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Through recent technical advances, multiple resources can be connected to provide a computing 

grid for processing computationally intensive applications.  In this paper, we build on an 

approach termed sequential grid computing that takes advantage of idle processing power, by 

routing jobs that require lengthy processing through a sequence of processors.  We present two 

models that solve the static and dynamic versions of the sequential grid scheduling problem for a 

single job.  In both static and dynamic versions, the model maximizes a reward function tied to 

the probability of completion within service level agreement parameters.  In the dynamic 

version, the static model is modified to accommodate real-time deviations from the plan.  We 

then extend the static model to accommodate multiple jobs. Extensive computational 

experiments highlight situations where (a) the models provide improvements over scheduling the 

job on a single processor, and b) the factors that affect the quality of solutions obtained.   
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1. Introduction 

Advances in technology have made it possible to connect numerous disparate systems to create a 

virtual grid of computing resources that can be exploited to solve computationally intensive 

problems (Rosenberg 2004). Known by various related terms such as grid computing, utility 

computing and web-based computing, the concept has received significant attention recently in 

the academic and practitioner literature (Bhargava and Sundaresan 2004; Meliksetian et al. 2004; 

Shalf and Bethel 2003; Stockinger 2006). The last few years have also witnessed the growth of 

computationally demanding applications, particularly in the scientific (Korpela et al. 2001), 

biological (Deonier et al. 2005; Ellisman et al. 2004) and business (Krass 2003) fields that are 

impractical to perform on a single resource. Grid computing has emerged as a cost-effective 

method for providing an infrastructure for such computationally intensive applications, and 

several vendors (e.g. IBM, Sun and HP) are developing technology to enable a grid computing 

environment (Chang et al. 2004; Eilam et al. 2004). 

Grid computing is largely viewed in the literature as a mechanism for implementing parallel 

computing. In parallel computing, an application is written to execute concurrently by dividing 

large computations into numerous smaller calculations that are executed in parallel on multiple 

machines.  By enabling multiple machines to work on the application in parallel, the total time 

taken for completion can be reduced significantly. The topics addressed in the literature on 

parallel grid computing include grid architectures (Meliksetian et al. 2004), distributed data 

management (Venugopal et al. 2006), distributed processing for biological and visualization 

applications (Hansen and Johnson 2003), reliability of grid architectures (Levitin et al. 2006), 

task scheduling in a grid environment (Kaya and Aykanat 2006; Rosenberg 2004), and market 

design for grid computing (Bapna et al. 2006; Bapna et al. 2008).   

Unfortunately, widespread diffusion of parallel computing is not without impediments.  In 

particular, the development of software that can take advantage of grid resources is difficult.  As 

noted by Donald and Martonosi (2006, pp. 14), "writing parallel programs is much more difficult 

and costly than sequential programming..."  Further, complexities such as synchronization of 
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access to resources and inter-process communications in single machine environments are 

exacerbated in the context of grid computing.  According to Boeres and Rebello (2004, pp. 426), 

"if writing efficient programs for stable, dedicated parallel machines is difficult, for the grid the 

problem is even harder.  This factor alone is sufficient to inhibit the wide acceptance of grid 

computing." In addition, even when parallel programs are feasible, the cost of program 

conversions can be prohibitive (Donald and Martonosi 2006).   

In this research, we explore another dimension of grid computing which avoids some of the 

grid implementation obstacles described above, increases utilization of a grid infrastructure, but 

has received limited attention in the research literature. In addition to parallel processing, 

completion time for computationally intensive applications can be reduced by having machines 

work on an application sequentially over time.  It is typical, particularly in a corporate setting, 

for different computing resources to have utilization rates that vary dramatically over time—

machine utilization will experience peak periods as well as lean periods that may not be 

concurrent for all machines.  This is particularly true for grid networks that are geographically 

dispersed or which are assigned to different functions within an organization. Even when 

machines are co-located in a centralized data center, such as for a vendor providing on-demand 

computing resources to a large number of clients, utilization rates of machines allotted to each 

client will vary based on client usage characteristics.  In such a situation, a large background 

application can be routed sequentially through several machines on the grid, thereby taking 

advantage of their lean periods, to reduce overall job completion time.   

Our research builds on this concept of sequential grid computing (Berten et al. 2006; Buyya 

et al. 2002; Sonmez 2007; Yu and Buyya 2006). At first glance, sequential grid computing offers 

three primary advantages. First, unlike parallel grid computing, it is not necessary to rewrite 

applications to take advantage of parallel processing—a major implementation bottleneck. In 

contrast, sequential grid computing requires an interface mechanism that allows for the software 

to be processed by different machines at different times. Second, relatively simple grid 

architectures can accomplish the mechanics involved in implementing the concept in practice. 
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Once it is estimated where each task will be executed, the relevant software can be sent in 

advance to those locations. As each task is completed, its intermediate state is sent to the location 

where the next task is executed. Even in environments where the computing resource availability 

is stochastic, one can predict the likely future task assignments and send only the pertinent 

software modules to those locations. Third, sequential operations are recognized as one of the 

necessary fundamental building blocks of modern systems (e.g. van der Aalst and Kumar 2003). 

Thus, for applications specifically designed for parallel computing, sequential grid algorithms 

can still augment the performance of application segments for which parallel algorithms are not 

possible. Therefore, our perspective on sequential grid computing is that it is not an alternative to 

parallel grid computing, but another mechanism to accrue additional benefits.  

In this paper, we develop two models and attendant solution procedures for the sequential 

grid computing environment that optimally routes a single application or job based on the 

stochastic availability of idle resources at each time period at each processor.  The first model is 

a static model, which determines at the start of processing, which machine will process the 

application in each time period.  The second is a dynamic model, which provides a policy for 

allocating the job to a machine in each time period based on the current status of the job.  Both 

models are benchmarked against a single machine assignment in which the entire job is 

processed by just one machine. The static model is computationally efficient, simple to 

implement, and requires little overhead information; the dynamic model is computationally 

demanding, requires more overhead information, but may provide superior solutions.  Based on 

the static model, we also present a heuristic for scheduling multiple jobs on the grid.   

This research makes two main contributions to the emerging literature on grid computing in 

the information systems area.  First, while most optimal task scheduling algorithms have focused 

on parallel grid computing, we address the optimal scheduling problem in the sequential grid 

computing environment.  Second, through extensive computational experiments, we characterize 

the conditions under which sequential grid computing provides benefits over using a single 

machine to process the job, and we identify the conditions under which the dynamic model 
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provides superior schedules compared to the static model.  These computational experiments 

provide a proof-of-concept for our sequential grid computing scheduling models and yield 

insights into when the benefits associated with it are most pronounced. 

The rest of the paper is organized as follows.  In the next section (Section 2), we describe the 

sequential grid computing environment and the task assignment problem in detail.  In Section 3, 

we focus on scheduling a single job and define static and dynamic models along with their 

respective solution procedures. In Section 4, we extend the static model to incorporate the 

scheduling of multiple jobs simultaneously on the grid. In Sections 5 and 6, we illustrate the 

effectiveness of the static and dynamic models using computational experiments with thousands 

of randomly generated problems that vary in complexity and requirements. Section 7 discusses 

our computational results and section 8 concludes the paper.  

2. Sequential Grid Computing Environment 

Following the common architectures of grid computing (e.g. Joseph et al. 2004; Meliksetian et 

al. 2004), we consider a centralized, software-based grid manager.  The grid manager sells idle 

computing resources to one or more buyers who each have one or more computing jobs.  Each 

such job k has an expected resource requirement of kU  CPU units and a deadline of kD time 

units from the submission time.  Similar to recent economic models for grid computing (Bapna et 

al. 2006; Bapna et al. 2008; Sonmez 2007), we map the probability of job completion into 

economic terms.  The price (or reward) for completing a job k of size kU within deadline kD is 

labeled kR .  If the job k is not completed within the deadline, the grid manager incurs a penalty 

cost kC as part of a service level agreement (SLA).   

Before accepting the job, the grid manager must first estimate the probability of completing 

the job. This requires estimating the resources available (expressed in CPU cycles) on each 

machine on the grid.  However, estimations of available resources vary not only by machine, but 

also by time. To incorporate variation of resource availability by time, we partition the time 
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horizon kD  into kT  distinct time periods (see Bapna et al. 2008 for similar discrete treatment of 

time). The number of distinct time periods should be selected after considering the tradeoff 

between accuracy and computational efficiency. Smaller time buckets allow the scheduling 

algorithms to incorporate idle CPU time estimates at a lower level of granularity, but increase 

computational effort. Since idle CPU times in each time bucket is an estimate, the duration of a 

time bucket should reflect the periodicity of such estimates. If it is only possible to estimate idle 

CPU times hourly, there is no benefit obtained from time buckets that are less in duration.  

Processors in a grid typically handle a large number of internal (non-grid) tasks for which the 

CPU requirements are small. Further, the actual CPU required by these tasks, as well the number 

that would arrive in a given time period is uncertain. Assuming that these tasks arrive 

independently, then due to the Central Limit Theorem (Andersen and Dobric 1987) it follows 

that the CPU cycles utilized on a machine in a given time period follows a normal distribution. 

Since the total CPU cycles available in any time period is fixed, the idle CPU cycles available on 

a processor after processing all the non-grid tasks would also follow a normal distribution. Thus, 

we assume that in time period t  on processor l , the idle CPU units available ( ltc ) follows a 

normal distribution with a mean 
lt

µ  and a variance 
lt

v , and is estimated by the grid manager 

from historical data.  

The grid manager has at her disposal a set of M processors ( mM = ) for executing a job k 

requiring kU  CPU units with a deadline of kD .  Given the stochastic nature of resource 

availability, the grid job may not be completed within the deadline.  The grid manager assigns a 

job to processors in each time period to maximize the Expected Net Reward (ENR).  If for some 

schedule ks , the probability of meeting the deadline is ℘( ks ), then  

 kENR  = [℘( ks )* kR  - (1-℘( ks ))* kC ]. (1) 
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For a single job, maximizing (1) is the equivalent of maximizing ℘( ks ). When the grid 

manager must schedule multiple jobs, we assume that the time horizon is divided into similar 

time buckets, but the job deadlines ( kD ) may differ. The ENR for multiple jobs is computed as: 

 ENR = ∑
=

K

k 1

[℘( ks )* kR  - (1-℘( ks ))* kC ]. (2) 

However, since the schedules are not independent, we cannot maximize (2) by independently 

maximizing ℘( ks ) for each job.  

2.1. Related Literature 

There is a large body of research in the operations management and operations research areas on 

stochastic shop-floor scheduling problems that are relevant to the sequential grid models 

described here (Allahverdi and Mittenthal 1995; Baker and Scudder 1990; Balut 1973; Kise and 

Ibaraki 1983; Pinedo and Ross 1980). The basic problem studied in this literature is that of 

scheduling a number of jobs on multiple machines with stochastic processing times and failure 

probabilities, so as to optimize a variety of performance measures such as number of tardy jobs 

(Balut 1973; Kise and Ibaraki 1983), earliness and tardiness penalties (Baker and Scudder 1990; 

Cai and Zhou 1999), total job time and make-span (Allahverdi and Mittenthal 1995), and the 

number of successful jobs when machines are unreliable (Herbon et al. 2005; Pinedo and Ross 

1980).  While a review of this literature is beyond the scope of this paper, there are two unique 

characteristics of the sequential grid computing environment studied here. First, unlike the 

stochastic shop-floor scheduling literature, we consider a single large job that is routed from one 

processor to another utilizing unused CPU cycles until the job is completed.  Since processors on 

a grid may be geographically dispersed, or may serve different clients of a grid provider, their 

peak utilization do not occur concurrently.  Thus, it makes sense to route a single job through 

multiple processors to take advantage of unused CPU cycles, a situation that does not have an 

equivalent in the stochastic shop-floor scheduling literature. Second, we focus on optimizing 

completion probabilities within a specified time period.  We are unaware of existing research in 
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the scheduling literature that has modeled both of these dimensions of relevance to the sequential 

grid computing environment.   

2.2.   Network Representation 

We initially focus on the case where the grid manager is examining the request for a single job 

that needs to be processed on the grid, and we later extend the analysis to multiple jobs. For 

simplicity of presentation, we drop the subscript k that denotes a job from the discussion here. 

The problem can be represented on an acyclic directed network G (N, A).  As shown in Figure, 

the node set N is arranged into rows and columns.  The rows are labeled from 0 to T+1.  Rows 0 

and T+1 consist of singleton nodes, with the former representing the source node (start of 

processing), and the latter representing the terminal node n (end of processing).  Nodes 

belonging to rows 1 through T are arranged into m columns, with each column associated with a 

processor.  Thus, a node at the intersection of row t and column i (1≤ i ≤ m, 1 ≤ t ≤ T) represents 

processor i in time period t.  Hence, the node set N consists of mT+2 nodes, numbered as shown. 

 

Figure 1: Network Representation of the Sequential Grid 

 

The arc set A includes continuation arcs and transfer arcs.  First, there is an arc from source 

node 1 to every node in row 1.  Similarly, there is an arc from each node in row t to every node 
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in row t+1, where t = 1, .., T.  Finally, an arc (i, j)∈A with j lying at the intersection of column l 

and row t (t = 1,..,T and l =1,..,m) represent the action of assigning the job to processor l in time 

period t.  The length of each such arc ( ijL ) represents the stochastic availability of CPU units 

from processor l in time period t.  A complete path from node 1 to node n represents a schedule.   

Let p denote a complete path, and P the collection of all such paths p in G (N, A).  We define 

an arc (i, j) to be a continuation arc if the processors corresponding to nodes i and j in G (N, A) 

are the same, and a transfer arc if the processors corresponding to i and j in G (N, A) are 

different.  If (i, j) is a continuation arc with node j being associated with row (time period) t and 

column (processor) l, then its length ijL  corresponds to .ltc  defined earlier, and follows a 

normal distribution with a mean .ltµ  and a variance .ltν   Also, if (i, j) is a transfer arc, then 

there is a transfer cost 
2l1l

f .  We express the transfer cost in terms of processing cycles since 

processing time is lost due to the transfer of the job from l1 to l2.  Hence, for such arcs, the length 

ijL has a mean of (
21llflt

−µ ) and a variance .ltν   

It is important to note that while a job could potentially be transferred to another processor at 

any time by communicating its intermediate state (variable values, registers, temporary files 

etc.), such transfers are significantly easier at key transition points (e.g. at the end of a module). 

Clearly, such transition points may not coincide with time buckets since processing times are 

stochastic. However, if software programs are written in a modular fashion (a common software 

engineering practice), the grid manager will need to wait a short time at the end of a time bucket 

for the module to complete before transitioning the job. Thus, deviations from the schedule will 

be small, and our algorithms will provide computationally efficient approximations.   
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3. Sequential Grid Models For a Single Job 

3.1.   Problem Formulation 

We now construct two models to help the grid manager schedule a single job on the grid.  We 

then describe solution procedures for optimally solving these two models. The first is a static 

model that generates a static schedule (a list of T processors, one for each time period, to which 

the job is assigned). This schedule is sent with the job so that it can be routed by each processor 

at the end of each time period.  Thus, the overhead information that needs to be transmitted with 

the job to implement the static model is minimal.  The second is a dynamic model, the output of 

which is not a predetermined schedule, but rather an optimal policy. Let tu represent the 

cumulative CPU units obtained by the job thus far in time period t. The optimal policy specifies 

for each node in G (N, A) and for each possible value of tu  at that node ( U≤≤ tu1 ), the next 

processor that the job is assigned to in period t+1.  Clearly, to implement the dynamic model, 

significantly more control information needs to be transmitted with the job. In addition, the 

computational requirements of the dynamic model are several orders of magnitude higher.   

3.2.   The Static Model for Single Job Assignment 

In the discussion for scheduling a single job, we drop the subscript k (denoting the job) for 

simplicity of presentation. Let pL  denote the length of a path p in G(N,A) ; i.e., 

 ∑
∈

=

pji
ijLpL

),(

.  (3)  

We maximize Expected Net Reward (ENR) for which it suffices to maximize the probability of 

completion within the deadline.  Accordingly, the static model, denoted as PS-1, indicating the 

scheduling of a single job, can now be stated as selecting a path in G(N,A) that maximizes the 

probability of completion: 

(PS-1)  Maximize {℘( pL ≥U) | p ∈ P}, where ℘ denotes probability.  (4) 
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In PS-1, since each path p ∈ P comprises of arcs whose lengths are independent, normally 

distributed random variables, the path length pL  is also normally distributed with a mean 

pµ and a variance pν , where ∑
∈

=

pji
ijp

),(

µµ  and ∑
∈

=

pji
ijp

),(

νν .  Since ℘( pL ≥U) in (4) is 

monotonic in the reduced Gaussian, p/)Up()p,p(g νµνµ −= , PS-1 is reduced to the 

deterministic equivalent of maximizing )p,p(g νµ  over the set P. 

To evaluate the computational complexity of PS-1, we consider the decision version of PS-1: 

Does there exist a path p ∈ P such that )p,p(g νµ ≥ L? For the special case when L = 0, we 

simply solve the longest path problem on this acyclic graph with the arc length µij for each (i, 

j)∈A.  If the path length is greater than or equal to U, then the answer is yes, otherwise it is no.  

When L>0 and the maximum mean path has a length that exceeds U,  Nikolova et al. (2006) 

provide an exact algorithm whose computational complexity is O(nθ(Log(n)).  Thus, whether a true 

polynomial bounded algorithm exists for such instances is an open question. If L<0 and the 

maximum mean path length less than U, the decision version of PS-1 is indeed NP-Complete.   

3.2.1 Best Single Processor Assignment Algorithm 

First, we describe an easy algorithm that we refer to in the computational experiments as the 

best single processor assignment (PA-1 below). If the path p is restricted to the use of 

continuation arcs alone, then determining the optimal path becomes easy.  This is the case when 

the job is assigned to the same machine over all time periods.  Let P’ ⊂ P denote the subset of 

paths that consists of continuation arcs alone.  Note that since |P’| = m, PA-1 can be solved 

quickly through enumeration. 

(PA-1) Maximize {℘( pL ≥U) | p ∈ P’}.  (5) 

3.2.2 Characteristics of the Reduced Gaussian  

The solution method presented here for PS-1 is a modification of the stochastic shortest path 

algorithm (Murthy and Sarkar 1998) to suit the special structure of PS-1.   The following lemmas 



 12

present some results about the nature of the function ),( ppg νµ  that will be used in our 

algorithm to solve PS-1.  Some of these results are straightforward, while others are based on 

results that have appeared earlier in the literature, most notably in Henig (1990).  For that reason, 

we state the lemmas here without proof.  

LEMMA 1: Consider two paths p1, p2∈P, such that i) U1p ≥µ  and ii) U2p <µ .  Then, 

)2p,2p(g)1p,1p(g νµνµ >  for any .02p,1p >νν  

The significance of this result is that if there exists a path p ∈ P whose Up ≥µ , then all 

paths p̂  whose mean length Up <ˆµ can be ignored.  The existence question can be answered 

efficiently by solving a single longest path problem (not stochastic) on G(N,A), using ijµ as arc 

lengths for each (i, j) ∈ A.  If the answer to the existence question is positive (Case 1), then we 

restrict our attention to only those paths p ∈ P whose .Up ≥µ  If the answer is negative (Case 2), 

then we know that Up <µ for all p ∈ P.  Thus, PS-1 is partitioned into two dichotomous cases.   

LEMMA 2: The function g is increasing in µ and decreasing in ν  for all µ > U and ν > 0 (Case 

1), while increasing in µ and increasing in ν  for all µ ≤ U and ν > 0 (Case 2). 

LEMMA 3: The function g is quasi-convex in µ and ν for all µ > U and ν > 0 (Case 1), and quasi-

concave in µ and ν  for all µ ≤ U and ν > 0 (Case 2). 

3.2.3 Pruning Rules 

Based on the above results, the algorithmic approach we use recognizes and prunes as many 

sub-paths as possible that are not part of the optimal path.  The algorithm incorporates two basic 

approaches to pruning non-optimal sub-paths based on the Lemmas: (a) local preference 

relations (based on Lemma 2), and (b) upper bound comparisons (based on Lemma 3).  The 

pruning significantly improves the performance of the stochastic shortest path algorithm. 

In pruning based on local preference relations, we use the two rules shown below based on 

the two cases identified above.  Consider p1(j) and p2(j), denoting two sub-paths from node 1 

(start node) to node j.  The sub-path p1(j) dominates p2(j), if there is at least one feasible 
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extension of p1(j) to node n that is at least as good as all feasible extensions of p2(j) to node n.  

In such a case, the sub-path p2(j) can be discarded (pruned).  The rules that determine the 

conditions when one sub-path dominates another are referred to as local preference relations.  

The following two pruning rules are based on Lemma 2 for Case 1 and Case 2, respectively. 

Rule 1 applies for Case 1 and Rule 2 applies for case 2. 

RULE 1: The sub-path p1(j) dominates p2(j) if, (a) )(2)(1 jpjp µµ ≥ , and (b) )j(2p)j(1p νν ≤ . 

RULE 2: The sub-path p1(j) dominates p2(j) if, (a) )(2)(1 jpjp µµ ≥ and (b) )j(2p)j(1p νν ≥ . 

In pruning based on upper bound comparisons, the basic algorithmic approach is to compare 

the best extension of a newly created path pnew(j) from node 1 to node j to a current best known 

feasible path pI.  If the best extension of pnew(j) results in a path which is no better than pI, then 

p
new(j) can be discarded.  Let p(j) denote a path from node j to node n (terminal node) whose 

mean and variance are denoted as jµ and jν , respectively.  The best extension of pnew(j) can be 

obtained by solving the sub-problem: 

(SPS-1) Maximize )]j(P)j(p|)j,j(g[ ∈νµ , (6) 

where jµ  = µ 
new(j) + jµ , jν = ν 

new(j) + jν , and P(j) is the set of all feasible paths from j to 

node n (terminal node).  Of course, SPS-1 is as hard to solve as PS-1, and hence we consider 

suitable relaxations of SPS-1 that utilize Lemma 3 to obtain an upper bound on the best 

extension of  pnew(j) by taking advantage of the quasi-convex (Case 1) and quasi-concave (Case 

2) nature of g. This value is compared to a current best feasible path pI, and pruned accordingly.  

3.2.4 Algorithmic Approach for the Static Model 

For simplicity of presentation, we omit the details of the algorithm used to solve PS-1. The 

approach is based on a well known labeling procedure (see Murthy and Sarkar (1998)) that uses 

the pruning rules described above. The procedure starts at node 1 and proceeds towards node n, 

processing nodes sequentially. At each node, the procedure stores all the non-dominated paths 

from node 1 to that node. The two pruning methods described in the previous section 

substantially improve the performance of the labeling procedure (Murthy and Sarkar 1998). 
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When node n is reached, the procedure picks the best path from the pruned set of non-dominated 

paths.  If ℘* is the corresponding optimal completion probability for the best path, the optimal 

ENR from the static model can be obtained from substituting ℘* in (1). 

3.3.   The Dynamic Model for Single Job Assignment 

The dynamic model is a stochastic control problem which is solved using dynamic programming.  

To frame this problem as a dynamic program, consider it as consisting of T stages.  At each stage 

t, the job is in state ts , defined by the tuple, {i, iu }, where i ∈ N is a node in G(N, A) and iu  is 

the cumulative amount of processing units obtained by the job thus far.  Further, at stage t, 

imagine a random process tω ∈ W that generates the arc lengths ijc  randomly from their 

respective distributions for each (i, j) emanating out of node i.  Traversing arc (i, j) corresponds 

to assigning the job on machine j from which the actual CPU time obtained is a random variable 

drawn from a normal distribution with a mean ijµ and a variance ijν , the realization of which is 

known only after the grid manager has taken a decision.  The grid manager now has to choose a 

decision tx  from a feasible choice set, X( ts ), i.e., tx  ∈ X( ts ).  Here, X( ts ) constitutes the 

forward star f(i), the set of all arcs (i,j) ∈ A that originate from i.  Using a decision rule th : S × 

W → X, the grid manager takes the decision tx , i.e., tx  = th ( ts , tω ), which amounts to 

selecting an arc (i, j) ∈ f(i).  As a result, the job moves to a new state 1ts +  in stage t +1.   

The sequence of decision rules ],,1,0[ hThhT K=π , constitutes a policy. In simple terms, the 

policy will specify for each node i ∈ N and for each value of Uiu ≤ (i.e. for each state ts ), the 

optimal decision tx  (which node in G(N,A) to move to in the next stage). As a practical matter, 

since U is relatively large, as an approximation iu is assumed to take on discrete set of values (or 

states): 0, 1, ….,U.  Let π  denote the set of all feasible policies.  Due to the finiteness of N, f(i) 
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and U, the state space S and the decision set X are also finite.  As a result, π is also finite.  Let the 

value function )( Tπℑ  be ENR as defined in (1).  The dynamic programming model is stated as: 

(PD-1) Maximize {ℑ ( Tπ ) | Tπ ∈ ππππ}. (7) 

To solve PD-1 using dynamic programming, we frame the recursive Bellman equation (see 

Equation 8) in the following way.  Suppose that the value function Ft(i , iu ) denotes the optimal 

ENR from stage t onwards, given that as represented by the state ts , the job is at node i having 

obtained iu  cumulative units of CPU thus far.  Further, let )(kijp  denote the probability of 

obtaining k units of CPU from traversing arc (i, j), for k = 0,..,U- iu .  Let the probability of 

obtaining more than (U- iu ) CPU units from traversing arc (i, j) be )( +Uijp .  The recursive 

Bellman equation is: 

 












 −

=
+++++

∈
= ∑ ),(

0
1*)(),(1*)(

)(),(
),( Uj

iuU

k
tFUijpkiujtFkijpMax

ifji
iuitF  (8) 

The term within the parenthesis in (8) is the expected value function in stage t+1 if the grid 

manager chooses to traverse link (i,j). The optimal value of ),( iuitF is obtained by choosing the 

link (i,j) that maximizes this expected value. The recursive equation is solved by working 

backwards from the last row T. The boundary conditions that apply for all nodes j in Row T is, 

FT(j , k) = -C (penalty for non-completion) for k = 0,…,U-1 and  FT(j , k) = R (reward for 

completion) for k ≥ U.  The solution to (7) corresponds to the value function, F1 (Allahverdi and 

Mittenthal 1995).  The computational effort required to solve PD-1 using the recursive equation 

(8) is O(n
2
U

2
).  In summary, the dynamic model develops a policy that specifies for each node i 

∈ N and for each value of iu  ≤ U (where iu  is the CPU units obtained thus far by the job), the 

machine where the job will be processed in the next time period.  However, transmitting this 

policy to the distributed grid manager software at each location requires more control 

information to be attached and significantly greater computation time. 
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3.3.1 Comparing the Dynamic and Static Models 

The optimal policy obtained from solving PD-1 is superior to the optimal solution obtained 

from solving the static model (PS-1), since the dynamic model implicitly includes the static 

solution and therefore evolves a policy that is at least as good as the static solution. To illustrate, 

consider the simple graph shown in Error! Reference source not found. which illustrates the 

mean and variance, (µij, νij), of the CPU obtained by traversing each arc (i, j).  Suppose that the 

CPU required U = 45 units.  From the static model, the optimal path is 1-2-4-5, and not 1-2-3-5 

because the standard normal associated with path 1-2-4-5 is 76.173/4560(1 =−=z , while 

that associated with 1-2-3-5 is 00.125/4550(2 =−=z . This implies that path 1-2-4-5 must be 

traversed irrespective of the actual CPU obtained upon arriving at node 2.  Instead, after reaching 

node 2, if it is discovered that 30 units have been obtained so far, traversing path 2-3-5 would 

yield a better chance of meeting the requirement of 45 units than the path 2-4-5.  The z value 

associated with the former is 75.316/)4552530( =−++=z , and for the latter is 

13.364/)4553530( =−++=z .  Therefore, the chance of meeting the deadline requirement is 

better by following a policy which allows for varying the route based on information available at 

node 2.   

 

Figure 2: Static and Dynamic Paths for a Simple Graph 
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4. Sequential Grid Models For Multiple Jobs 

We now examine the case where buyers approach the grid manager with requests for 

processing K jobs on the grid with K > 1. Each job k requires kU units, carries a reward kR  if it 

is completed on time, and a penalty kC otherwise.  We assume that there are a sufficient number 

of processors on the grid, i.e. m >> K.  Further, each processor can process only one grid-

supplied job at a time.  We consider two heuristic approaches for scheduling the K jobs on the 

grid.  Both maximize the ENR (Equation 2).  The first approach is the Single-period Assignment 

Problem which is a direct extension of PA-1.  Each job k is assigned to a different processor l 

and this assignment remains unchanged over the entire duration of T time periods.  The second 

approach is the Multi-period Static Assignment Problem and is a direct extension of the static 

model (PS-1).  Each job k is assigned to a different processor l, but each job is allowed to be 

processed by different processors in each time period.  However, like PS-1 the schedule that is 

developed is considered static because it does not change based on the state achieved at a node. 

4.1.   Single Period Assignment for Multiple Jobs  

Since this problem is a direct extension of PA-1, we will refer to it as PA-K, where K jobs have 

to be assigned to m different machines.  As described for PA-1, let P’ ⊂ P denote the set of paths 

in G(N, A) consisting of only continuation arcs.  Hence, |P’| = m and traversing each such path 

amounts to the job being processed by a single specific machine.  All paths 
l

p ∈P’ are node 

disjoint, except for the starting and ending node.  Associated with each path 
l

p  ∈ P’, the mean-

variance pair ),(
ll

νµ can be obtained as, ∑
∈

=

l
pji

ijl
),(

µµ and ∑
∈

=

l
pji
ijl

),(

νν .  If a job k is 

assigned to machine l, then the probability of its completion, ]/)(Pr[, lkUlzlk νµ −≤=℘ , can 

be determined using the normal distribution.  Accordingly, the ENR obtained from assigning job 

k to machine l can be determined as,   k - Ckl  )k+Ck = (RklENR ℘ for each k = 1,..K and l = 
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1,..,m.  Since m >>K, additional (m-K) dummy jobs are created whose ENR is 0 when assigned 

to any machine l.  PA-K can be solved as the classical single assignment problem where m jobs 

are assigned to m processors so that the total ENR is maximized.   

4.2.   Multi-period Static Assignment Problem with Multiple Jobs 

While PA-K can be solved efficiently, the quality of the solution obtained may not be good 

as it does not take advantage of sequential grid computing.  We now consider the assignment of 

K jobs to K of the m available machines while allowing the assignment to vary over the T 

periods.  However, the assignments over the T periods are determined a priori and hence static.  

Relating this problem to the graph in  

Figure, each job k traverses the acyclic network from node 1 to node n.  Such a traversal amounts 

to assigning job k to different processors over T periods.  Since each processor can process at 

most one grid-supplied job in each time period, the K paths are node disjoint except for node 1 

and node n.  The problem then is to determine K node disjoint paths, one for each job, so that the 

total ENR is maximized.  This problem is a direct extension of PS-1 to K jobs and therefore 

referred to as PS-K.   

4.2.1 Computational Complexity of PS-K 

It can be shown that Problem PS-K is NP-Hard in the strong sense.  The decision version of PS-

K is: Does there exist m node disjoint paths in the acyclic graph G(N, A) such that the total ENR 

is at least W? We show in the online appendix to this paper that the decision version of PS-K is 

NP-Complete by reducing the Satisfiability problem (SAT) to an instance of the decision version 

of PS-K. The theorem is stated here without proof.   

THEOREM 1: The decision version of PS-K for K≥2 is NP-Complete (proof in online appendix). 

4.2.2 An Efficient Heuristic for PS-K 

Since PS-K is shown to be NP-Hard, it is reasonable to explore fast heuristics that derive 

good workable schedules.  In the next section, we empirically explore the following simple 

heuristic.  The K jobs are sorted in decreasing order of )( kCkR + , the sum of the reward and 
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penalty.  It is assumed that this ordering is consistent with the ordering by kU ; that is, jobs with 

greater computational requirements carry a greater price and penalty. The heuristic involves 

solving K number of PS-1 in sequence.  The first PS-1 problem solved uses the original 

parameters ),( ijij νµ , for each (i, j)∈A.  As a result, a static path is obtained where each 

intermediate node corresponds to a machine assignment.  After determining the ENR associated 

with the first job, the machines used are removed from consideration for subsequent jobs.  This 

process is repeated K times, after which we have schedules for all K jobs. 

5. Computational Results for Single Job Models 

To evaluate the performance of the static and dynamic models for single job assignment, we 

coded the two models, PS-1 and PD-1, using C++ and ran several thousand instances using 

randomly generated input data.  The purpose of our computational experiments was twofold: (a) 

to understand the factors that affect the benefits from sequential grid computing by comparing 

the completion probabilities provided by the static and dynamic models (PS-1 and PD-1) with 

that obtained by performing the job on the same machine (PA-1), and (b) to understand the 

factors that affect the difference in completion probabilities obtained by the static versus 

dynamic models.  While the first analysis determines the conditions when sequential grid 

computing provides the greatest benefits, the second analysis explores whether the benefits from 

the dynamic model outweigh its additional complexity. 

We focus on the impact of three characteristics of the sequential grid computing environment 

on completion probabilities—(1) the job size (using the CPU units required as a representative 

metric), (2) the grid resources available (using the number of processors available to the grid 

manager as a representative metric), and (3) the heterogeneity of available grid resources (using 

the variance of CPU units available at each processor as a representative metric).  These three 

factors capture the major differences in grid environments that are likely to affect the benefits 

from sequential grid computing.   
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5.1. Parameters for Problem Instances 

The results excerpted for presentation are based on a subset of 3,100 instances with varying 

job sizes and estimates of the mean and variance of CPU units available at each processor in 

each time period.  As a benchmark for the static and dynamic model, we also estimated the 

probability of job completion for each of the 3,100 instances assuming that the job was assigned 

to the single best processor for all time periods (PA-1).  PA-1 estimates the best case completion 

probability without sequential grid computing.  The mean CPU units available at processor in 

each time period were randomly selected from a uniform distribution ([95, 105] units).  The 

corresponding variance was also selected from a uniform distribution ([5, 10] units).  Transfer 

cost was fixed at 1 CPU unit to evaluate situations where transfer costs are low, since high 

transfer costs will simply impede sequential grid computing.  To simulate peak loads of 

machines, during one-third of randomly chosen time periods, the available CPU units were 

reduced to 20% of the maximum capacity.  The metric of CPU units is intended to be an abstract 

relative measure of resources required to resources available rather than a specific absolute 

measure; the models can also be applied to specific resources (e.g. CPU, memory, or storage). 

Interestingly, a grid of 15 personal computers was used to run the computational experiments.   

 

 

Figure 3: Performance and Job Size 
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5.2.   Model Performance and Job Size 

First, we investigated the effects of the job size on the relative performance of PS-1 and PD-1.  

We used the CPU requirements of the submitted job as the focal metric.  The grid was comprised 

of 100 machines operating over 5 time periods.  Figure 3 shows that the improvement over PA-1 

is most pronounced within a range in the middle section of the figure, with a 100% maximum 

improvement in probability of completion.  The intuition behind these results is straightforward.  

For small jobs where the probability of completion is nearly 1, there is little benefit in routing the 

job through multiple processors since even a single processor provides good solutions.  

Conversely, when the job size is so high that even the static and dynamic models yield low 

probabilities of completion, there is once again little benefit from multiple processors.  Within 

these extremes, sequential grid computing provides significant improvement over the single 

machine best case.  While these general results hold for any variation in parameters of the peak 

period, the benefits of the sequential grid computing models are more pronounced as either (a) 

the length of the peak period increases, or (b) the resource availability during the peak period is 

reduced.  Little performance difference is seen between the static plan and dynamic policy. 

5.3.   Model Performance and Resources Available 

Next, we investigated the impact of the resources available to the grid manager on the 

performance of the two models (PS-1 and PD-1) and the benefits from sequential grid 

computing.  We used the number of processors on the grid as the focal metric.  The job required 

430 CPU units and the grid operated over 5 time periods.  Based on these parameters, the results 

depicted in Figure 4 show the improvement in probability of completion relative to PA-1, the 

best single machine case.   

As the number of processors available increases, under the sequential grid models (both the 

static plan and dynamic policy) the completion probability increases dramatically at the initial 

stages (Figure 4), while the improvement flattens out as the completion probability reaches close 

to 1.  On the other hand, the completion probability in the single processor case exhibits slower 
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stepwise improvement as the number of available processors increases.  The identity of the best 

processor changes infrequently as processors are added in the single processor case.  For 

example, in our reported result, the sixth machine added has a large capacity and dramatically 

increases the completion probability.  This machine is selected in future samples because no 

subsequent machines match its capacity until the 32nd machine is added.  The single processor 

case is not able to achieve better than a 50% probability of completion.  In contrast, with the 

static and dynamic models, each new processor added to the grid provides incrementally more 

flexibility to the grid manager and quickly increases the probability of job completion to 1.  The 

improvement is highest at smaller grid sizes and then diminishes, but still remains substantial 

throughout the experiments.  Again, little performance difference is seen between the static plan 

and dynamic policy. 

 

 

Figure 4: Performance and Resources 



 23

5.4.   Model Performance and Resources Heterogeneity 

We investigated the effects of the resources heterogeneity on completion probability.  In this 

experiment, we used the variance of CPU units available at each processor in each time period as 

the focal metric. The grid was composed of 100 machines operating over 5 time periods. The 

variance of CPU units available in each period for each processor was randomly generated from 

an uniform distribution ([1, V] units) where V is the value shown on the x-axis of Figures 5, 6 

and 7. This experiment explored three demand scenarios—low (425 CPU units required, Figure 

5), medium (475 CPU units required, Figure 6) and high (525 CPU units required, Figure 7).  

For the results shown in Figure 5, a small enough job demand was selected such that it was 

likely that a single machine had mean CPU units available to complete the job.  Thus, with low 

variance in CPU units available, the probability of job completion in the single machine best case 

is high.  The probability of completion diminishes in the single machine case as the variance in 

CPU units increases.  However, the sequential grid computing models are robust to the increase 

in variance since the grid manager is able to work around potential problems.   

 

Figure 5: Performance and Heterogeneity with Low Demand 
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Figure 6: Performance and Heterogeneity with Medium Demand 

 

For the results shown in Figure 6, a medium sized job demand was selected such that it was 

unlikely that a single machine had mean CPU units available to complete the job, but that there 

was still a relatively high availability of processing power on the grid compared to the job size.  

The medium job size is independent of resource heterogeneity.  The single processor case is 

unlikely to complete the job; the sequential grid models are almost guaranteed to finish.  Again, 

there is minimal difference between the static plan and dynamic policy.  

For the results shown in Figure 7, a high demand job size was selected such that it was 

unlikely that a single machine had mean CPU units available to complete the job and that there 

was a relatively low availability of processing power on the grid compared to the job size.  

Single machine assignment is unlikely to complete the job with any variation in resource 

heterogeneity; however, the sequential grid models begin with a low probability of completion 

but rapidly increase as the heterogeneity increases.  The sequential models achieve 50% or more 

probability of completion at higher levels of variance in machine availability.  In this scenario, 

again, there is clear value to sequential grid computing as the sequential models route the job 
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intelligently through the grid.  Interestingly, the dynamic policy shows a slight increase in 

performance; we explore this difference further in the next section. 

 

 

Figure 7: Performance and Heterogeneity with High Demand 

5.5.   Comparison of a Dynamic Policy versus a Static Plan 

The computational experiments show definite evidence of performance benefits from using the 

sequential grid models.  However, in the majority of cases, there were few differences found 

between the static plan and the dynamic policy.  The dynamic policy subsumes the static plan; 

therefore, it is possible to use the dynamic policy alone.  Unfortunately, the dynamic policy 

requires significantly more computational time and routing overhead. 

To provide evidence of the contrast in computational requirements, we investigated the 

effects of the instance size on the calculation run times of the static (PS-1) and dynamic (PD-1) 

models.  With a similar setup as previous experiments, this trial used 5 processing periods to 

complete a 500 CPU unit job.  The results are shown in Figure 8.  As expected, PS-1 requires 

little processing time compared to PD-1.  Further, as the problem size increases, the processing 
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time for the dynamic model increases significantly, while the corresponding processing times for 

the static model remains at a relatively constant low level.  For reference, the run times reported 

were found using a 2.13 GHz Pentium processor with 2.0 GB of memory. 

 

 

Figure 8: Runtime for the Static and Dynamic Models 

 

Therefore, if sequential grid models are used, when should a grid manager select a dynamic 

policy over a static plan? We investigated thousands of problem instances with varying 

parameters and discovered two situations when the dynamic policy can be advantageous over the 

static plan—when the job is behind schedule and when this deviation occurs during the early 

stages of the job.  The experiments described below have a similar setup as prior experiments 

with a grid of 50 machines available over 10 time periods for a job requiring 1040 CPU units.  

We compare the probability of completion from the dynamic policy over the static plan. 

5.6.   Comparative Performance by Time until Deadline 

First, we examine the relative performance of the dynamic policy versus the static plan as the 

deadline for completion approaches and the job is behind or ahead of schedule.  At any time 
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period t , let tu be the cumulative amount of CPU time obtained by the job thus far. We quantify 

the deviation of the job from plan through the variable tZ , defined as the difference between the 

expected value of the remaining available CPU times on the static path (reduced by any 

applicable transfer costs), ∑
−

+=
+−

1

1

)1,,(
T

tk
kkfkic , and the amount of processing required to 

complete the job, tuU − , divided by the square root of the variance in the remaining available 

processing, ∑
−

+=

1

1
,

T

tk
kiv .  Thus, positive values of tZ  represent a job ahead of schedule, and 

negative values of tZ  represent a job behind schedule. For the static plan, we first determine the 

overall static schedule and we calculate the probability of completion assuming that the job 

remains on the original static schedule, irrespective of the value of tu (and hence tZ ). For the 

dynamic plan, we use the value of tu  to determine the new optimal path from the stored 

dynamic policy for that node.  

Figure 9 depicts the increase in probability of completion from using the dynamic policy over 

the static plan for deviations that occur at different time periods. In the figure, we use the specific 

tZ  value shown to calculate tu and the corresponding completion probabilities from the static 

and dynamic models. For jobs that are significantly behind schedule ( 0<<tZ ), there is some 

increase in probability of completion by using the dynamic policy when the deviations occur 

during early periods, but as the deadline approaches, there is little chance of recovery for either 

the dynamic policy or static plan.  Alternatively, for jobs that are significantly ahead of schedule, 

the dynamic policy provides little increase in probability of completion since both models are 

likely to complete successfully.  Thus, for jobs that are behind schedule, the dynamic policy 

preserves more options for completing jobs until much later in the processing schedule.   
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Figure 9: Comparison of Dynamic versus Static by the Time until Deadline 

5.7.    Comparative Performance by Job Status 

Alternatively, we can view the results from the perspective of the relative performance of the 

dynamic policy versus the static plan by the job status. Figure 10 depicts the increase in 

probability of completion from using the dynamic policy over the static plan for a range of job 

states ( tZ  values).  The data is generated in exactly the same way as in Figure 9. However, in 

Figure 10, each line in the figure represents the time period in the processing schedule where the 

deviation occurs.  When the deviation occurs early (period 1), the dynamic model provides 

improvements even when the job is significantly behind schedule ( tZ << 0). When the deviation 

occurs during later periods, the dynamic model shows improvements only when the deviation is 

small ( tZ  is close to 0). Overall, the value of the dynamic program is highest when the 

deviations occur early in the processing schedule. 
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Figure 10: Comparison of Dynamic versus Static by Job Status 

6. Model Performance with Multiple Jobs 

We now consider the efficacy of the static model when multiple jobs are scheduled.  We use 

the number of jobs available as the focal metric, keeping the grid size constant.  Because we do 

not evaluate the dynamic alternative, we can consider larger grid sizes.  For the experiment 

reported, the grid contains 100 machines evaluated across 10 time periods.  Jobs generated 

required an average of 1040 CPU units.  Expected revenue for each job was set at US$ 2 per 

CPU unit requested and the penalty was allowed to vary uniformly from $100 to $500.  Transfer 

costs were kept constant at one CPU unit for any change of machine.  As mentioned previously, 

the optimal scheduling of multiple jobs (PS-K) is itself a difficult problem.  For this experiment 

a greedy heuristic was used where jobs were scheduled on the grid sequentially based on a 

descending order of potential revenue. This was compared to PA-K, i.e., where each of the K 

jobs was assigned to one of K (K≤ m) machines. The result is depicted in Figure 11.  

At very low number of requested jobs, the differences in expected net reward of the static 

plan relative to the same machine assignment are fairly small.  Relatively quickly, however, the 
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static plan is able to take advantage of grid resources to provide increased positive ENR.  Since 

negative ENR jobs would not be accepted, ENR increases with the number of jobs submitted.  

However, Figure 12 depicts the ENR per job and illustrates the consistent superiority of the static 

plan over single machine assignment.  The static plan allows the grid manager to accept many 

jobs that could not be accepted due to negative ENR in the single machine assignment case.  .   

 

Figure 11: Expected Net Reward for multiple jobs 

 

Figure 12: Expected Net Reward per Job for multiple jobs 
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7. Discussion of Computational Results 

The computational results highlight several interesting observations about the sequential grid 

computing environment. 

Improvements over the single processor best case: For small jobs with relatively low CPU 

requirements, the single machine case provides a high completion probability and the 

improvements that result from the sequential grid models (both static and dynamic) are low.  

Likewise, for large jobs with low completion probability, the sequential grid models provide 

little improvement because they too cannot complete the job.  Between these two extremes the 

static and dynamic models provide significant benefits.  Experiments indicate that when the 

single processor best case provides low probabilities of completion (around 20%), sequential 

grid models provide the greatest benefits, increasing the completion probability to around 70%. 

Increasing resources: As resources are added to a sequential grid, completion probability 

increases dramatically but reaches saturation quickly.  Unlike the parallel grid environment, 

sequential grid models use only one processor in each period.  Thus, additional resources initially 

increase the options available to the grid manager, but the benefits are muted as resources 

increase further.  In the single processor best case, the improvement in probability of completion 

is stepwise and idiosyncratic. An interesting implication is that, in sequential grid computing, the 

grid size can be kept fairly small to obtain most of the benefits without significantly increasing 

the complexity for the grid manager. 

Impact of heterogeneity in grid resources: As uncertainty regarding the idle capacity at each 

processor in each time period increases, the benefits of the sequential grid over the single 

processor case increases.  At low levels of demand relative to the capacity of a single machine, 

the increase is marginal. At medium demand levels, the sequential models allow for job 

completion irrespective of the resource heterogeneity.  At high levels of demand, both the single 

processor and sequential grid models can benefit from increased variability; however, the 

sequential models consistently outperform the single processor case.   
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Difference between dynamic and static models: While the dynamic model always provides 

superior solutions to the static model by design, extensive experiments indicate that the 

difference is small.  At the same time, the dynamic model is computationally intensive, requires 

large overhead information, and dramatically longer run times.  However, when a job is behind 

schedule especially during the early stages, the dynamic policy has greater ability to recover. The 

static model is computationally efficient, easy to implement and provides good solutions. 

Handling of multiple jobs: The sequential grid models prove robust in multiple job scenarios.  

The limits of single machine assignment are quickly reached while sequential grid models 

continue to extract additional value with each additional job considered.  Further, the average per 

job expected net reward is stable and consistently higher than single machine assignment. 

8. Conclusions 

In this paper, we defined a grid computing model (termed sequential grid computing) that has 

significant advantages in processing large jobs.  In sequential grid computing, a computationally 

intensive job is routed through several processors towards completion, but is assigned to one 

processor during each time period.  We also defined two models (static and dynamic) that solve 

the routing problem associated with sequential grid computing—that is, determining the 

processor to which the job is assigned for each time period.  The static model is computationally 

efficient, easy to implement and provides good solutions under a variety of conditions, while the 

dynamic model is computationally intensive and requires more overhead information to be 

transmitted with the job.  Our computational experiments provide evidence that the sequential 

grid computing models have significant benefit when compared to the single processor best case. 

The research can be extended in several ways.  First, while we have shown the benefits of 

sequential grid computing and provided a proof-of-concept, the software architecture and 

protocols required to implement the environment are a significant future research issue. Second, 

we have assumed fixed time buckets in both the static and dynamic models. Determining the 

optimal size of the scheduling time interval is a difficult research problem and will depend on the 
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modularity of the application, the transfer cost, and the size of the state information that must be 

transmitted with the job. Third, the procedures and protocols required to implement the models 

in a peer-to-peer environment (without a centralized grid manager) is also a future research issue 

and of particular relevance in the Internet environment.  Fourth, we have assumed independence 

of available processing times at each processor, an assumption that may not be realistic if 

processor failures or non-grid jobs are related. Fifth, the amount of CPU time required by a job 

may be difficult to determine and can be treated as a random variable in the models. Finally, 

models that combine parallel and sequential grid computing will enable the benefits of both grid 

computing paradigms.  
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