2 for all j = 7,...,14. The equivalent inequality in

jeRic1
6 14

H(s)=is D 3%; + Y. %; <13, which is a facet of H(s)*, but non-canonical. Thus, for several facet
j=L j=7

defining (ni, k, ﬁk)-cover inequalities, the equivalent inequalities in H(s)=are knapsack in nature.

Herein lies the value of (nj, k, fik)-cover inequalities in that they are easier to identify than their

knapsack counterparts in H(s)".

3.3  Cardinality Constrained (1, pk)-configuration Inequalities in (Pd)

The (1, k)-configuration inequality is a well-known inequality used to describe the polytope of 0-

1 knapsack constraints and introduced by Padberg (1980). Since in our exposition, k denotes
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cardinality, the same inequality is referred to as (1, p)-configuration inequality. To introduce this

inequality associated with agent i, consider NicN, with |Ni| = ni and geN\N;, such that

(i) 2 & <b, (19)
jeN;
(i)  forall sets PcNi, with [P|=pand2<p<m, 2, &; >b;, but (20)
jePuq
(iii)  for all sets P(p-1)cN;, with |P(p-1)| = p-1, 2. <b. (21)
jeP(p-Dvq

If Rik(ri) < Ni denotes a set of cardinality ri satisfying p <ri < nj, then the (1, p)-configuration
inequality in (Ps) is,

(F=pP+DXq+ 2 % <K. (22)
jeRu(r)

It follows that for each k > r;, the equivalent (1, p)-configuration inequality

(r— p+1)ziqk + Zzijk <1 Y (23)

iRy (1)
is valid for H(d). We now present a generalization of the (1, p)-configuration inequality that is
stronger than (23). Suppose that for some agent-cardinality combination i-k, Nik denotes the set of

jobs remaining after the preprocessing step and that Ni < Nik with k> n;j and qeNi\Ni. Then,

i) D a; +V (N, =N, k—n)<h, (24)

jeN;

i) forevery BNy with |B|= B, Sa, +V (N, -B —q.k—p, -1)>b, (25)

jerkuq
iii)  butforall P(p,—1)cNi |P.(p, -1)|= B, -1,

Zaij +V*(Nik_|3k(f)k -1)-qg,k=p,) <b. (26)

ieP (P-Dua
For every Rik(ri) — Nj of cardinality p, <ri <nj, with N; satisfying (24), (25) and (26), the following

(1, p,)-configuration inequality is valid for H(d)

(= Py +1)Ziqk + Zzijk <Y (27)

jeRik (1)
The validity of (27) follows from, i) all (z, y)eH(d) with yix = 0 satisfying (27) due to (8), ii) all (z,
y)eH(d) with yik = 1 and zixw = O satisfying (27), since it follows from (24) that
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Zaij +V (N, —R,(r),k—r) <b,, and iii) all (z, y)eH(d) with yi = 1, zig = 1 satisfying (27)

jeRy (1)

due to (26).

By definition, V (N, — |3k —q,k—p, 1> 0. Therefore, p,<p and (27) dominates (23).
Furthermore, several distinct (1, p, )-configuration inequalities can be constructed from the same
set Ri(ri)uq, one for each k > ri with Py, < Py, for ke>ki. To obtain the integer p, , set p, =p. If
V(N =Ry (r)—a,k=p ) +V (R, (r;), P, =1 + aiq > by, then set p, = P, -1, and repeat until
V(N =Ry (1) =0,k = p,) +V (R (r,), B, —1) + aiq <b.

Proposition 4 below highlights the fact that the (1, p, )-configuration inequalities provide a tighter

description of H(d) than the (1, p)-configuration inequalities for H(s), the proof of which can be

constructed along the same lines as that for Proposition 2.

Proposition 4. Let LP1p(s) = {xeLP(s)| x satisfies all (1, p)-configuration inequalities (20)} and
LP ,(d) = {(z y)eLP(d)| (z, y) satisfies all (1, p,)-configuration inequalities (27)}. Further,

LP;5(s) ={x € R™ | x satisfies (10) for each (z, y) LP ;,(d) }. Then, LP 1,(s) = LP1y(s).
Let L,(k—p, +D)={j| j=ny —K+ Py,....n, }, i.e, the last (k — P, +1) indices in Nik. Given that
with L, (k—p, +1) N, =¢, we denote Tik = L, (k— p, +1) U N, Uqg. We now define the polytope

H(d):, = Conv{(z, y)eR"| (z, y) satisfies (4), (5%, (6)-(9), zi=0, V je{Ni\Ti}}, (28)

m K

where p= ZZ N, . Thus, Dim{ H (d), } = pik = p-(nik-tik), where tix = [Ti|.

i'=1 k=1

Theorem 5. The (1, p, )-configuration inequality (27) is a facet of H(d);, if,

A A n.—1
a) for some Pk(_l)cNiwith|Pk(_1)|= Pe-l Dlay+ Dla, <b,and

ieR -y j=m—k+p—1
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Ng;. 1
b) Zai,j <b, foralli’eM.
j:nKI‘—Ki‘—l

Proof: The proof follows reasoning very similar to that in Theorem 3. Thus, (pi«-1) linearly

independent, non-zero solutions (z,y)e®ik = {H(d)f_k|(ri—|©k+1)ziqk+ Zzijk =ry, } are
JjeRy (1)

identified, which are denoted in matrix form as Y-Z(1, p, ). Matrix Y-Z(1, p, ) is identical to Y-Z
in (18), except that Qi is replaced by Q'i. Matrix Q' is identical to Qi except that B’k replaces By,
with the first column associated with yix and the remaining columns associated with zjjx for each
jeTi. Thus, it suffices to show that B’k contains a (ti-1) x (ti-1) sub-matrix A, which is non-
singular. All the columns of A’k fall under z variables with indices belonging to Tik, which are

arranged from left to right in the order, {L,(k—p, +1),q, Rik(ri), Ni\Ri(ri)}. The ti-1 solutions

(z,y) €Oix that make up the rows of Bk are listed in the same order below. They are:

i) (z y)! : Foreach | = 1,.k-p., vk =1, 2 =0, jine L (k—p,+1), zik = 1 for each

.k
je{L (k- p, +1) - j,.,Twhere ji is the I index in L, (k— P, +1), zigk = 1, zijk = 1 for each je
L, (p, -1 where L, (p, —1) are the last (p, —1) indices in Rik(ri). The rest of the z variables are

set to zero. There are (k- p, ) such solutions. They are feasible due to condition a).

ii) (z, Y)% yik = 1, zij = 1 for the last (k-ri) indices in L, (k- p, +1), zik = 1 for each jeRi(ri). The

rest of the z variables are set to zero. There is one such solution, which is feasible due to (24).
i) (z, y)*: yik = 1, zijk = 1 for the last (k- p, ) indices in L, (k— P, +1) and zigk = 1. For each 1 <1<

ri, if 1+ p, <ri, then for jueRi(ri), Zj =1 foreachl<u<I+ P, Z; =0 otherwise. Else if I+ p,

ij)

>ri, then z;, =1 foreachI<u<riand 1 <u<I+p, -ri, z;, =0 otherwise. The z values for je

iy

Rik(ri) is illustrated in Figure 1 below. There are r; such solutions, all of whom satisfy (26).
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1100
0110
0011
1001

Figure 1. lllustration of z values of (z, y)*' for jeRix(ri) when ri = 4 and b, =2.

iv) (z, y)*: yik = 1, zij = 1 for the last (k-ri-1) indices in L, (k- p, +1), zij = 1 for each jeRik(ri).
For each 1 <1 <ni-ri, Zjj, =1 for jie{Ni\Ri(ri)}. The rest of the z variables are set to zero. There

are ni-ri such solutions, all of whom are feasible as they satisfy (24).

The matrix A k is obtained by removing the columns under yik and the first index in L;(k — p, +1).
Consequently, Ak has the following structure:

EE1FRO

E, 010

E, 1F 0
E,OF,I,

In A’k column [1 0 1 0]" is associated with variable Ziy , while columns [0 0 0 14]" correspond to

z variables in Ni\Rik(ri). Square matrix E; is of size (k- p, ), consisting of zeros along the diagonal

and ones elsewhere, while E; is a single row consisting of ones only in the last k-rj positions. Each
row in E4 consists of ones only in the last (k-ri-1) positions, while Ez consists only of ones. Matrix

F1 consists of ones only in the last (p, —1) positions in each row. The structure of Fs is as

illustrated in Figure 1, and is non-singular. Matrix F4 contains only ones in all positions, while 14

is an identity matrix.

Using elementary row operations, a square matrix A, is obtained from A’ as follows. Observe

from Figure 1 that the (ri- p, +2)™" row of Fs consists of ones only is positions corresponding to
L, (P, —1). The (ri- p, +2)" row of [E3 1 F3 0] is subtracted from each row in [E1 1 F1 0] to obtain

[/'1 00 0], where I’1 is an identity. In A”, [/’1 0 0 0] replaces [E1 1 F1 0]. Next, rows in [Es 1 F3
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0] are added and the result divided by ( p, -1), which is then subtracted from [E2 O F. 0] to obtain,
[E’2 -ril( P, -1) 0 0]. This row replaces [E2 0 F2 0] in A”. Since A is a lower triangular matrix,
consisting of sub-matrices 7’1, -ri/( p, -1), Fs and l4, along the diagonal, all of whom are non-

singular, Ak is also non-singular. 0

It is evident from (28) that if Ni\Tik = ¢, and if the conditions specified in Theorem 5 are satisfied,
then (1, p, )-configuration inequality is a facet of H(d)=. If Ni\Ti # ¢, then the variables belonging
to this set can be brought into the (1, p, )-configuration inequality using a sequential lifting

procedure, which is well described in Hammer et al. (1976). Specifically, in a sequential lifting
procedure, the variables in Ni\Tik are brought in one by one to eventually obtain an inequality of

the form

=P +Dzg + 2 Zyot+ X mpZip SV (29)

jeR (r;) JeN Ty
Let V| < Nik\Tik denote the index set of | variables brought in after | iterations. The lifting procedure
determines 7;  (coefficient of the next variable in sequence) by solving the problem,

T,k = Min {ry, —(r — P +1)z;g + Zzijk + Z”ijk Zy | (4), (59, (6)-(9), Zj,.« =1, Zijk = 0 for

JjeRy (1) iV

all je{ Nik-Ti-Vi-jis1}}.

Suppose that g = 1, i.e. the largest item in terms of ajj values, and 2 Ri(ri) (the 2" largest item).

Then, regardless of the sequence, 7jx = 0 or 1, for each jeNik\Tik. Note that if either

) V(N —{Ry () WV, uqu j b k=B D) +V (R () WV, P —1) + aig < bi-&; , or (30)

ijl+1'

i) >a; + V(N —{Ri ()WY, U jiah k-1 -1) <b-a

jeRy (1)

o (31)
then 7 « =0, else 7y = 1. In the latter case, the result is obtained by removing item 2 from
Rik(ri). Thus, after lifting, (29) not only maintains the structure of the (1, p, )-configuration
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inequality, it is also a facet of H(d)=. This is of computational significance, as (1, p, )-configuration
inequalities that are facets of H(d)" can be identified by first setting q = 1 and ensuring that
2eRik(ri). Then the resulting (1, p, )-configuration inequality can be lifted by applying conditions

(30) and (31) (which is computationally cheap) to obtain a facet of H(d)=.
The following example illustrates such an instance.

Example 2. Consider agent i with bi = 40 and Nik = {1,.., 15}. The requirements ajj in sorted order
are {18, 10, 10, 10,9, 9, 5,5, 5, 3, 3, 3, 3, 3, 3}. For N; = {2,...,6} and q = 1, one possible (1, p)-
configuration inequality is: 2Xi1+xiz+Xia+Xis+xis < 4. After sequentially lifting in sorted order, it
becomes 2xii+Xi2+xis+Xistxis+Xistxiz < 4, which is a facet of H(s). The equivalent (1, p, )-
configuration inequality with k = 4 is, 2ziik+Ziok+Zisk+Ziak+Zisk+Zisk+Zirk < 4Yik, Which is a facet of
H(d)=. However, several more (1, p, )-configuration inequalities can be derived for other values of
k. The inequality 2ziik+ziok+Zisk+Ziak+Zisk+Ziek < 3Yik is a facet of H(d)=, both for k=5 and k=6. For
k=7, 2Zi1k+Ziok+Ziak+Ziak+Zisk < 2Yik and 2Zitk+Ziok+Zisk+Zisk+Ziek < 2Yik are two distinct facets of H(d)".
Consider the partial LP solution (z, Y): Yie = Zi2s = Zies = Zi12,6 = Zi13,6 =Zit4,6 = 0.5, Zir6 = 0.3, Zi156 =
0.2, Yi7 = Zi11,7 = Zitz,7 = Zi13,7 = Zi1a7 = Zits;7 = 0.5, Zi1,7 = Zi2,7 = Zie,7 = Zi1o,7 = 0.25. While this solution
satisfies (4), (5%), (6) and (8), the (1, p, )-configuration inequality listed for k=6 above is violated.
Also, the LP solution x, obtained by aggregating (z, y) as in (10), satisfies the (1, p)-configuration

inequality listed above as well. That is because the inequality equivalent to the (1, p,)-

configuration inequality for k=6 in H(s)~ is not a (1, p)-configuration inequality, but a more

6 15
complicated knapsack inequality, which is 3xi1+22xij +inj <9. Clearly, in terms of a
i=2 i=7

separation algorithm, identifying a useful (1, p, )-configuration inequality would be easier than the

knapsack inequality listed above. Herein lies the value of the (1, p, )-configuration inequality.

4.0 The Bar-and-Handle (1, f)k) Inequality

We now introduce a new class of inequalities that involve more than one agent. These inequalities
are defined over a ‘principal’ agent, along with one or more ‘auxiliary’ agents. Specifically,
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existing (1, p, )-configuration inequalities on the principal agent and cover inequalities on the

auxiliary agents are used to derive the inequalities. The jobs associated with the principal agent
and those associated the auxiliary agents together have a ‘bar-and-handle’ graph representation,

hence the name.

Consider a principal agent i, with a cardinality of k. There exists a job q and a set Nip cN\q,
over which several (1, p, )-configuration inequalities of type (27) exists, one for each Ripk(rip)g

N.

- In addition, there is a non-empty set H < N-{quUN; } of jobs to which the (1, p,)-
configuration inequality does not extend. Specifically, for each R, , (p, —D<R; , (r; ),

3+ ;+V (N=-R(p -)-H-gk-p —h)<b, , (32)

J'Eﬁk(ﬁk_l)ucl jeH

with | Ripk(pk “DI= p-1.

Handle

OO

Figure 2: Illustration of Bar-and-Handle Inequalities
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There also exists a set W < {M \ ip} of agents, called auxiliary agents, whose number |W| < h. For

each agent ieW, and with each cardinality 1<ki<Kj, there either is a (ni(ki), ki, ﬁki )-cover inequality

A

(16) defined over a set Ni(ki) = N-{quH} with F;, <ki-1, or that ni(ki)= ﬁki = ki-1. However, if
the (ni(ki), ki, ﬁki )-cover exists, it does not extend to either g or any jeH. That is,

VA (NiCk), fi, ) + V(N Nicki)- ], ki- i -1) +@; <D, (33)
forany jeH or j=q.On the other hand, if f;y <ki-2, then

V(NiCk), fi, ) + VON- Niki)- -0, ki- Fiy, -2) +2; +a; > Dy (34)

(173 |
holds for every J, e H, J, e{Huaq} and ], # J,.
The set of jobs H and g are shared by both the principal agent and the auxiliary agents. Figure 2
shows the graph of jobs associated with the principal agent and the auxiliary agents. In this figure,
W = {iy, iz}, H={ls, I2}. The set N, (k;) = {91, g2, gs} and N, (k,) = {p1, p2}. It is evident from
the figure that the jobs, {qu Ripk (I‘ip)uH} represent the ‘bar’, while the jobs {qu N, (k;) UH}
represent the ‘handle’ associated with each auxiliary agent i. Thus, the bar and the handles are

connected at g and H. Proposition 6 describes the Bar-and-Handle (1, p, ) inequality for (Pd).

Proposition 6 Let there exist:
i) A principal agent ip, a set Nip c N and a job ge{N —Nip}that satisfy conditions (24), (25)
and (26), and therefore for each Ripk(rip)g Nip ,a (1, p, )-configuration inequality (27) can be

constructed;

i) A non-empty set HEN-{qu Nip } such that (32) is satisfied with 1 <h < (k- p, ) and,;

iii) if rip <k , then > & ta; +V(N=R  (r, ),k—r, —1)>b, foreach | eH;
jerpeti) TP P ’ ’

iv) A set W=M\ip of agents, with |W| = w < h, so that for each ieW and each 1 <k; <K, there

exists either a (ni(ki), ki, fi )-cover inequality (16) defined over a set Ni(ki) = N-{quUH} with

ﬁki < ki-1 which satisfies (33) and (34), or that ni(k;) = ﬁki = ki-1.
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Then the inequality

Ki
(rip - Py +1)Ziqu + Zzipjk + Zzipjk +Z Z Zzijki

jeRik (6,) jeH ieW je{quN; (k) )uH} k=1
p p . (35)
<E Yo+ 20D Fi Y N
ieW k=1

is valid for H(d).
Proof: To show that (35) is valid, consider a feasible solution (z’, y")eP(d). It suffices to show

that (z’, y’) violates (35) only if one or more conditions in i),.., iv) are not satisfied.
Define H1 = {jeH| Z j =1} and Ho = {jeH| Z'y, =1 for some ieW, 1<ki<Ki}, with hy = |H| and

h2 = |H|. Due to (5), hi+h2 < h. It follows that (z’, y’) can violate (35) only if either

(6 =P +DZ gt D20 p+ 220w > Yt (36)
iR, eH
or
K; K;
Z z Zzlijki > eriki Y, +hy (37)
W je{quUN; (k)UHY k=2 ieW k-1

Since Zz'ipjk =h,, (36) implies that either (24) or (26) of condition i), or condition ii) is not

jeH
K; .
satisfied. Let Wz = {ieW| >y, =1}. One way for (37) to occur is if the (ni(ki), ki, fy, )-cover
k=1
inequality is violated for at least one ieW: or that ni(ki)> ki-1. Another way is for |W| = h, with
each jeH. assigned to a different agent ieW>, as well as job q assigned to some agent ieWo>. In

either case, condition iv) is violated. A third possibility is when |W>| > hz, which occurs when all

jobs in Ripk(rip) are assigned to ip, in addition to h1>1 jobs in H. This allows job q to be assigned

to an agent ieW>. However, this would violate iii). 0

Example 3 Consider the instance, W = {1, 2}, q=1, H = {7, 8}, Rip4(rip) ={2, 3,4}, N, (k)=
{5, 6,9}, N, (k;) = {6, 11}, k1 = 3, ko = 2. The requirements on i, are [15, 12, 12, 11, 11,9, 7, 7,

6, 5, 5], bip =41. The requirements, a,; =a,, =12, a,,=8, a,, =3, a,; =a,4 =6, b1 =30, az
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=5 a6=9 a1 =7, a7 = azs =5, b, = 15. The Bar-and-Handle (1, p, ) inequality obtained is
2Zip1,4 + ZipZ,4 + Zi,33,4 + Zi 4,4 + Zi 7,4 + Zi 8,4 + Z113 + Zl,5,3 + 21,6,3 + Z1,7,3 + Z1,8,3 + Z1,9,3 + Z2,1,2 + Z2,6,2
+ Z2,7,2 + Z2,8,2 + Z2 11,2 — 3yl 4 + 2y13 + y22 + 2

Consider the LP solution, Yi,a=1.0, Zi 14 =2 54 =2 34 = =05, 7 ,4,=10, Z; 1,=1.0,y13

=10, Z153=24163= 1.0, 273 = 2153= 0.5, y2o = 1.0, Z511,= 0.5, 231, =Z;8,= 0.5. While this
solution satisfies (4), (5) (6), (7) and (8), the Bar-and-Handle (1, p, ) inequality is violated. Note
that the (1, p, )-configuration inequality, 22ip1,4+zip‘214+ )40 _3yI 4, as well as the (ni(ki), ki, . i,

)-cover inequalities, Z,5,+2y65+245<2Yy; and Z,q,+2,10, <Y,, are all satisfied exactly.
What this suggests is that when the (1, p, )-configuration inequality is added, its violation is
removed by increasing the z values of variables in H for agent ip. Similarly, the violation of (ni(ki),
Ki, ﬁki )-cover inequalities for agents ieW is removed by increasing the z values of variables in H
and g. However, the resulting LP solution violates the Bar-and-Handle (1, p, ), and herein lies its

value.

The Bar-and-Handle (1, p, ) inequality is akin to the multi-agent (1, p) Configuration inequality

presented by Gottlieb and Rao (1990a, 1990b). Apart from the fact that the inequality presented in
Gottlieb and Rao (1990a, 1990b) is defined over X, the principal difference is that the set of jobs
shared by the principal agent and the auxiliary agents in the one presented in Gottlieb and Rao

(19904, 1990b) are {qu Ripk(rip)}, while in this paper the set of shared jobs are {quUH}. Note as
well, that the Bar-and-Handle (1, p, ) inequality includes the special case in which p, = r - This

results in the ‘bar’ becoming a cover.

Before characterizing the strength of the Bar-and-Handle (1, p, ) inequalities, we first present a

general result on facets of a polytope generated by agents, MscM and jobs NscN. Consider a sub-

problem of (Pd) defined over a restricted set (z', y"), with z" = {z; Vie M, je N, 1<k <K},

and y" = {y, Vie M, 1<k <K,}. The feasible set Sy(d)= = {(z', y)B* | (4), (5%, (6), (7), (8) and
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Ki
(9)}, where x = 2 > >k, and the corresponding convex hull of Si(d)* is
ieMg jeNg k=1

HS, (d)* =Conv{(z, y) € S,(d)"}.

Proposition 7 For the feasible set S1(d)= defined by agents MscM and jobs NscN, any nontrivial
facet of H1(d)" is an inequality of the form

K; K;
2 2 2 T Zik S_% glﬂ-ikyik + 7y, (38)

ieMg jeNg k=1

with 7 20, 7, >0 and =, >0 for all ieMs, jeNs and 1<k<Ki.

Proof: Since (z, y) = (0,0)eS1(d)=, it follows that for (38) to be valid, >0. Suppose that 7jk<0 for
some ieMs, jeNs and k. Clearly then (38) is obtained as a positive combination of inequalities that
include —zik < 0, which will later be shown as a trivial facet. If so, then (38) cannot be a facet.
Hence, 7jk=0, for all ieMs, jeNs and 0<k<K;. Suppose that zk < 0, for some ieMs and k. Now
consider a feasible solution (z", y™)eS1(d)= in which yik = 1 and zij = 1 for each jeNx where NkcN
and |Nk| = k. Clearly, there must exist another solution (z?, y")eSi1(d)< which is identical to (z'%,
y™), except that yik = 0 and zij = 0 for each jeNk. If (22, y") satisfies (38) exactly, then since 7k <
0 and mjk> 0, (%, y™) must violate (38), implying that (38) is not valid. If however, (z'%, y™?)
satisfies (38) exactly, then yi = 1 for all (z, y)eHi(d)=. Clearly, yi < 1 is not a facet, as it is
dominated by (7). Hence, 7k > 0 for all ieMs and 0<k<K;. O

We now show conditions under which the Bar-and-Handle (1, p, ) inequalities are facets of H(d)".
Recall that Lip (k—p, +1) consists of the last (k- p, +1) indices in Nip in decreasing order of

&, ; and that Tip ={qu Nip U Lip (k—=p, +D}. Similarly, L;(k; —f, +1) denotes the last ki- ﬁki +1

pl
indices in N, for each ieW and 1 < ki < K. The complete variable set (z¢, y°) comprises of, z° =
{zy VieM,je N, .k =1...K}andy = {y, Vie M k =1,...K;}, while the restricted variable

set (z, y") comprises of y" = {yipk,yikiVi eW,k, =1...,.K.} and z" = {ziijVje[I'ipuH],
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2, Vi eW, j e [qUNi(k)UHU L, (k; —f, +1)1,ki=1,....K}. Let So(d)s = {(z, y)eR?| (4), (5°), (6),

m N

(M), 8), (9), Vi, =0V ye{y-y}, zy Vze{z®-z}}, where p=zzlk:(ki +1). Its convex hull,

i=1 j=1

H2(d)= = Conv(S2(d)~). Since Hz(d)= is full dimensional, Dim{Hz(d)*} =x = N +h+ (k= p, +1)+1+

Zi(ni(ki)_'_ki - fiki +1).

ieW k=1
Proposition 8 In addition to i) to iv) of Proposition 6, if the conditions:
1) for any R (r)cN, ., if &;= Max{aipj | € Ripk(l’ip)}, then for any jeH,

Ya+a,; +V (N-N, k-r)<D

jERipk (rip )

iy

2) w=h;
3) for each ieW, 1<ki<K; and ﬁiki cNi(k),a) >a;+a, +V (N, —N;(k)—aq.k—F —1)<h,
ieRig

b) > a;+a; +V (N, —N;(k)—j.k—F -1 <b for each j’eH, c) for some jie

jeRiy
Ry, = N;(k,), D a; +ay +a, +V (N, —N;(k)— j—aq,k —F, —2)<b, foreach;’eH; and
jEIQih_jl

4) For each pair iz, i1, i2€W, there exists a Rk, cN; (k) and R;, <N; (k;)such that

Rilkil MR =9;

i2
are satisfied, then (35) is a facet of Ha(d)".

Proof: Consider solutions (Z', y)eS2(d)%, I=1,...,x that satisfy (35) exactly. Let ®"2z" < ",y + o
be a facet inequality of Hz(d)= for which (z!, y)eS2(d)%, I=1,...,x are satisfied exactly. If so, then
nZ" < 'y + w'o must be a linear multiple of (35), implying that (35) is a facet of Hz(d)<. The
following are a set of partial solutions, which will be used to construct (z, y) € S2(d)* that also satisfy

(35) exactly. Variables not mentioned in the listing below are set to zero.
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1) (yipizip)l = {Vix =1, Zi ok =1, z j =1vj eR , (P, 1) where Ripk(r)k - c Ripk(rip) with
IR (P —DIEpP -1 7z =1vjely (k=p) where L (k=p)cly (k=P +D) with

| Li,, (k—p,) |=k— P}, which satisfies the (1, p, )-configuration inequality exactly.

2) (¥,,2;,)" = {same as (y; ,z )', except that in addition, 2, =IWjeH-j and Z j, =0,

while 7 , =1vjel; (k—f, —h+1)}, which is feasible due to (32).

3) (v.z) = {Vix=1 z,=vjeR,(r) and 7, =1Vjel; (k-5 ) for some

L, (k- rip) = (k—p, +1 }, which also satisfies the (1, p, )-configuration inequality exactly.

4) (v;,,2,)" ={Yix=1for jeR (5 ) suchthat & ; =Max{a; ;| jeR; ,(r )}andanyj.cH,
Z =1lVje Ripk(rip)— k Z; =1 and 2« =vjely (kK-r, ) for  some

L, (k—rip) <l (k—p, +1) }, which is feasible due to condition 1).

5) (y, .2

z =WVjel; (k—r —1) forsome L (k—r Dl (k—p +1).

)° = {same as (yip,zip)3, except that z, , =1 for some je N; \R,(r) and

Ip

6) (yiki’ziki)l = {yiki:11 ZijkizlvjEIQiki(fiki) for some F}iki(fiki)CNi(ki) and  zy, =1

VjelL(ki—Ff, ), forsome L;(k; -, ) = Li(k; —f, +1) where ieM and 1<ki<Ki}, which satisfies

the (ni(ki), ki, fi, )-cover inequality exactly.

7) (yiki,ziki)zz {same as(yiki,ziki)l, except that z;,, =1 for some j(i)eH and z; =1

A

vjeLi(k —fy, —1), forsome L;(k; -, —1) = Li(k —F, +1)}, satisfying condition 3b.

8) (i Ziki)3= {same as (Y; - Zi, )", except that z4 =land z;, =1Vjel(k —f, 1), forsome

A

L (k; —fi, —1) = Li(k; -, +1)}, satisfying condition 3a.
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9) (yiki’ziki)4: {same as (yiki,Ziki)Z, except that for some J"e IQiki (fi ) and 1<ki<Ki, z;., =0, but

ij

Zi« =1}, satisfying condition 3c.

We now introduce (', y')eS2(d)* that satisfy (35) exactly and progressively solve the equations
nZ' = my' + mo, | = 1,..,%, to obtain (n*;, 7*y, 7'0).

) Consider the solution (yiki,Ziki)2 for each ieW such that j(i1) # j(i2) if i1 # i2. This along
with (yip,zip)1 satisfies (35) exactly. Keeping (yiki,ziki)2 fixed, I’ip affinely independent solutions
are obtained by varying (yip , zip)l. This is achieved by appropriately choosing that many different
selections of Ripk(f)k —-1) from Ripk(rip). Further, for a fixed Ripk(f)k ~-1), k—p, affinely
independent solutions are obtained by selecting that many sets of L, (k—p,) from L (k—p, +1).
Next, the solution (yiki,ziki)2 for each ieW along with (yip,zip)3, also satisfies (35) exactly.
Similarly, the solution consisting of (yiki , Ziki)2 for each ieW along with (yip , Zip)S also satisfy
(35) exactly. Here, (nip —rip) affinely independent solutions are generated, by fixing all except
choosing a different j e Nip \Ripk(rip) for each (yip , Zip)5 . Finally, (yiki,ziki)2 for each ieW, along
with ¥, =0and ;i i =0V j € Nalso satisfies (35) exactly. Let Sa(d)= = {(z, y) S2(d)* | (Vi Ziki)2
for each ieW} and Ha(d)= = Conv{Sa(d)=}. Given (Yj, Ziki)2 for each ieW, the inequality n";z" <

n'yy" + 1o reduces to

i ok Zijgk T Z”ipjkzipjk + Z”ipjkzipjk <7 Yik +Zﬂ-iki _Z( z Tij; + Z:”ijki + i) + oo

jERipk(rip) jELip(k*f)kﬂ) iew iew j€ﬁi(ki) jELi(ki*ﬂki +1)

which is a facet of Hz(d). We know that the (1, p, )-configuration inequality (27) defined over {q,

N Lip (k—p, +1} is also a facet of Ha(d)=, which the (nip+k— P, +2) solutions listed above

i
Ip
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satisfy exactly. It then follows that i ik =0 for j e{Nip —Ripk(rip), L (k=P +D} 7k =7«

for jeR , (r), g =(G =R +D7  and 7 =T 7, .

)  Consider (yip,zip)z, (yi'ki.’zi'ki.)zfor some i’eW and (yiki,ziki)l for all i eW \i'. Here,
Z i =0, while 7 5, =1. By keeping (yip’zip)z’ (yi'ki.’zi'ki.)z and (Vi Zy, ) for all
i eW —{i',1}ixed, and varying (yfkf i ' ifinfacta (n. (k.),k:,f.) -cover inequality exists, then
(n-(k;) +k. —.) affinely independent solutions are obtained that satisfy (35) exactly. The n.(k.)
solutions are obtained by fixing the selection of L. (k. —ﬁfki), but making n.(k.) independent
selections of R, (£, )from N;(k;). Similarly, by fixing R, (7, ). k; —f, independent selections
of L.(k. —ffki_) from L. (k. —ﬁikf +1) provide the remaining k; _fi"k; solutions. Finally, the
perturbation with y; =0, z; =0, Vje N;, also satisfies (35) exactly. Thus, after substituting
out (Y; , Zip)z, (yi.kil,Zi.ki,)2 and (Vi Zi ) forall i eW —{i',i} in w2z < w'yy" + n'o, the resulting
inequality has to be a linear multiple of the (n.(k.),k.,f.)-cover inequality. Thus, 2 =0,
VjeL (k —ffkf +1), iy = T jeN. (k) and Ty = ffkiﬂf . Since the choice of I eW is arbitrary
and the above holds for all 1<k, <K, 7y =0, for all jel,(k —f +1), my =7 for all
JeN;(k;) and 7, = ﬁkiﬂi , for each ieW. Suppose that for some i'eW , 1<k, < K., éi'ki.(ﬁ'ki.):
N, (k) and fiy =Ki-1in (35). If s0, then consider(yip,zip)s, (yi,ki,,zi.ki,)‘lfor some i’eW and
(yiki,ziki)2 for all ieW \i'. Note that in (yi.ki,,zi,ki,)“, Z,;, =0 for some ;e FAQi.ki‘ (fy,). By
keeping (yip,zip)3 and (yiki,Ziki)2 fixed for all i e{w —i'} and vary (yi.ki,,zi,ki.)4 by j”, we get
k.. —1 solutions, all of which satisfy (35) exactly. The choice of i’ being arbitrary, here as well,

Ty, =7 forall jeN;(k;) and 7y = ﬁkiﬁi,for each ieW.
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l1I)  Consider again(yip,zip)z, (yi.kil,zi.ki.)zfor some i’eW and (yiki,Ziki)1 forall i eW \i', with
Livik. =1, i.e., j(i’) = ji. If this solution is perturbed by setting Zivjk. =0 and Zi ik =1, then it
satisfies (35) exactly as well. Comparing both solutions we get, T ik = i Since the choice of

jrand i*is arbitrary, 7, =7, forall jieH and i’eW.

IV)  Now consider (yip,zip)3, (¥, .z, )*for some i eW , (Vi ,ziki)ZVi eW\I . Since w = h,
there isa job j’eH which is unassigned. This solution is perturbed by setting Zi = 0 and Zii =]
which also satisfies (35) exactly. By comparing the two solutions we get T = Wiy for j'eH.

Since the choice of j’eH and | eW is arbitrary, it follows that Tk = i, = iy foreachj’eH,

i ewand 1<k. <K.. Finally, from the perturbed solution we obtain 7, = h;zipk.

V)  Consider, (yip,zip)3, (¥, 2, )" forsome T eW , (¥, .z, )" Vi eW \i . By comparing this

0 Zik
solution to that in IV) we get 7, =7, =Tk for each j"e N.(k.) and j’eH. Since the choice
of I €W is arbitrary, it follows that Ty, =7 =7 for each ieW and jeNi(ki).

This establishes n*,z" < w'yy"+n’o to be a scalar multiple of (35) and therefore (35) is a facet of
Ha(d)=. O
We now proceed to show conditions under which the Bar-and-Handle (1, p, ) inequality (35) is a

facet of H(d)=, the largest dimensioned polytope. We now define a knapsack polytope Hia(d)S =
Conv{ S (d)*}, where S.(d)* = {(z, y)eRP| (4), (59, (6), (7), (8), (9), Y, =0 and Zy =0 forall

i#1,jeNand 1 <ki <Ki}, where p=Zi(ki +1).
i1 j=1

Theorem 9 The Bar-and-Handle (1, p, ) inequality (35) is a facet of H(d), if in addition to

conditions 1), 2), 3) and 4) of Proposition 8, it also satisfies conditions:
1) the (1, p, )-configuration inequality (27) defined over {q, Ripk(rip)} is a facet of Hip(d)s;
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2) the (ni(ki), ki, fi. )-cover inequality (16) for each ieW and 1 < ki < Ki is a facet of H,(d)*;

3) for each 1eM —{W,i }, a) K;< (M, -h), b) V*(N._ —H -], K;—1)+a; <b for each

je{N, —H}andc) V' (N, —H-q,K;~1)+a; <b, foreach jeH ;

4) if K =k, then a) K <(n —h), b) V'(N, —H-]jK, -)+a  <b for each

je{Ny,, —H}Yandc) Vi(N,, —H-q,K, —1)+a <b foreach jeH.

Proof: Starting with (35), a sequential lifting procedure will lift coefficients of variables yixe{y*-
y'} and zijke{z°-z"}, the lifted coefficients being zk and 7, respectively. The resulting inequality
obtained will be a facet of H(d)~. It therefore suffices to show that the lifted coefficients of
variables in {y°-y"} and {z°-z"} are all zero.

Let Uy and U, denote the index set of all y and z variables in {y°-y"} and {z°-z'}, respectively, while
VycUy and V.cU; represent those that have already been lifted. If the coefficient of y, (I) for

le{Uy-Vy} is to be lifted next, then it can be determined by solving the problem

K .
Ty, D=Min{r y;  + 2 3 G Vi +h=(6 =B +DZ - X 73— X 7
ieWk; =1 jeRi (riy) jeH

ST R, - TR OO T 602,06 (@,67,6).0),6).6) (39)

ieW je{quN; (kj)UH Yk =1

Vi, =LY, (s)=0,vse{U, -V, —1},z,(s)=0,vse{U, -V, }}.

To determine 7, (1), for 1e{U;-V.}, the problem solved is the same as in (39), except that
Zy () =1and z;(s)=0, Vse{Uz-V-I}.

Consider first the coefficients of variables ¥, (I) in which le{Uy-Vy} and | ¢{W,i_}. For the first

variable selected, the solution to (39) is (Yin Zil)z for each ieW in which z;,, =1 for j(i)eH with

ji0)#j(i2) if i1#2, and £, =k —1=0 for each ieW. Observe that with this solution, due to
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conditions 3a) and 3b), it is possible to feasibly assign k. < K. jobs to I, from the set {N.. —H}.

Consequently, ; (1)=0. The coefficients of subsequent variables Y, (I) in which le{Uy-Vy} and
feE{W,ip} will also be zero, since 7 (S)=0for seVy, and therefore the same solution to (39)

holds good. Due to 3b), the same solution holds for variables z; (I) in which f e{W, ip}and | &

H . Therefore, the lifted coefficients of these variables are zero as well. For variables Zae (I) in

which i ¢{W, ip} but j € H , the optimal solution to (39) is (yi1,2i1)2 for each ie{W\i '} in which
Zian =1 for j(i)eH with j(i1)#(i2) if i1#i2 and (Yins Ziul)gfor i’ in which z., =1. Due to condition
3c), with this solution it is possible to assign k. < K. jobs to I, which includes J Therefore,

T () = 0for each le{U-V.} in which T ¢{W,i_} and je H.

Consider next the variables Yik, (1) inwhich le{U,-Vy} and kip =K. If kip = Kip , then the optimal
solution to (39) is also z;,,, =1 for each j(i)eH with j(i1)#(i2) if i1#i2, and £, =k; =1=0 for each
ieW. Here, due to 4a) and 4b), Kip jobs from {NipKip —H} can be feasibly assigned to i, .
Therefore, the same holds true forany k; <K; and T, (1) =0 forall k; k. The same solution
also applies for variables Zi, ik, (I for each je{NipKip — H} and therefore their lifted coefficients
will be zero due to 4b). For variables Zi,ik, () in which jeH, the optimal solution to (39) is
(Yi: )" for each ie{W-i } inwhich Zy =1 for j(i)e{H-j} with j(i0)#i(i2) if iiz and (Viq, Zi1)®
for i’ with z,,, =1. Due to 4c), one can assign kip < Kip jobs from the set {NipKip —{H\ j}} to iy,

which includes jeH. Therefore, 7, ; (1) =0 for each jeH, le{U,-V;}.

For variables zipjk(l) in which le{U;-V;} and je{Nipk —{q,Nip, Lip(k—f)k +1) ,H}}, since

R(B-DcR (r)c N, , it follows from 1), that V*(Ripk(rip),f)k—l)+aipq+aipj+
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V*(Lip (k=P +1),k—p, —D<b . Otherwise, either jeR (r), or that the (L, p,)-
configuration inequality defined over {q, Ripk(rip)} is a not facet of Hip (d)*. Given the above,
the optimal solution to (39) is (yiki  Zi )2 for each ieW in which z;,,, =1 for j(i) eH with j(i1)#(i2)
if i1#i2, and (yip,zip)l, with Z; () =1. This results in i i (D=0 for each le{U,-V;} and je
{Nipk —{q,Nip, Lip(k—rip +1) ,H}}. For variables z,(l), in which ieW, je{N, —N;(k)} and
le{U;-V.}, due to condition 2), V" (N;(k),f ) +a;+V (L (k —F, +1).k —F, —1)<h, for each
je{N, —N;(k)}. Otherwise, either jeNi(ki) or that the (ni(ki), ki, fi, )-cover inequality is not a

facet of H;(d)*. Thus, 7 (1) =0 for each le{U-V:} and je {N, —N;(k;) - Li(k; —f, +1)}. [

5.0 2-Agent Cardinality Matching Inequality

The 2-Agent Cardinality Matching Inequality presented in this section is derived from an un-
capacitated version of (Pd), i.e. one without the knapsack constraints (4). The intuition behind the
inequality is to account for how jobs are matched to agents. The left-hand-side of the inequality
describes the revealed potential assignment of jobs to agents in terms of the z variables. The right-

hand-side represents the total available assignment slots described in terms of y variables.
5.1 Construction of 2-Agent Cardinality Matching Inequality
Consider an agent pair W = {i1, i} and a set of jobs HcN with the following specifications:

1) Agents i1 and iz are identified with specific cardinalities of ki and k2 respectively, such
that either 1) k1 > (n+1)-Kip, ii) k2 > n-Kiy but iii) ki+k> < n, or that ky and ko is determined

by the support 0< Y;), <1, and 0< Yy, <1, but with ki+kz<n.

2) HqcN, with Hq = {jq1, jo2, Jo3, Jaa},

3) Kit+Ki2 > n, i.e, agents i1 and i2 alone can completely accommodate all jobs.
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To help explain the construction of the 2-Agent Cardinality Matching inequality, consider the
following equality, obtained by aggregating the cardinality constraints (6) over i and k:

> X %Zijki +2> > %Zijki = 2 kgi:lki Yik, "'izv“vélki Yik, (40)

ieM-W jeN k;=1 ieW jeN k=1 ieM-W k;=

First, a set of z variables are selectively removed from the left-hand-side of (40) as follows. They
are: i) z variables that assign job jq1 to agent-cardinality combinations (i1, ki1) for 1 < ki1 <ki-1, (i2,
ki2) for ki2 > ko+1 or to all the agent-cardinalities in M-W, ii) z variables that assign job jq2 to the
agent-cardinality combinations (iz, kiz) for 1 < kiz <k, (i1, ki1) for ki < kiz < Kis, or to all the agent-
cardinalities in M-W, iii) z variables that assign job jq3 to agent-cardinality combinations (i1, Ki1)
for 1 < ki1 <ki-1, (i2, ki2) for 1 < ki> < ko, or to all the agent-cardinality combinations in M-W, and
iv) z variables that assign job jqs to agent-cardinality combinations (i1, ki1) for ki < ki1 < Kiz-1, (i2,
ki) for ko+1 < ki» < Ki2-1, and to all agent-cardinality combinations (i, ki), where ieM-W and 1<ki<
k = n-ki-ko-1.

I, Kia I2, Kiz
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Figure 3. lllustration of hidden assignments in 2-Agent Cardinality Matching Inequality

We refer to these removed variables as ‘hidden’ assignments. The graph in Figure 3 illustrates

some of these hidden assignments.
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Next, the coefficients of variables Y and Yi,\,, decrease by 1, i.e. becomes kii-1 and kiz-1,

respectively. Finally, a constant of 1 is added to the right-hand-side. The 2-Agent Cardinality

Matching Inequality can be stated as:

k-1 K -1 k, Kip-1
2 Xy, t X 2 T, T X Ty, t X X iy, t X 2 Zig, t

jeN—{igrdgatkin=l " jeN—A{gaidgatkia=ke T jeN—{jgo} ' jeN—{lga igatkio=l 2 jeN—{Jq. jqs}kip=ko+1

k Kj Kiy Ki,
> Zyk,t 2 ( = 2Ty, + 2 2. Zijki) = kZ;l(kil _1)yi1ki1 +kzil(ki2 -1 Yik, T

ieN—{jq} ieM-W  je{N-Hq} k=1 jeN=jq1 g2~ Jgs} ki=k+1

by gki Vi, +1 (41)

ieM-W k;=1
Proposition 10 Consider, i) an agent pair W = {i1, i2} associated with specific cardinalities {ki,
k2} such that ki+kz < n, ii) ki > (n+1)-Kiz, k2 > n-Ki1 and k= n-ki-kz-1, and iii) HqcN consists of

nodes {jq1, jo2, Jg3: jga}- Then the 2-Agent Cardinality Matching Inequality (41) is valid for H(d).

Proof: The argument below shows that all feasible solutions to (Pd) satisfy (41). The feasible
solutions to (Pd) can be categorized into the following cases, each satisfying (41).

Case I: Consider feasible solutions in which no agent in W is used. Then, due to (8), (41) reduces

0y ¥ ¥z, < ¥ 3ky, +1, which is satisfied due to (6) and (8).

MW jeNH, KoL MW KoL
Case Il: Consider feasible solutions that use agent-cardinalities (i1, ki1) and (i, kiz), where ki1 > ki
and ki> < kz. Due to (5), all n jobs are assigned. Observe that due to (6), agents in M-W with
appropriate cardinalities are used so as to accommodate n-kiz-ki> jobs. Consequently, the right-
hand-side of (41) is (kii-1)+(ki2-1)+(n-ki1-ki2)+1 = n-1. Observe also that the assignment job jq2 is
hidden. Therefore, the left-hand-side of (41) is at most n-1, and the constraint is satisfied.
Case IlI: Consider feasible solutions that use agent-cardinalities (i1, kir) and (i2, ki2), with kiz < ki-
1 and ki> > ko+1. Here, as with Case Il, due to (5), the left-hand-side of (41) is at most n-1, since
the assignment of jq1 is hidden, while the right-hand-side is n-1.
Case IV: Consider feasible solutions that use agent-cardinalities (i1, ki1) and (i2, ki2), with kix < ki-
1 and ki < ko. Here as well, the right-hand-side of (41) is (kii-1)+(ki2-1)+(n-ki1-ki2)+1 = n-1.

However, since the assignment of job jq3 is hidden, the left-hand-side is at most (n-1).
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Case V: Consider feasible solutions using agent-cardinalities (i1, ki1) and (iz, ki2), with ki1 > k1 and
ki > ko+1. Note that in this situation, only agent-cardinalities (i, ki), where ieM-W, ki SIQ can be
used. Further, kiit+ki> < n. If so, then as before, the right-hand-side of (41) is (kii-1)+(Ki2-1)+(n-kiz-

ki)+1 = n-1. Since the assignment of jq4 is hidden from (iz, ki1), (i2, ki2) and all agents in M-W, the

left-hand-side is at most n-1.

Case VI: Consider feasible solutions where exactly one agent-cardinality belonging to either iy or
I> are used. The rest of the agent-cardinalities used belong to {M-W, K}. If agent-cardinality (ix,
ki) is used with ki1 < k1, then the assignment of jobs jq1 and jgz are hidden. If (i, ki1) is used with
kir > ki+1, then the assignment of jobs jq2 and jq4 are hidden. Similarly, if agent-cardinality (iz, ki2)
is used with ki2 < k»-1, then the assignment of jobs jq2 and jq3 are hidden, while if ki> > ko, then jobs
Jo2 and jg3 are hidden. In all the four cases above, the left-hand-side of (41) is at most n-2, while

the right-hand-side is n. O

Example 6: This example illustrates a feasible LP solution that violates (41). Let W = {iy, i}, N =
{1,2,3,4,5,6,7, 8} Hqg = {ja1, jg2, Jaz: Jaa} = {2, 3, 4, 5}, ki = k2 = 3. The partial LP solution is:
Yiz =VYi,s = yii24 =VYip =03, Yi.2 =1.0 (here iceM-W), Zi1g = Zin3 == Zjs3 = Zinp = L2 = 0.5,

ic2=1.0
yil,/3:0-5 Yi2,4:\0-5 y <
i1, 3 iz, 4 lc, 2
\0.5 5 \05 0o \LO
(®)
I, 2 ir, 3
\yi1,2=0.5 Vi3=0.5

Figure 4. lllustration of Example 6.
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Ziga=Ziaa =254 =Zij64 =Zina=7Ziss=263=05, Z;,,=24,=1. This LP solution

Iz

satisfies (5), (6), (7) and (8). The left-hand-side of (41) is 8, while the right-hand-side is 7.0. Hence,

(41) is violated. This example is illustrated in Figure 4 above.
5.2 Strength of 2-Agent Cardinality Matching Inequality
We now examine the strength of the 2-Agent Cardinality Matching Inequality. Let

HU (d)= = Conv{(z, y) € R” | (z,y) satisfies (57),(6) - (9)}, p= Z(n+1K;} (42)

Note that HU(d)= describes that polytope of an un-capacitated version of GAP, i.e. without
knapsack constraints (4). We now make an important, but reasonable assumption that K; < n-4 for
each ieM.
Proposition 11. Dim {HU(d)*} = > nK, .

ieM
Proof: We identify the following integer solutions (z,y) eHU(d)= which are linearly independent
noting that (0, 0) is also feasible. For each ieM, 1<k<Ki, yik = 1, zij = 1 for each jeNk, where NxcN
with |Nk| = k, and the rest of the integer (z,y) variables set to zero. Note that it is possible to make
n linearly independent selections of Nk from N as long as k < n. Since K; < n-3 for each ieM, the
number of such linearly independent solutions is > nK. . 0

ieM

Proposition 12. The inequalities, a) xix > 0 for all ieM, jeN, 1<k<K;, b) zjjk <yik for all ieM, jeN,
1 <k <K;, ) SOS constraints (5<), and d) constraint (7) for each ieM are trivial facets of HU(d)".

Proof: For a) and b), we identify > nK, -1 linearly independent integer solutions in HU(d)" that

ieM

satisfy the respective inequalities as an equality, noting that (0, 0) also satisfies them as an equality.

Consider first the inequalities, Xix > 0 for all ieM, jeN, k<K;. Here, for each i’ #1i, aswell as i’ =
I, but £’ # k, we identify solutions as described in the proof for Proposition 11. For the case where

i’#1,thereare Yy nK, such solutions. For the case where i’ =i and &k’ #k, there are (Ki-1)n such
i'{M—i}

solutions. Finally, for i’ =1iand £’ = k, we can make n-1 linearly independent selections of Nk from
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N-j since k < n-1, giving us n-1 additional integer solutions in HU(d)=. This results in a total of
> nK; -1 linearly independent integer solutions.

ieM

Consider next the inequalities zijx <yik for all ieM, jeN, 1 <k <K;. We first set yik = zix = 0. Then,
for each i’ #1, as well as i” = i, but £’ # k, we identify some of those solutions described in the

proof for Proposition 11. The total number of such solutions are 3" nK. + n(Ki-1). We now set yix
i'e{M—i}

=zik =1, and yix = 0, ;% = 0 for all i *#i, as well as for i =i but £ '#k. Let Nk.ac{N-j} with |Nk-1|
= k-1. Along with yik = zix = 1, we set z;;+ = 1 for each j’eNk.1. Clearly, there are n-1 independent

selections of Ni.1 possible from {N-j}. Thus, a total of 3 nK, -1 linearly independent integer

ieM

solutions are obtained.

Now consider the SOS constraint (5<) for some jeN. We identify ¥ nK, affinely independent

ieM
solutions in HU(d)" that satisfy it an equality, which does not include (0, 0). Consider first the

case, k = 1. Here,yin =1, zjp=1,and y,,,  =1and Zjy ., =1foreach;’e N, {N-j}, for

some 1<i<m-1, satisfies (5%) exactly. Since Ki+1 < n-3, it is possible to obtain n-1 linearly
independent selections of N, from {N-j}. In addition, the solution, yi1 = 1, zjj = 1 alone satisfies
(5%) exactly as well. This set of solutions can be recreated by varying i from 1 to m-1. For i = m,
letym =1, Zm1 = 1, Y1k, = 1 and 2,y =1foreach;’e N, —{N-j}. Here again, it is possible to
obtain n-1 linearly independent selections of N, from {N-j}. In addition, consider the solution
ymi1 = 1, Zmjr = 1 alone. Thus, from this class, a total of mn solutions are obtained. Now consider
cases where 2<k<K;. Here, let yik = 1, zijx =1, z;;% = 1 for each j’€Nk.1, where |Nk-1| = k-1, Nk-1c{N-
j}. There are n-1 linearly independent selections of Nk.1 from {N-j}, resulting in n-1 solutions. In
addition, for i <m-1, the solution yi«1,1 = 1, zZi+1,71 = 1 for j”e{N-Nk.1-j} is appended to yik = 1, zij
=1, z;% = 1 for each j’eNk.1, for some selection N.1. For i=m, the solution y11=1, z1;1 = 1 for

J €N ’nk1={N-Nk-1-j} is appended. Thus, by varying k from 1 to K;, for each ieM, a total of 3 nK,

ieM
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solutions are obtained. Ifall the > nK; solutions identified were placed in sorted order of indices

ieM

I, jand k, it is easy to see that it has a block-angular structure, and hence affinely independent.

Finally, consider constraint (7) for some i’eM. As with the SOS constraints, we identify 3 nK,

=y
affinely independent solutions in HU(d)" that satisfy it an equality. For agent i’, 1<k<Ki-, yix = 1,
Zijk = 1 for each jeNk, where NkcN with [Nk| = k, and the rest of the integer (z,y) variables set to
zero. Given that n linearly independent selections of Nx from N can be made, a total of nK;- affinely
independent solutions are obtained. Next, for each ieM-i” and 1 < ki <K;, we letyi1 =1, zi11 = 1,
Yi, =L zy, =1foreach jeN, ,where N, c{N-1} with [N, |=ki, and the rest of the integer (z,y)
variables set to zero. For each ki, one obtains n-1 affinely independent solutions. Therefore, add

the solution, yi1 = 1, zi21 = 1, yir1 = 1, zima = 1. Thus, we obtain a total of > nK, linearly
ie{M-i}

independent solutions. 0

Let the complete variable set (z°, y©) comprises of, z° = {z;, Vie M, je N, ,k =1,...,K;}and y° =

{yi Vie M k; =1,...,K;}. We now redefine the restricted variable set (z', y") B, as consisting of

all z and y variables that appear in constraint (41). Specifically, z" is obtained by removing from

z¢, all hidden z variables, while y" = y°.

Proposition 12 Let Sa(d)* = {(z, y)eR¥| (5), (6), (7), (8), (9), Zi, =0V ; e{ze-2'}}, with x of
appropriate dimension. The 2-Agent Cardinality Matching Inequality (41) is a non-trivial facet of
H,(d)" =Conv{(z,y) € S,(d)°}.

Proof: Let n"z" < n'yy" + mo be a non-trivial facet inequality of Ha(d)<. Using solutions (',
y) eS4(d)<, that satisfy (41) exactly, we show that n*;z" = ®"yy" + mo must be a linear multiple of
(41) as an equality, implying that (41) is a facet of Ha(d)*. The inequality, &";z" < ="yy" + mo in

expanded form is
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K -1

k-1 ky
2 X T T2 2 Tl T2 Ak ke T 22 T, Lk, T
jeN—{g1. Jgstkii=1 ieN—{jq2. Jqatkin=ky jeN—{g2} ieN—{iq2.Jqs}kiz=1

Ki,-1

K K;
2 Tl t X Ty, T2 X DT i, 2 2 Ty Zij, <

jeN—{Jgr: Jqat kiz=ko+1 jeN—{jg} ieM-W jeN-H, k=1 J-G{N*J-qrjququ}kiﬂ@l
Kig

Kip K;
2 i, ik, +kzl7[i2ki2 Vi, 2 27y Vi, + To- (43)

kip=1 2= ieM-W k=1

We now examine feasible solutions to S4(d)= that satisfy (41), as well as (43) exactly. All listings

of feasible solutions below mention only non-zero variables.

Consider a feasible solution (z, y): i) iz =VYi,. =1, 1i) Vi =1 for a permutation of each

ieMwcM-W and cardinalities ki chosen such that > k, = n— 4, iii) jobs jq2 and jq4 are assigned to

ieMy
(i1, 2), jqu and jgs are assigned to (iz, 2), and iv) the remaining jobs in N-Hq are assigned to agents
in Mw. Note that since the assignment of jq3 is hidden, (41) is satisfied exactly. This solution is

perturbed by choosing another job jeN-Hq that is currently assigned to agent-cardinality (i, k.),
where | € M,, and exchange its assignment with jq3. That is, j is assigned to (iz2, 2), while jg3 IS
assigned to (iA,kf). The perturbed solution satisfies (41) and therefore (43) exactly as well.
Therefore, 7 ;, = 7, for 1<k; <K;. Asimilar result, where 7, ;, =z for 1<k; <K; can be
obtained if in (z, y)?, joz Were assigned to (i1, ki1) in place of jgs. Since the choice of 1 € M,, and
k. is arbitrary, it follows that Ty, = 718, for all i eMw, je{N-Hq} and 1<k. <K.. Another

perturbation of (z, y)! occurs by exchanging the assignment of jqz and jga, Wherein jgs is now

assigned to (i1, ki1). This perturbation shows that ijon2 = Tigjo2- This result can be generalized for

any ki1 < ki-1 and kiz < kz, which results in 7; otk =%

ik, = 78 for all kiz < ki-1 and kiz < k.
Consider a feasible solution (z, y)%: i) Yik, = Yik, =1, where ki<kii<Ki1-1, 1<kiz<k2 and ki1+kiz<n-
1,ii) Vi, =1 each ieMwcM-W and cardinalities ki chosen such that 5 k; = n—k;, — k;, >1, iii) kiz
ieMy,

jobs in {N-jq2-jqa}, including jq1 and jq3 are assigned to (i1, ki1), iv) remaining ki> jobs from {N-jq1-
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Jjg3}, including jg2 and jqs are assigned to (i2, ki2). This solution is perturbed by selecting a job j that
is currently assigned to ieMw, and reassigning it to (iz, ki2), in place of jg. Both solutions satisfy
(41) and therefore (43) exactly, as the assignment of jq2 is hidden. The choice of je{N-jg3-jgs-jq2}
is arbitrary, as is the choice of (i, ki) for ieM-i> to which it is assigned to. Therefore
T

=7, i, =; for each je{N-jgz-joa-jg} and ki<kii<Kii-1, 1<ki><k.. Note that this includes

i Jkiy iz jKiz

7, ;. = ;. Therefore, from the earlier result, it follows that zb; = 7a; for each je{N-jqs-joa-Ja2}

and ki<ki1<Kii-1, 1<kiz<k.. Note that if (i1, Ki1) is used in (z, y)?, then since the assignment of jqa is

not hidden, it can be shown that 7, , =7; ; = ma; for each je{N-jqs-jo2}. Next, consider (z, y)3:

iz JKi2
) Vik, = Yix, =1, where ki<kii<Kir-1, ko+1<kiz<Ki-1 but kis+kiz<n-1, ii) VYjc =1 for each

ieMwcM-W and cardinalities ki chosen such that 3"k, =n—k,, —k,, =1, and iii) jobs jq and jqs are

i2—
ieMy
assigned to (i, kir), while jq2 and jq4 are assigned to (iz, ki2). Here, the assignment of jq4 is hidden,
and therefore (41) and (43) are satisfied exactly. By exchanging the assignment of jqs with that of
a job j currently assigned to an ieMw, as well as exchanging it with jgs, it is easy to show that
T

7 ., =ma; for each je{N-jqi-jz-joa} and ki<kii<Kii-1, ko+1<ki2<Kiz-1. Finally, consider

ki — i ki,
(z, y)*, the complement of (z, y)?, where agent-cardinality combinations (i1, ki1) and (iz, ki) are
used, with 1<kii<k:-1 and k>+1<ki><Ki.-1. In this assignment, jq1 is hidden. Using a perturbation
similar to that in (z, y)3 it can be shown that 7

7., =, for each je{N-jqi-jg3-jaa} and

ki — i gkis

1<kii<ki-1, ko+1<ki2<Kiz-1. Thus, from the perturbations of (z, y)}, (z, y)?, (z, y)® and (z, y)* we

show that the coefficients of the z variables in (43) are each equal to 7a; , one for each jeN.

Consider again a variant of (z, y)?, wherein a set of jobs HcN, with HgcH, are to be assigned to
(i1, kiz) and (i2, ki2) alone. That is, kiit+ki2=|H|=h. Further, jq3 is assigned to (i1, ki1), while jgs is
assigned to (i2, ki2). However, jobs in N-H are unassigned. For such a feasible solution, (41) reduces
to

> 7+ Yz, <h-3 (44)

Z. +
jE{H_qu_jq4} jE{H_qu_qu}

The corresponding constraint (43) becomes
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X mZy t ) magl
jelH=jq2—Jqa} jlH=jq2—Iga}

<C (45)

iz iz

where C denotes the composite value obtained after fixing the values of y and z as described above.

Specifically,

C=rn, +7

ilkil iZki 2

R, Ry, T (46)

By definition, every feasible solution that satisfies (44) exactly, satisfies (45) exactly as well. There
are h-3 linearly independent selections of ki1 jobs from the set {H-jq2-jgs}. Consequently, there are
h-3 linearly independent solutions that satisfy both (44) and (45) exactly, implying that (45) is a

scalar multiple of (44). Thus, 7a; = zma for each je{H-jq2-jgz-jga}. Since the selection of H-Hq from

N-Hgq is arbitrary, it follows that 7a; = za for each je{N-Hq}. In addition, 7a, = ra.

As was done with (z, y)? above, starting with (z, y)}, (z, y)*and (z, y)*, where HcN jobs are assigned

to (i1, kiz) and (iz, kiz), including jobs in Hg, it can be shown that ra,, =7a, ma,, = and

m,,, = m, respectively. Further, C = (h-3)7a.

Consider another variant of (z, y)?, where in addition to a designated set of jobs in H assigned to
(i1, ki1) and (iz, ki2), ki>0 jobs in N-H are assigned to agent-cardinality (i, ki) for some ieM-W. As

a result, the left-hand-side of (45) increases by za. This is so for any ieM-W and 1<ki<Ki.
Therefore, r; =k;za for any ieM-W and 1<ki<Ki. Now consider a solution (z, y)°, where agent-

cardinality (i1, kir) alone is used, where 1<ki:<Kiz. In addition, all ki1 jobs that are assigned to i1
come from the set N-Hg. Such an assignment is certainly possible as Kiiz < n-4. This solution

satisfies (41) exactly as there are no hidden assignments. Therefore, 7, k, + 7, =k;7za for all
1<ki1<Kii. In a similar fashion, it can be shown that =, k;, + 7, = k;,7za for all 1<ki><Kj.. We now

refer back to (z, y)?, where the set of jobs H, with HycH, are assigned to (i1, ki1) and (iz, ki2) alone,

with kiz+kiz = h, gz assigned to (i1, kiz) and joa is assigned to (iz, ki2). Here, 7; ki, +7; K, + 7, =

(ki +ki,—)ma. From the three equations, we get =,=m, 7=, =(k;—-1z and
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Zix, = (Ki; —=1)7a. This concludes the argument that (43) is a scalar multiple of (41) and therefore

(41) non-trivial facet of Ha(d)". 0
Theorem 13 The 2-Agent Cardinality Matching Inequality (41) is a non-trivial facet of HU(d)=.

Proof: Starting with (41), a sequential lifting procedure to increase the coefficient values of
variables zijke{z%-z"}. The resulting inequality obtained will be a facet of HU(d)". It therefore

suffices to show that after lifting, the coefficients of variables in {z°-z"} all remain zero.

Let U, denote the index set of all z variables in {z°-z"}, while V,cU, represents those whose
coefficients have already been lifted. At stage | of the sequential lifting procedure, the coefficient

of z;, (1) for le{U;-V.} is lifted by solving the optimization problem:

Aik(l) = Min{1+7z5cy"-2"-2(V2)ze(V2)| (57), (6), (7). (8). (9), ziik(l) = 1, ziju(s) = 0,Vse{Uz-V:}}, (47)

where (1+7cy°) represents the right-hand-side of (41), z' the left-hand-side of (41) and 7(V;) the
lifted coefficients of variables in V. till iteration I-1. Observe that for the lifted inequality to remain
valid, zjk(1)>0. Therefore, in each iteration I, it suffices to identify a feasible solution to (47) whose

objective function value is zero.

Consider first the sequence of variables z;; (1), le{U:-V;}, for some 1<kii<ki-1. Starting with
I=1, with say kii=ki-1, the optimal solution to (47) is, Y, = Vi .. =1, and the rest of the y

variables set to zero. First, (kii-1) jobs from N-{jq2, jq3}, including jqs, are assigned to agent-
cardinality (i1, kiz). Note that jq1 is assigned to (i1, kiz). Next, from the remaining unassigned jobs,

(k2+1) jobs, which includes jq2 and jq3 are assigned to (iz, kz+1). This results in 7z, ;, (1)=0. In
subsequent iterations, for other values of kii>2, the same lifting solution gives 7;; . () =0. For

kii=1, agent-cardinality (i2, Ki2) is used in place of (iz, ko+1). Here, jqs as well is assigned to (i,

Kiz), resulting in ﬁiqulvl(l) =0. Consider next the lifting of coefficients of 2,k (1), for kiz=ko+1.

Here, the optimal solution is y;, =, =1, with the rest of the y variables set to zero. Job jg4 is

assigned to (i1, 1), while (ki2-1) jobs from N-jga, including {jq1, jq2, Jg3} are assigned to (iz, ji2),
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resulting in 7z ; . (1) =0, for all ko+1<ki><Kj.. Finally, associated with jq1, consider lifting of
coefficients of z; . (1), for some ieM-W. Here, the optimal solution is y,, =y, ., =V, =1.

While jq1 is assigned to (i, ki), for ieM-W, jqs is assigned to (i1, 1) and {jq2, jq3} assigned to (i,
Jk2+1). The rest of the jobs are selected from N-Hq to match the cardinality requirement. This ensures

that 7z; (1) =0 for all ieM-W and 1<ki<K;.

For the sequence of variables, z;; (1) for ki<kii<Ki, Zijooke (1) for 1<ki><k, and zijqzkl(l) forieM-

W and 1<ki<K;j, it is easy to show that the corresponding coefficients are all zero. The lifting of the

coefficients involving assignment of jq2 is a complement of the assignment of jq1 described earlier.

Now consider the sequence of variables, z; (1), 1e{U;-V,}, for some 1<kii<ki-1. Here, the

optimal solution is, y;, =Y, , =1, and the rest the y variables set to zero. Jobs jgs is of course is
assigned to (i, kiz). The rest of the (kiz-1) jobs are drawn from N-Hg. Similarly, two jobs from N-
Hq are assigned to (iz, 2). Clearly, this solution results in 7;; (1)=0 for 1<kii<ki:-1. For the
sequence of variables, z; ; (1), 1e{Uz-V2}, 1<kio<k,, the optimal solution is, y,, =y, . =1, and
the rest the y variables set to zero. Here, jq3 is assigned to (iz, ki2), while the remaining available
slots for (iz, ki2) and (i1, 2) are filled up by jobs from N-Hq. This resultsin 7z ; (1) =0 for 1<kiz<k,.
For lifting of coefficients of variables, z; (I), the optimal solution used is y;; =Y, , = Yy, =1,

and the rest of the y variables set to zero. Here, jq1 is assigned to (i1, 1), jq2 and jqs are assigned to

(i2, 2), while jgz and (ki-1) jobs from N-Hg are assigned to (i, ki). This results in 7; o (1) =0 for all

ieM-W and 1<ki<K;.

Consider next obtaining 7;; . (1) for ki<kii<Ki-1. The optimal solution to (47) i
Yik, = Vi, .2 =1With jg2 and joa assigned to (ia, kiz), jo1 and joz assigned to (iz, ko+1), while the rest

of the (kiz+k2-3) jobs are drawn from N-Hq and assigned to (i1, ki1) and (i2, ko+1), consistent with

their cardinalities. This results in T (1) =0 for ki<ki1<Kii-1. Similarly, for obtaining 7. ok )]

for ko+1<ki><Kiz-1, the optimal solution used is, y,, =V, =1, with jo2 and jqz assigned to (i, ka),
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jqr and jga assigned to (iz, ki), and (ki+ki>-4) jobs from N-Hq assigned to (i1, k1) and (iz, ki2),
consistent with their cardinalities. Thus, 7, ; . (1) =0 for ko+1<ki><Ki-1. Finally, it can be shown
that 7z (1) =0, for all ieM-W and 1<ki<Ki, by using the optimal solution, y,, =V, ., = Vi =1
, In which jgs is assigned to (i,ki), jq2 is assigned to (i1, K1), jqr and jq3 assigned to (io, ko+1), and
(kit+kz+ki-3) jobs from N-Hg assigned to (i1, ki), (i2, ko+1) and (i ki), respectively. Thus, the
coefficients of all variables in {z°-z"} remain zero after lifting.

[
5.2 Lifting of 2-Agent Cardinality Matching Inequality for H(d)=

While the 2-Agent Cardinality Matching inequality is a non-trivial facet of HU(d)=, it need not be
for H(d)*= (defined in (17)), due to the presence of knapsack constraints (4). We now show how
(41) can be lifted to become a non-trivial facet of H(d)=. A sequential lifting procedure is employed
for each of the coefficients of the missing z variables in (41). The optimization problem that needs
to be solved is essentially the same as that in (47), except that the knapsack constraints (4) have to
be satisfied as well. With the inclusion of (4), the sequential lifting procedure boils down to solving

a bin packing problem for each coefficient.

To begin with, consider the missing z variables associated with jq1. To determine T ok (), for

1<kii<ki-1, we determine a set N(i1,ki1-1)c{N-jq1-jq3}, which consists of the first kiz-1 jobs in {N-
Jqi-jq3} after sorting them in non-decreasing order in terms of ai1;. If the assignment of jobs in
N(i1,kiz-1) and jou to (is, ki1) satisfies (4), then the optimal solution is: y;, =1and z;;, =1 forall
je{N(i1ki1-1), jor}, and vy, , =1, Zi o =1 since aji<b; for all ieM, jeN. The rest of the y and z

variables are set to zero. This results in, Tk (1) = (kiz-1)+0+1-(ki1-1)+1 = 0. If the assignment

of N(iz,kiz-1) and jq1 to (i1, ki) violates (4), then N(i1,kii-1) is modified by replacing the largest job
in it by jg3. If the resulting solution is feasible, then since jq3 is hidden from (i1, kir) as well,

7ok (1)=1. However, if even with jgs, (4) is violated, then the formulation itself can be

strengthened by setting z;; =0. Essentially, the same steps are used to determine 7; otz OF
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where ko+1<ki><Kij,, except that N(iz,ki-1)c{N-jq1-jgs} is assigned initially. If infeasible, then

N(i2,kiz-1) is constructed by including jga. Thus, here as well, 7 ke (1) is either 0 or 1, or that
ks = 0. To determine T (1) where ieM-W and 1<ki<K;, the set N(i,ki-1)c{N-Hq}, consisting
of the first ki-1 jobs in N-Hq sorted in non-decreasing order in terms of a;j is obtained. If N(i,ki-1)

and jq1, upon being assigned to (i, ki) satisfy (4), then the solution y;, =1 and z, ; =1 forall je{
N(iki-1), joi}, Vi =1, Z= =1, yi,= Z, il =1, and the rest of the y and z variables set to zero,
results in 7; o (1)=0. If the above assignment is infeasible, then we consider assignments where

one job from the set {jq2, jg3, Jga} IS included in N(iki-1). If a feasible assignment exists then

T ke (D) =1. If no feasible assignment exists above, then solutions in which two jobs from the set
{io2. jo3, Jaa} are included in N(i ki-1). If a feasible assignment is found, then this results in 7; M

=2. If not, an assignment in which all three jobs in {jq, jg3, Jo4} being included in N(i,ki-1) is

explored. If feasible, then ik (1)=3, else the formulation is strengthened by setting Zj , =0.

The process of lifting of coefficients that correspond to missing variables associated with jg2 mirror

in a complementary way those associated with jq1 described above and therefore need no

elaboration. In the case of jq3, we begin with the determination of 7;; (D), for 1<kii<ki-1. Here,
we first determine the set N(i1,kii-1)c{N-jqi-js3}, as was done to determine ﬂiqulkil(D. If the

assignment of N(i1kii-1) and joz to (in, ki) satisfies (4), then 7, (I)=0, else we consider

modifying the set N(i1,kii-1) to include jq1. If such an assignment is found to be feasible, then

70y ki (1) =1, else the formulation is strengthened by setting Z;; , =0. The process of determining
Toskia (1), for 1<kix<k is identical to that for 7ok (I). The process of determining 7, «
closely mirrors 7; (1) described earlier. The difference is that initially, jqs along with N(i,ki-1) is

assigned to (i, ki) instead of jq1. If found feasible, T ¢ (D=0. If infeasible, then in subsequent

steps, the inclusion of additional jobs into N(i,ki-1) is done from the set {jq1, jo2, jq4}. Thus, here as
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well, in subsequent steps, T () can take one of the three values: 1, 2 or 3, or that the constraint

Z; 4« = 0 is added to the formulation.

Finally, consider lifting of coefficients of missing variables associated with jgs. To determine
ﬁiqu4ki1(|) for ki<ki1<Kii, initially the set N(i1,kii-1)c{N-jg2-jq4} is determined to check if it along
with jga can satisfy (4), if assigned to (iz, ki1). If so, then by assigning jq2 to (i2, 1) as well, an optimal
solution is obtained with 7;; (D= 0. If such an assignment is not possible, then the set N(i,ki1-
1) is modified by including jq2 in it. If, as a result, a feasible solution is found, then 7o (D=1,
otherwise the constraint z;; , =0 is added to the formulation. The process of determining

(1) for ka+1<ki><Kiz, exactly mirrors that used for 7, ocki (1) and therefore needs no

'2] 4Kiz

elaboration. Similarly, the process of determining T, (1) where ieM-W and 1<ki<K;, closely
mirrors the process used for determining 7; M, T () or Z (). Thus, T (1) can take

one of four values: 0, 1, 2, 3, or that z; , =0.

It needs to be emphasized that the optimization used in the sequential lifting procedure are all easy,
since each one of them involve solving a bin-packing problem with one bin. Thus, without much
computational effort, the 2-Agent Cardinality matching inequality (41) can lifted to obtain an
inequality that is a facet of H(d)=.

5.3 The 2-Agent Cardinality Matching Inequality when m = 2

We now consider the special case of (GAP) consisting of just two agents. If any one agent can
accommodate all the jobs, then (4) becomes redundant and the problem becomes trivial. Hence,
we assume that both agents are needed to accommodate all the jobs. Thus for instances where M
= {i1, io}, the 2-Agent Cardinality Matching Inequality (41) can be further strengthened to become

k-1 K, Kiz
XX Tyt 2 > Zuges T & 2 Tk T 2 2 T S
Je{N=jg1} kii=n-K;, Je{N=jg2}kiz=ky e{N*qu}kz=n*K1 JG{N*Jql}k2=k2+l

Z (kll 1)y|k + Z (k|2 1)y|2k +1. (48)
kll n—- K|2 |2 n_K'
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Observe that when M = {iy, i-}, the use of agent-cardinalities (i1, ki1) and (iz, ki) should be such
that kiztki> = n. Consequently, the smallest feasible cardinality associated with i is n-Kiz, and with
i2, N-Ki1. This also rules out the possibilities, i) kix < ki-1 and kiz < kz, and ii) ki1 > ki and kiz < ka+1.
In the former case, the need to define jq3, as a job whose assignment is hidden from (i1, kiz) and (iz,
ki2) is no longer required. Similarly, in the latter case, the need to define jqs4 IS unnecessary.

Since (48) is a special case of (41), it is a non-trivial facet of HU(d)* when m=2. Note that starting
from Proposition 11, where m = 2, the dimension of HU(d)= becomes 2n(Ki1+Kiz-n), and therefore
the dimension of the hyperplane (48) is 2n(Ki1+Kiz-n)-1. Since every SOS constraint (5)= is a trivial
facet of HU(d)=, the dimension of HU(d) is 2n(Kii1+Kiz-n)-n.

Theorem 14: Consider the polytope HU(d) defined by agents, M = {i1, i-} and a set N consisting
of a finite number of jobs. The 2-Agent Cardinality Matching Inequality (48), along with trivial
facets, a) Xik > 0, b) zix < Yik, and c) constraints (7), as described in Proposition 12, completely
describe the polytope HU(d).

Proof: Let LPU(d) = {(z, y)eR"|(z, y) satisfies (5)-(8), 20, y>0}, p = 2(n+1)(Ki1+Kiz-n)}, the LP
relaxation of (Pd) without the knapsack constraints (4). Clearly, every extreme point of HU(d) is
also an extreme point of LPU(d). However, in addition, LPU(d) consists of extreme points which
are fractional in nature. Every extreme point of HU(d) is characterized by the following:
Yik, = ik, =1, kintkiz =n, z,;, =1forall je N, , z,;, =1 forall je N, ,where N, UN, =

N, N, AN, =¢, [N, [=kirand [N, |=ki. Given this structure, there are two possible sets of

solutions. In one set, ki1 < ki-1 and ki2 > ko+1, while in the other, ki1 > ki and ki» < k.
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Each inequality in (48) is uniquely defined by ki, k2 and a selection of jq1 and jg2 from N. It is
indeed easy to verify that every inequality in (48) passes through all the extreme points of HU(d),
I.e., every extreme point of HU(d) satisfies (48) as an inequality. This is indeed possible since as

/y|14 — 0 yi23 = 1

(i1,4) A @23)

@ +A__-"" g -A? ;

(i12) | _———A (i2,1)
\yilz = 1 \yi21 — 0

Figure 5: Hlustration of movement from one integer solution to an adjacent integer solution.
observed earlier, the dimension of HU(d) is 2n(Ki1+Ki2-n)-n, while that of (48) is 2n(Ki1+Kiz-n)-1.

Given the above, it suffices to show that (48) violates every fractional extreme point of LPU(d).
In turn, since (48) passes through every extreme point of HU(d), it is sufficient to identify fractional
extreme points of LPU(d) that are adjacent to integer extreme points, and show that they violate
(48).

Note that, including slack variables associated with (7) and (8), LPU(d) is defined by a total of
2(2n+1)(Kii+Kiz-n)+2 variables and 2(n+1)(Kii+Kiz-n)+n+2 constraints. However, since any
integer extreme point of LPU(d) consists of exactly n non-zero variables, it is highly degenerate.
To explore adjacent extreme points, one perturbation of an integer extreme point of LPU(d) is to

increase the value of the non-basic variable z, , by A>0, where je N, ~and therefore z;, =1.
To satisfy (5), z;; is decreased by A. To satisfy the cardinality constraints at (i1, ki1) and (iz, ki2),
aj’e N, is chosen wherein, z, ;, =1-A, while z;;, =A.This is illustrated in Figure 5, where
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j=2 and j’=3. In the limiting case, this perturbation ends with A=1, at which point z, ;, becomes

non-basic. The resulting extreme point solution is also integer wherein there is an exchange of

assignments of j and ;. Thus, in this perturbation, y;, =V, , =1 remains.

Another perturbation to explore adjacent extreme points is to increase the value of y,,. where k’iz
# ki1 given that y;, =1. Alternately, y,,. can be chosen for perturbation visa-vis y,, in the
same way. Here, the value of y,,. , which is currently zero is increased it by A. Simultaneously,
the value of y; . where k’iz = n-k’iz is also increased by A. Naturally, to satisfy (7), the values of
Y, and y;, are decreased by A. Let N,. and N,. be defined such that, i) |N,. |=k'; and
IN., =K', i) Np. UN,. =Nandiii) N, "N, =¢. Wenow leti)z;,. =A foreachjeN,. ,
i) z

ik, =A foreach je N,. ,iii) z;, =1-A foreachjeN, andiv) z, , =1-A foreachje

N, , - Such a perturbation is certainly possible as constraints (5), (6) and (7) are satisfied exactly.

Here as well, an adjacent extreme point is found when A = 1, which is also integer, with

Yik, = Yix, =1 with jobs in N,. and N,. assigned to (i1, ki) and (iz, & iz) respectively.

The only other perturbation that is possible is identical to the previous one, except that N,. "N,

# ¢. Therefore, [N,. UN,. | <n.Let N,.,. =N. NN, , while N,. . = N., "N, and

i1

Nk'uk'izkiz = Nk'ilk'iz a Nkiz ’ Slmllarly’ let qu'ilk'iz = N _{Nk'il ~ Nk'iz}’ while Nk'nk'izkn = Nk'nk'iz a

Nkil and Nk'ilk'izkiz = Nk'ilk'iz a NkiZ ) Clearly’ Nk'ilk'iz = Nk'uk'izkn U Nk'uk'izkiz ! Nk'uk'iz - Nk'ilk'izkil v

N e, and [Ny . [ =[N, . | Here, the integer solution y,, =v,, =1, z,;, =1 forall je

N, , z

in? TipJkip

=1 for all je N, _is perturbed in part as follows: i) y;,. =A, z;,. =A foreach je
Nes 1) Vi, =A,2Z 4 =A for each jeN,. —and iii) y;, =V, =1-A. Note that the

perturbation described in i) and ii) satisfy (6) and (8) exactly. What remains is to specify the values

of z; , foreachje N, and z; foreachje N, such that(5), (6)and (8) are satisfied.
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Since z ;. =Aand z; ;. =A foreach jeN,.,. ,itfollows thatto satisfy (5), z, ; =1-2A and
Z x, =1-2A, foreach je N,. ,. , ~and je N,. .. ., respectively. Further, to satisfy (5) and (8),

Zix, =1-A, 7, =A forevery je Nk.ilk.izku ,and 7, =A, 7, =1-A foreveryje Nk'uk‘izkiz'
By definition, [Ny y . | = INe o | = INp o | = [Ny, | = DIFF. Thus at (i1, ki), the
cumulative value of z variables accounted for from N,.,. and Nkhk.iz IS [Ny, ok, [(1-24) + |
N 13-A) + [N oA = (NG FING e D(3-A) — DIFF*A, while at (iz, kio) it is

DIFF*A + (N [+ Ny . [)(1-A). If DIFF >0, then an arbitrary set Noit = { N, - Ny,

iZkiZ

- Nk._ .k, + 1S selected with |Npitr| = DIFF. We now set z, , =1-2A and z,;, =A for each
ithiz2hi2 2JRi2 1JRi1

jeNbpif, z; 3 =1-A for each je{N, -N,. . . - Nk'uk‘izkiz -Npift}, and z;; =1-A for each je{

Ny, =N, = Nie e 3. Conversely if DIFF < 0, then Noit <{N, -Ny. . -Ny. o} is

selected such that [Npif| = -DIFF, and we set z,;, =1-2A and z,;, =A for each jeNoir,

Z,.. =1-A for each je{Nkn'Nk'uk'izku'Nk'uk'izku -Noitt}, and z; ;, =1-A for each je{N, -

iy iy
Ny ki, - Nk.nk.izkiz }. Such a perturbation satisfies (5) at each jeNbpif, and (6) exactly, both at (is,

ki) and (i2, ki2). This perturbation is suitably illustrated in Figure 6 below.

In the illustration above, ki1 = 3, k'in =4, ki2 =3, ki2 = 2, Ny . . ={3} Ny . = {4}, Nk-uk-izku

= 0, Nk.uk.izkm: {5, 6}. Given the above, DIFF = -1 and Npirr = {2}. It is evident from this

illustration that when A = 0.5, an adjacent extreme point is found that is fractional. It is worth

noting at when A = 0.5, then any node in N,. .. (nodes 3 and 4 in Figure 6) can be chosen as jq1,

while any node in Nk‘uk'iz (nodes 5 and 6 in Figure 6) can be chosen jq2. Clearly, the fractional

solution is such that jq is hidden from (i1, £’i1) and (i2, £’i2), while jq2 is hidden from (i1, kiz) and

(i2, ki2). This ensures that it violates (48). O
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(i, 3)

Ay

Figure 6: Illustration of movement from one integer solution to an adjacent non-integer

solution.

6.0 Concluding Remarks and Future Research Possibilities

In this paper, we have presented a new disaggregated formulation of GAP that uses the idea of
cardinality for each agent. The LP relaxation of this formulation is shown to be stronger than the
LP relaxation of the standard formulation (Ps) used in earlier works such as Cattrysse et al. (1998)
and Nauss (2003). The disaggregated formulation reveals generalizations of the well-known Cover
and (1, p)-configuration inequalities that provide a much tighter description of the polytope, as
well as being far more ubiquitous. Furthermore, this formulation reveals strong inequalities

involving multiple agents. We present two such classes of inequalities: the Bar-and-Handle (1, p,

) Inequality and the 2-Agent Cardinality Matching Inequality. Under certain restrictive conditions,

the Bar-and-Handle (1, p, ) inequality is shown to be a facet of the polytope defined by the feasible

solutions of GAP. In the case of 2-Agent Cardinality Matching inequality, it first shown that it is

a facet of the polytope defined by the feasible solutions to the un-capacitated version of GAP.
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More importantly, it is shown that the lifting procedure needed to lift this inequality to become a
facet of the polytope for the capacitated version is easy to solve. Finally, it is shown that for the
special case of GAP consisting of just two agents, the 2-Agent Cardinality Matching inequality,
along with trivial facets completely describe the polytope defined by the feasible solutions of the
un-capacitated version of GAP. For the above reasons, we believe that these new inequalities,

which are unique to the disaggregated formulation, are a significant contribution of this paper.

A disadvantage of the disaggregated formulation is its increased size, even though the increase is
polynomially bounded. This can be a significant concern for large problems. One way to address
it is to employ a dynamic reformulation that adds variables and constraints incrementally. Initially,
we can start with a modified version of the traditional formulation (Ps) and then progressively
move towards the disaggregated formulation. In the initial modified version of (Ps), variables

yie{0, 1} for all ieM are introduced. Constraint (1) is replaced by the constraints:
> ;X < by, VieM, (49)
jeN

and the VUB constraints
X <Y, VieM,jeN, (50)

are introduced. After solving the LP relaxation, we measure 3. x; for each ieM. Suppose that for
jeN

some i, this aggregation is fractional and of value ri. This agent is split into at most four
cardinalities. The four cardinalities are: i) ky =|r |-1, ii) k,=|r |, iii) ks =|r]+1 and iv)

K, =\_rij+2. The variable yi is split into four variables wherein, vy, +Vi + Vi, +Yi, =i

1
Similarly, each variable xij is split into four such that z; +zy +2zy +2y =X;. Accordingly,

constraints (49) and (50) are also broken into four separate constraints for the agent that is split.

The knapsack and the VUB constraints take the form:

% a; Zil;“ < b.YikiI 1=1234 (51)
je
Zi < Yy vV jeN,1=1234. (52)

Finally, the following cardinality constraints are introduced for the agent that is split:
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J.EZN zi" <KV, (53)

J;\‘ Zilj(” = kil yik“ , I = 2,3 (54)
ka

> 7" =Ky Y, - (59)

jeN
With the introduction of cardinality constraints (53) and (54), the Cover inequalities as well as (1,

p, )-Configuration inequalities discussed in Section 2 can now be applied on agents that have been

split. The Bar-and-Handle inequalities and the 2-Agent Cardinality Matching inequalities can also
be applied to agents that have been split. This form of judicious disaggregation can achieve the
desired strength in the formulation without making the model unnecessarily large. Of course, the
challenge lies in the implementation where rows and columns are added progressively, and this is
a topic for future research.

An important future research issue from a computational standpoint is the separation problem
associated with the various inequalities presented in this paper. As can be expected, the separation
problems associated with these inequalities can be challenging. Another interesting idea worth
exploring is to extend the 2-Agent Cardinality Matching inequalities to three agents. Once we have
Cardinality Matching inequalities consisting of three agents, one can ‘concatenate’ sets of 2-Agent
and 3-Agent Cardinality Matching inequalities to derive cardinality matching inequalities
consisting of larger number of agents. Finally, similar disaggregation approaches can be
investigated for other NP-Hard problems such as the Capacitated Concentrator Location Problem,
or the Capacitated Network Design problem in which each commaodity is either wholly assigned

or not at all to each link in the network.
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