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This paper investigates the possible equilibria in a game of information
transmission with incomplete information. Two individuals are required to
reach a decision between two alternatives and a decision is reached only if
they can agree on it. Individuals receive private signals and can send
messages to each other sequentially. However, they can only send binary
messages and the sending of messages is time consuming. We investigate the
possible equilibria when the individuals agree on the desired outcomes and
when they do not. We show that when the players have the same preferences
over outcomes there is a limited amount of disagreement that can take place.
Also, that as the players become more patient the only equilibria which
survive are those where information is aggregated efficiently and less delay
is incurred. Further, we show that, when players are impatient an increase
in impatience can serve to improve efficiency. In the case of biased players
the equilibria are similar to the ones for the no-bias case. We show that
the player who is more patient and who moves first is able to reach
decisions favorable to himself. If both players are patient there is an
equilibrium where there is a large amount of disagreement. For such a
situation the imposition of a time limit on the amount of discussion allowed
would improve efficiency.
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1. Introduction

The use of teams to organize production is ubiquitous. As such, the problem

of the optimal organization of teams has, deservedly, received considerable

attention from economists. This literature has largely focused on the issues

arising from the provision of proper incentives for the individual members

of a team to maximize joint production. Thus, team output could depend on a

variable like weather and on the effort of each individual member of the

team which could be unobservable. The job of the principal then is to devise

compensation schemes which induce the agents to provide the proper effort

(Holmstrom 1982).

While the use of teams in production is all pervading teams have other

functions as well. In society certain decisions are delegated to a group of

individuals who, for one reason or another are, supposedly, better qualified

to take decisions on behalf of other members of society. Examples are

democratically elected governments, juries and committees. One obvious

reason for decision making through teams is that it mitigates the bias in

decisions which might arise from allowing only one person to take decisions.

Quite often another reason is that some decisions require some specific

knowledge or expertise and it is felt that a group of such persons would be

able to reach a better decision than any single individual acting alone. The

reasoning is that these people could share their knowledge or expertise and

reach superior decisions. An example is the board of directors of a firm.

Thus, in summary, teams are used to mitigate individual biases and provide

superior information sharing.

This issue of information transmission in teams has been relatively



neglected. This statement has to be qualified by noting that team decision

problems arise in many different areas of life, such as in the constitution

of juries and committees, and in those particular areas such problems have

received their due attention. However, we would argue that there is a

information transmission aspect which is common to all team decision

problems and it is the purpose of this paper to investigate this.

The problem with reaching decisions through a group of individuals is that,

though they might have private information about the problem at hand, they

might be reluctant to share such information. It is even possible that they

might deliberately try to mislead the other members of the group about the

information they have in order to achieve their preferred alternative among

the menu of options available. As an example consider a union and the

management bargaining over wages. E^ch may possess information about the

state of the economy in future and could agree on the wages to be paid under

some circumstances but might disagree about others. This disagreement over

wages in some situations could lead them to mislead the other party about

their private information. Another scenario where the same problem could

crop up is in setting standards on product compatibility. This issue has

been looked at in terms of a coordination game by Farrell and Saloner(1988).

It is possible that the firms may agree on the standards to be set if they

knew the future of the industry in some situations and disagree in others.

It is also possible that they may have private information about the future

of the industry which, if shared, could lead to a quick decision on

standards. However, it is this which would lead to the manipulation of

information revealed to achieve a desirable outcome if the state of the

world were such that the two individuals preferences are opposed to each

other. In contrast to standard bargaining models here the size of the pie is



not known and the two, or more, parties have private information about the

size. We feel that there is both a bargaining and a communication aspect to

group decision making and we will try to capture this feature with our model

which is similar to bargaining models.

As noted above a number of studies have been conducted in different areas

which touch on the problem in question. Some of the earliest attempts to

model the information sharing aspect of a group of individuals have been in

the analysis of jury decision making. However, it is unlikely that there is

a strong bargaining feature in juror decision making and the relationship of

this literature to our present concerns is at best tangential.

Other scholars have also looked at the problem from their own perspectives.

Ladha (1992) writes about the Condorcet Jury Theorem, " The theorem

establishes that under certain conditions a majority of a group, with

limited information about a pair of alternatives, is more likely to choose

the "better" alternative than any one member of the group. The theorem,

thus, provides a mathematical basis for majority rule voting and potentially

an important clue to our understanding of the strength of democratic

government." However, the theorem requires two assumptions : the jurors vote

independently and they share a common goal. Ladha removes the assumption of

independence and considers "correlated votes" because given common

information and shared experiences votes are not likely to be independent.

Although Ladha recognizes the lack of independence among votes the analysis

conducted is not game theoretic in nature. A recent study by Austen-Smith

and Banks(1995) shows that a crucial assumption in the Condorcet Jury

Theorem, that people vote "sincerely", is not rational and in a Nash

equilibrium it is not possible that everybody votes sincerely. Our work



considers a different mechanism from voting as a way to reach decisions. It

could be called decision making through consensus but we too are concerned

about the efficiency of decisions reached.

The paper which comes closest to our concerns is by Sah and Stiglitz (1988).

They consider three forms of organizations: committees, hierarchies and

polyarchies. They evaluate the effect of organizational form on the

statistical errors of project selection. In their model individuals are

homogeneous in their information processing abilities but are prone to

errors. Thus, given any project, individuals make their assessments on the

quality of the project, i.e., good or bad. However, these decisions are

subject to errors. Individuals may not approve a good project (Type-I

errors) or may approve a bad project (Type-II errors). The incidence of

these errors are the same across individuals. The decision making body could

be constituted as a committee of n such individuals with a pre assigned

majority rule. Or, the decision making body could be a hierarchy (a

bureaucracy) where projects are passed on to higher levels only if they are

approved at the lower levels. In contrast, a polyarchy accepts a project if

gtny individual member does so. Using, this model and by including evaluation

costs Sah and Stiglitz derive results on the relative performance of these

different types of organizational modes.

We propose to take a close look at the structure of the problem of

information transmission and introduce costs of delay. It is our contention

that teams do not reach decisions instantaneously and so we will build a

model where teams could, potentially, take time to reach a decision. We

will, also, introduce different tastes so that there is possibility for

disagreement. The main significance of our work is that members of the team



can decide on their messages strategically. In contrast Sah and Stiglitz

model messages being sent with an exogenously determined probability. Koh

(1992) shows that in a hierarchy the individuals at a higher rank should

take into consideration the recommendation provided by an individual at a

lower rank. However, his analysis deals only with hierarchies and does not

take into account strategic concerns. We would argue that the choice of

signals to send should be determined by the individuals themselves after

taking Into consideration the parameters of the problem.

To address our concerns we build a model which mimics conversation between

two individuals. This we do by constructing a game where two individuals,

with private information, send messages to each other sequentially. Further,

the individuals are restricted in their choice of messages they can send.

Specifically they can suggest one of the two decisions under consideration.

If the two individuals agree at any point in their conversation, the

decision that they agree on is adopted as the decision the team reaches and

the game ends. In our view individuals are naturally restricted in their

ability to communicate by the nature of language and this structure

highlights this view. It is also possible that this restriction is a result

of an optimization problem. We could view these two individuals as two

departments within an organization. Then it is quite plausible that

communication between the two departments takes some predetermined form.

We investigate the Perfect Bayesian Equilibria for this game for the

situations where the individuals have the same preferences and when they do

not. We begin with a discussion of the general structure of the equilibria

and describe our choice of out of equilibrium beliefs. For the particular

out of equilibrium beliefs we choose the game ends within a limited time,



which is useful for the purpose for the purpose of describing equilibria. We

show, in the case of same preferences, that if the players are impatient

there are equilibria which involve useless communication. At the same time

there are equilibria which involve no communication at all and are

efficient. The problem is that communication involves delay and is only

useful if it leads to an exchange of information and better decision making

in terms of lower statistical errors. Inefficient equilibria involve the

sending of messages which have no information content. In such a situation

increased impatience on the part of the players would be beneficial. An

alternative would be to let a single individual decide. If players are

patient then there is more exchange of information and, as the cost of delay

is lowered further, only efficient equilibria remain.

In the case of players with different preferences the structure of the

equilibria are similar to the case of same preferences. As long as one of

the players is impatient the game ends within a limited time. However, there

is a larger amount of disagreement and individuals who move first, or are

more patient, are able to reach decisions favorable to themselves. If both

individuals are patient, there is an equilibrium which involves long, though

finite, discussions. In this equilibrium both individuals continue to insist

on their desired outcome hoping that the other individual will concede. The

game ends when one of the individuals becomes so pessimistic about the other

player conceding that he concedes himself. Clearly, this equilibrium is

inefficient and a limit on the amount of discussion allowed would prove

helpful.

In the next section we describe our model. The general structure of the

equilibria and out of equilibrium beliefs are discussed in section 3.



Sections 4 and 5 discuss the equilibria in the case of same preferences and

biased preferences, respectively. Section 6 provides the conclusion.

2. Model

We will denote the state of nature by 8 which can take one of two values 8Q

and 0^. Each individual receives a signal, s, which could take one of two

values sx or s2 and has a prior over the state of nature, P(G=eo) = £.

Consequently, individuals can calculate the posterior £(s) = P(8=9o|s) using

Bayes' formula and their knowledge of the conditional probability

distribution between the signals and the states of nature. More generally if

there are n individuals and the signals they receive were public knowledge

then the common posterior will be denoted £(s), where s will be a (n x 1)

vector of sx and sa. If signals were informative about the state of nature

then a larger sample of signals would lead to better decision. So the

emphasis will be on finding out to what extent individual information can be

aggregated for joint decision making. The preferences of an individual will

be given in terms of costs of Type-1 and Type-11 errors. Thus if we denote

the decision 6=eo as do and 6*=QX as dx the costs of making the wrong

decision are shown below.

(1)<*o

e=eo e=ex

a ±

From decision theory an individual would choose to minimize the costs of

a1
reaching a decision and would use the rule do if £(s) > - — ^ - j - , dx if ?(s)

a. a.
< — - i — , do or dx if ?(s) = -̂r- . In the games we will look at the



individuals will be restricted to binary messages, in, which can be do or dx,

in any one stage. At first sight, this might seem too restrictive. However,

It is plausible that the message space Is smaller than the number of

possible signals that we may receive and this restriction merely serves to

highlight this possibility. The restriction of messages to these two

possibilities could, also, be a decision which has been separately

undertaken to conserve costs. The outcome of these games will also be do or

dx. Thus, we could be talking about the decision theory of teams. We will

begin by looking at a two person game.

We will call these two individuals 1 and 2 with costs a1, bx for 1 and a2,

b2 for 2. Both of them receive a signal s€(sx,s2) and have a prior £ over

the states of nature. The probability with which any individual receives the

signal sx is ir. The posteriors 1 and 2 would form, if they knew the signals

1 and 2 have received are £(sx,sx), £(sx,s2) or £(s2,s2). For ease of

notation we will call these irla>i ?r12 and ir22. Both 1 and 2 know the values

of these posteriors. The game proceeds by 1 sending a message m1€{do,d1> in

stage 0. If 2 sends the same message (mx = m2) in stage 1 then the game ends

and payoffs are received. If 2 does not agree with 1 then both players incur

a cpst of delay by a factor D(D > 1) and the game continues with 1 sending a

message. If 1 agrees with 2's message then the game ends, otherwise the game

continues with a further cost of delay. The structure is quite similar to

bargaining games and comes under the general classification of multistage

games with observed actions. This structure is given exogenously and might

not be appropriate in some circumstances. For example the players could

restart discussions even if they do agree on a particular verdict. Thus we

should also consider the question whether this structure is optimal for

reaching decisions. We would argue that this is good starting point. The

8



payoffs are in terms of expected costs. For example, the game might end in

the first stage with 1 saying do and 2 agreeing. Then l's payoff will be the

cost of Type-I error a1P(9=81|s1,m2). If 1 receives a signal sx and infers

from m2 that 2's signal is sx with probability #, then 1's payoff is ax[ #(1

- itxl) + (1 - 0 )(1 - rc12)l. The structure of the game is shown in Figure 1.

We will define mk € {do,d^} as the message player i sends in stage k. Then

the history hk+1 will be defined as ^ ,mk}. Notice that the game

starts in stage 0 with 1 sending the message m° and that 1 and 2 take turns

sending messages. The game ends if m11"1 = mk. A behavior strategy CP± is the

probability <rlc(mk|hk)st)

game ends

game ends

game ends

game ends

Figure 1. Game tree

that player i sends message mk at stage k when he has observed the signal



and history h\ We will define fik(sjhk) as the belief player i has about

player j's type in stage k, given the history hk. We will require that these

beliefs are updated using Bayes* rule whenever possible. Thus

(2)

t=l

f , 1 *
V J itmO
( I<rH ; and X^dr^cr^) ( A 1 1 ^ , ^ ) ) as the probability

that the game ends in stage k(l) with a decision of d^d^. Then player i's

payoff u1(<r1|st) is given by

00 2 CO 2

[ J]A0*(<rl,<rJ)D
k-lal(l-icw)|i

o(s1i) + £ £ A11 (o^o-,) D ^ i ^ A s J (3)

where ^(s^), the probability of player j receiving the signal ŝ , is ir or

1-ir. Let <r define the strategy profile {0^,0^). Then a perfect Bayesian

equilibrium is a (cr,fz) such that

u1(<r|h
k
>sr>^

k(st|h
k)) ^ u^dri.ir^l^.s^fi^s^lh*)) V k,V cr̂ . (4)

By Fudenberg and Tirole(1991) this equilibrium will also be a sequential

equilibrium as defined by Kreps and Wilson(1982).

3. Preferences, Beliefs and Sequential Equilibria

In this section we will discuss the structure of preferences we will be

investigating in Section 4 of the paper. We will also discuss the structure

of sequential equilibria and the structure of out of equilibrium beliefs for

these preferences. As a part of the definition of a sequential equilibrium

it is necessary to outline strategies for all possible histories including

10



those that would not be reached if the players played their equilibrium

strategies. This imposes a rather large notational burden which we will

eliminate by showing the general structure of all sequential equilibrium and

going on to discuss specific equilibria with much simpler notation.

We will start by looking at the situation where the two individuals have the

same preferences. In a number of situations which involve the use of teams

to reach decisions it would be appropriate to model team members with

identical preferences. There is the notion that if individuals in a team

have similar goals then it is easier to reach better decisions. An

investigation of this notion requires a study of decision making with

identical preferences. This notion is captured by the assumption that a± =

a, b± = b for i a 1, 2. Me will further assume that

a + b

From the way posteriors have been defined it is clear that the appropriate

decisions for the events (slfsx), (sltsa) and (s2,s2) are do, do and dx

respectively. Under these circumstances there is a need for transmission of

information across individuals. A situation where the correct decision is do

in all events would not be interesting. We could have investigated the

situation where nlx > r- > ir > ir22, but this would be symmetric to (5)
a • D

and the types of equilibria would be similar.

In games of incomplete information the structure of equilibria depend

crucially on the out of equilibrium beliefs. Here we will argue that if both

types of 1 are supposed to say do in equilibrium then if dx is observed 2

will believe that 1 is type s2. Similarly if both types of 2 are supposed to

11



agree with do and dx is instead observed then 1 will believe that 2 is type

s2. The reverse holds if the signals are supposed to be dx for 1 and 2 is

supposed to agree with that message. From (5) we can see that type sx would

always settle for do if he were left to decide for himself and type s2 could

say dx. Thus, these beliefs are plausible. We will, later, discuss these

beliefs from the point of the criteria imposed by the literature on out of

equilibrium restrictions. There we will show that these beliefs satisfy the

Cho and Kreps (1987) intuitive criterion. First we will show that in any

equilibrium the game should last only four stages.

Proposition 3.1: Let K be the last stage where there is a disagreement, then

K s 3.

Proof: The proof will be through contradiction. Suppose K = 4, then there

are two possible sequences of messages which could occur:(i)

{do,dx,do,dx,do,do} or (ii) {d1>do,d1,do,d1,d1}. In (i) 1 sends the message

do to which 2 replies with dx in the first stage, this is repeated in the

second and third stage, and in the fourth stage 1 repeats the message d0 to

which 2 agrees, (ii) can be interpreted in a similar manner. Consider (i):

when 2 says dx in the first stage 2 must have received s2 as a signal.

Consequently when 1 repeats his message do 1 must have received a signal sx

and so the optimal decision is do and 2 should agree with l*s message, do.

Similarly in (ii) when 2 says do to l's dx, l(sx) should agree in the next

stage. If dx is observed player 1 must be type s2. In stage 3, 2(s2) would

agree and end the game. If that does not happen player 2 must be type sx and

player 1 should agree in the next stage.Thus K ^ 3.

This result derives from the limited amount of information that needs to be

transmitted and the preferences of the two individuals. Type sx of either

12



player has a dominant strategy in agreeing with do and this serves to

differentiate between types. Once all the information gets revealed there

can be no disagreement since the two players have identical preferences.

The question still remains as to how the game proceeds if for some reason it

has not ended by the fourth stage. We will argue that if the game has not

ended type s2 would immediately agree in the next stage with the previous

message. Type sx will either say d0 in every stage or will agree with the

message in the last stage.

Proposition 3.2:

For i - 1,2, (i) cr1(dolh
k,s1) = 1 V k fc 3, or, o^djlf.sj « I if hk =

{hk~\do}, cri(do|h
k,s1) = 0 if hk = {hf'NdJ, V k * 3, and (ii)

<r±(do\h
K,s2) = 1 if h* = {hk~\do}, cr1(do|h

k,s2) = 0 if h
k = {h*"1,^}, V k

* 3.

Proof: There are two possible histories: (i) hk « {hk~\ d6> and (ii) h
k «

{hk~x, dx>. In (i) player i must have said dx to which player j has

responded with dD. By player i's beliefs, in equilibrium or out of

equilibrium, player j must be type sx. Then player i should say do and end

the game. For the second history player j is type s2 and if player i is also

type s2 he should end the game by saying dx. If he is type sx then if D is

low enough he would say do; otherwise he should say dx and end the game.

The discussion of equilibria in Section 4 will concentrate on the strategies

of the players in the first four stages only by force of Proposition 3.1 and

3.2. The rest of this section will involve a detailed discussion of beliefs

and sequential equilibria. We will show that there are other beliefs which

satisfy the Cho and Kreps criteria but that for these the equilibrium

13



outcomes are the same as with our choice of beliefs. The reader can without

loss of continuity go on to Section 4.

To investigate the justification for these particular beliefs we will look

at a couple of equilibria. It should be intuitively clear that given a

sufficiently high cost of delay and a high probability of the event (s1,s1)

there should be an equilibrium where both types of player 1 say do and both

types of player 2 agree with player l's message. The question is how high

should the values of n and D be to support such an outcome. Consider the

following etfuilibrium

<rk(do|h
k,st.) = 1 for h

k = h° and hk = {hk"*\do>, t = 1,2.

crk(do|h
k,st) = 0 for h

k - {hk"1,d1}, t = 1,2.

crk(do|h\st) = 1 for h
k = {hk~\do}, t = 1,2.

<rk(do|h
k,sj = 0 for hk = { h ^ d j , t * 1,2.

with out of equilibrium beliefs

fi(sjhk) « 1 for hk - {hk~\do}

fi(sjhk) = 0 for hk = {h1*"*^}.

In this equilibrium both types of player 1 say do in the first stage and

both types of player 2 agree with player l*s message in the second stage. If

player 1 says dx player 2*s out of equilibrium belief requires him to think

he is facing type s2 and he, consequently, agrees with l's message dx. Also,

if player 1 says do and player 2 says d1, then player 1 believes that he is

facing type s2 and in the next stage agrees with 2's message and says dx to

end the game. Note that if the game has not ended there are two possible

histories which can hold; both of which require player 1 and 2 to alternate

between do and dx with the difference being that player 1 starts the game by

14



saying do or dx. At any history both types of both players are required in

the equilibrium to agree with the previous message and depending on whether

they disagree by saying do or dx are deemed to be type sx and s2

respectively.

To find out the values of the parameters D and ir for which this equilibrium

will hold first consider 2(sx). If 1 says dx then given player 2's belief

the payoff for agreeing with 1 is bn12 while that from saying do is Da(l -

rr12). Player 1 would agree with player 2's second stage message do according

to the equilibrium and since there would be a delay of one stage the payoff

has to be multiplied by D. So the first condition we would require is

bir12 £ D a ( l - irX2) o r D * D • . * " s . ( 6 )
a l l ""±2

Although the ideal decision for the event (sx,s2) is do it is worthwhile to

reach a decision dx rather than incur delay to reach a decision do. l(sx)

knows that the possible events are (slt sx) and (sx,s2); both of which merit

the decision do and since both types of s2 are going to agree with player

l's message player 1 type sx says do. Player Ks 2) has to weigh the payoffs

froH* reaching a decision do or dx. Sending the message do produces a payoff

of

a(l - TC12)W + a(l - K22)(l - it),

the probability of the events (sx,s2) and (s2>s2) and the losses associated

with do while that from sending the message dx obtains

birX2n + bw 2 2 ( l - n)

Thus it would be optimal to say do if

+ a(l - *„)(! - n) * bn12it + bira.(l - n)

15



a + b 22

or, n * nx m — . (7)
^12 ~ *22

The last requirement on ir is derived from 2(s2)'s decision to agree with

player 1 when he says do. The payoff from this action gives a payoff of

while that from saying dx would provide a payoff of

D{bir12ir + bir22(l - ir)h

Thus, 2(s2) will say do if

- nX2)n + a ( l - * 2 2 H1 - n) s D{bir12ir + bir22(l - n)} (8)

a + Db 22

or, n as no m . (9)

2(sx) saying d0 when player 1 says do is a dominant strategy and so is

saying &x when player 1 says dx given player 2's out of equilibrium beliefs.

The reader can check that the strategies enumerated in the equilibrium for

the histories beyond the first two stages are optimal given the beliefs and

the values of the parameters.

We can envisage a different sequential equilibrium which produces the same

outcome as the above equilibrium but for a different set of parameters.

Consider the equilibrium

<rk(do|h
k,st) « 1 for h

k = h° and hk = {hk~\doh t = 1,2.

crk(do|h
k,St;) = 1, t = 1, h

2 = ido9d±}; <rk(do|h
k,Si;) = 0, t = 2, h

2 - <do,da>

<rk(do|h
k,st) = 0, for h

k = {h^.d,}, t - 1,2, h2 * {dofdx>.

(rk(dolh
k,st) = 1 for h

k = {h*" 1^}, t = 1,2.

< r k ( d o | h k , S t ; ) = 0 f o r h k = <h f c " 1
i d 1 > i t « 1 , 2 .



with out of equilibrium beliefs

ji(sjhk) = 1 for hk = {hk~\do>

M(sjhk) » 0 for hk = {h1"1^}, h2 * {do,dxh

|i(sjhk) = 1 for ha * {do,dx}.

The structure of this equilibrium is the same as the previous one except

that for the history {do,dx}, l(s1) says do since he believes that it is

type sx who has sent the out of equilibrium message dx. For this to be

optimal it is necessary that

Da(l - nxx) s birlx. (10)

As before l(sx) will say do in the first stage and so will l(s2) if (7)

holds. Similarly 2(sx) will agree with l's message do. The conditions

required for 2(s2) to agree with do will be different. The payoff from

agreeing are the same as before

while that from saying dx i s

D2a(l - ir12)ir + Dbir22(l - n).

thus saying do i s optimal i f

- n) s D2a(l - ir12)ir + Dbir22(l - ir), (11)

a + Db 22

or, n £ nB a (12)

(D2 - l)a(l - 7tX2) + a _

a + Db a + Db ~ n**

We will argue that this equilibrium is not plausible. Intuitively, this

equilibrium allows the decision do to be reached with a lower value of D and

the way this is achieved is by l(s1) making a threat that in case 2 does

send the out of equilibrium message dx l(sx) will believe that 2 is type sx

and will say do. However, the question is whether 1 could entertain this

17



belief when faced with this out of equilibrium message. In the previous

equilibrium we are driven by condition (8) whereas here we have to contend

with (11). Denote the values of D for which (8) and (11) hold with equality

as Dx and D2 respectively. Note that the left hand side of (8) and (11) are

the same while the right hand side of (8) is less than (11), since D £ D is

a condition that must hold in this equilibrium as well. Consequently, for a

given value of IT, Dx > D2. Thus, there would be a value of D, Dx > D > D2,

for which (8) would not hold but (11) would. For such a value of D if l(sx)

were to believe that player 2 is type s2 when he sends the out of

equilibrium message dx and were to choose his best response for that belief

tihen 2(s2) would deviate from do. This argument is similar to Cho and

Kreps(1987) intuitive criterion and would therefore agree with divinity and

universal divinity criteria of Banks and Sobfel(1987).

Of course for values of D for which (8) holds would imply that (11) holds as

well. Thus, for such values of D it would not be possible to rule out the

second equilibrium. Our interest in various equilibria are derived from the

constraints on D and ir they allow us to impose for different outcomes. The

second equilibrium gives the same outcome as the first for values lower than

Dx but then such an equilibrium would not satisfy the Cho and Kreps

criterion. For values of D ^ Dx the first and the second equilibrium will

provide the same outcomes. Therefore we will neglect the second equilibrium

and the associated out of equilibrium belief for the rest of the analysis.

In a similar manner one could generate an equilibrium where player 2 would

believe that player 1 is type sx if he says dx and therefore say do. This

would make l(s2) more inclined to say do, but there would be a value of D

such that l(s2) would be willing to deviate if such deviation could bring

about a different response from 2(sx). For D £ D, it is not possible to
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restrict beliefs any further because the intuitive criterion and divinity

restrict themselves to signaling games. Grossmann and Perry(1986) consider

infinite horizon games but their concept of perfect sequential equilibrium

ife not helpful in this case. The concept of stability due to Kohlberg and

Mertens(1986) does not help either since it deals with finite horizon games.

This does not raise any problems because the beliefs and consequently the

actions taken at stages beyond the first four stages do not affect the

values of ir and D for which the desired outcomes occur. Consider the first

equilibrium: we stipulated that beyond the second stage if player i has sent

the message do in the previous stage and player j says dx then player i

believes j is type s2. The opposite will be true if player i says dx and

player j says do. We showed the sequential equilibrium for such beliefs.

Suppose instead of these beliefs player 2 faced with the history {do,d1,do>

believes he is facing s2. For the appropriate value of D, 2(s2) would say dx

and we would have a different sequential equilibrium but that would not

change the value of ir and D where we have the equilibrium outcome that both

types say do and both types agree to this message. The point is the

stipulation of beliefs after the game has ended do no affect the equilibrium

outcome.

The restrictions on beliefs that we have stipulated allow us to get rid of

some equilibria entirely. For example there is a sequential equilibrium

where both types of 1 send the message dx and both types of player 2 agree

with this decision. To sustain this equilibrium we need the out of

equilibrium belief that if 1 sends the out of equilibrium message do, then

player 2(s2) would believe that player 1 is type s2 and D would be small

enough to warrant insisting on dx. However, we can show that this
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equilibrium dbes not satisfy the Cho and Kreps criterion.1

4. Same Preferences

The previous section detailed the structure of the sequential equilibria

beyond the first three stages. In this section we will therefore concentrate

on the first three stages. To this purpose we will further divide our

investigations into two parts. First we will consider the case when D £ D.

In our earlier discussion we noted that this condition implies that it is

not worthwhile to reach a decision of do in the event (sx,s2) when the

posterior is irX2. The condition D £ D can be rewritten as nX2 £ =r——r-. The

values of the posteriors and the various parameters are shown in Figure 2.

Given this constraint on the cost of delay we ca,n put some additional

structure on the equilibria. This would also help us in studying individual

equilibria.

it it it
XX ""X2 M r 22

Da
Da + b a + b

Figure 2

Proposition 4.1: If D * D, K * 2.

Proof: The above statement says that for any possible history at the end of

the first two stages player 1 of both types would end the game by agreeing

with the last message. There are two possible histories to consider: (i)

{d^d^ and (ii) {d1>do}. In (i) only type s2 could disagree with do and so
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if player 1 is type sx he would realize that the event is (sx,s2) with a

posterior of irX2 in which case it is not worthwhile to say d0. Note that

2(sx) would always agree with do; it could happen that both players are

supposed to agree but dx is observed instead but then the out of equilibrium

belief will be that player 2 is type s2. If 1 is type s2 the correct

decision is dx so it is optimal to agree. In (ii) if player 2 says do in the

second stage he must be of type sx. When player 1 says dx in the first stage

he could be either of the two types. If he is of type sx and player 2 is

type s2 then since D £ D player 2 would agree with dx. If player 1 was type

s2 as was player 2, dx would be the correct decision. So agreeing with dx is,

a dominant strategy for 2(s2). Thus player 1 would agree with do in the,

second stage.

Armed with proposition 4.1 we go on to investigate the possible equilibria.

Since the game ends within two stages there could be two possibilities; (i)

equilibria in which the game ends in one stage and (ii) where the game could

take two stages. We will look at equilibria of the first kind in the next

proposition.

its

Proposition 4.2: For D £ D there are two one stage equilibrium where player

2 agrees with player 1: (i) both types of player 1 say do for n £ {TCX,TT2},

(ii) l(sx) says do and l(s2) say dx for n * irx> where

a a
a + b " *» a + Db " *22

and iro » .
"" *22

Proof: See Theorem 4.1 in appendix.

In equilibrium (i) player l(sx) would always say do since player 2 is going

to agree. From Figure 2 player 1 knows that he is either at trxx or irX2 and
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that for both of these situations do is the correct decision. Player l(sa)

has to weigh his options: either way he cannot avoid the possibility of

reaching a wrong decision. From figure 2 he is either at the point ir12 or at

ir22. The term in the numerator of n±9 —^-r- - n2 , can be interpreted as the
a "r* O

loss from saying do, while that in the denominator is the sum of the terms

ni2 " —r~K anci — T ~ K " ^22* !•©•» ** "" ̂ 22- Thus n can be interpreted asa "*" D a »• D

the ratio of the loss from saying do to total losses. Thus if it fc itx it is

cheaper to say do.

The situation is similar for player 2. 2(sx) agrees with do since it is the

correct decision. 2(s2) faces the problem that both types of player 1 say

do, so that player l's message is not informative, and if he disagrees and

says dx both types of player 1 would agree and end the game. Then player 2

says do if n i ir2 which is similar in structure to nx and can be interpreted

in the same way. The added feature is that disagreeing with 1 imposes delay

which shows up in it2.

From a decision theoretic perspective the problem the team faces is two-

fold. First, given the high value of D communication is costly; second, in

the absence of communication it is not possible to avoid the possibility of

reaching the wrong decision in some cases. In case of the event (s2,s2) the

proper action is dlf and the two players could, for example, reach this

decision if when player 1 says do, 2(s2) could reveal his information by

sending the message d1. However, he is not willing to undertake this action

because it would impose delay. Thus the team as a whole only uses the

information available to player 1. This could be interpreted as a version of

the optimal stopping rule.
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In equilibrium (ii) player 1 separates with type sx saying do and type s2

saying dx. Then player 2 knows what message player 1 has received when it is

his turn to move. Player 2(s2) agrees with player l's message, do or dx,

because in each case the right decision is being reached. 2(sx) obviously

agrees with do and would have contemplated disagreeing with dx were not the

cost of delay been high.

We can see from a comparison of nx and ?r2 that the former is always greater

than the latter. Thus the interval [0 1] is divided into two regions, n * nx

and n < nx. This leads to our next proposition.

Proposition 4.3: For D £ D a one stage equilibrium always exists.

Corollary: For D fc D a pure strategy Nash equilibrium always exists.

We now turn our attention to equilibria which could require two stages.

Proposition 4.4 describes these.

Proposition 4.4: There are two two-stage equilibrium. They are

(i) 1 of both types say do, 2(s2) disagrees for n2 £ n £ max{ir3,ir4}.

(ii) l(sx) says dx, l(s2) says do; 2(sx) disagrees on dx, 2(s2) disagrees on

a(l - rc.J brc.,
do for ir5 * n * ir6, D s mini ^ - > a ( l , n } ) , where

(D - l)bw12 (D - Dbir22
a + b a + b

(D - l)birX2 a (D - l )bir 2 2

a + b " a + b a + b l a a + b

bn 1 2

- n1 2) + bu 2 2 '
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Propf: See Theorem 4.1 in appendix.

In equilibrium (i) player 2(s2) disagrees with do and from our discussion of

Proposition 4.2 the required condition is n =s n2. Both types of player 1 are

going to say do even though they may be forced to change their mind by

player 2(s2). The necessary requirements on n for l(s1) and l(s2) are n £ TC3

and it fc w4 respectively. Like before we can interpret these conditions as

the ratio of loss from saying do to total losses. The terms in the numerator

show the loss from delay while the denominator includes tiie loss from taking

the wrong decision. Even though in the event (s1,s2) the wrong decision

would be taken the loss from this does not enter into n3 because it is not

possible to avoid this cost*

0.8

0.6

0.2

1-25 L.5 1.75 2.25 2.5 2.75

D

Figure 3. nxl = 0.99, 7T12 = 0.5, w22 = 0.25, a = 45, b = 55, D £ 1.25.

In (ii) player 1 separates though in, what might seem, a perverse manner.

Player H s ^ says dx and l(s2) says do. Player 2 is thus aware of the

signals received by player 1 and know the result of agreeing with these

messages. Consider 2(s1), if player 1 says do then the event which has
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occurred is (sx,s2) and do is the correct decision. If player 1 says dx then

the event which has occurred is (sx,sx) and the correct decision is do. The

question is whether D is low enough to warrant disagreement and hence the

correct decision. 2(s2) faces the same dilemma when faced with the message

do. In (ii) D is low enough for both 2(sx) and 2(s2) to disagree. These

equilibria are shown in Figure 3.

A comparison of (i) and (ii) in proposition 4.2 shows that they are

equivalent in terms of the cost of losses from decisions. The loss from (i)

is

ir2a(l-irxx) + 2ir(l-7i)a(l-irX2) + (l-rc)
2a(l-TC22). (13)

This is the loss from the particular decisions reached in the various events

and will be called the information cost. The first term shows the cost from

deciding on dQ in the event (sx,sx), a(l-icxx) multiplied by the probability

of 1 and 2 receiving the signal sx, n
2. The remaining terms are derived in a

similar manner and there is no cost of delay. Similarly the cost in (ii) is

ir2a(l-Tixx) + ir(l-ir)a(l-iiX2) + ir(l-ir)bir12 + (l-ir)
2b7r22. (14)

A comparison of (13) and (14) shows that the loss from (i) is less than (ii)

if it £ 7t1. Thus while neither (I) nor (II) are perfect from the point of

reaching optimal decisions, (i) decides on do in the event (s2,s2) while

(ii) sometimes decides on dx in the event (sx,s2), both are equivalent in

the amount of loss inflicted. The loss from (i) in proposition 4.4 is

7r2a(l-irxx) + ir(l-ir)a(l-w12) + Dn(l-ir)bnx2 + D(l-7i)
2bn22

which can be written as

fi2a(l-nxx) + it(l-ir)a(l-nX2) + ir(l-?i)biiX2

+ (l-ic)2b7i22 +(D-l)7i(l-n)bn:X2 + (D-l) (l-rc)2bir22. (15)

The last two terms show the delay cost and it is clear from a comparison of

(14) and (15) that this equilibrium is not as efficient as (ii) in

proposition 4.2. The cost from (ii) in 4.4 is

Dir2a(l-irxx) + n(l-rc)a(l-7rX2) + Ti(l-ir)bTrX2 + D(l-ii)
2bie22 (16)
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and we can seen that the information cost is the same as that in (15) but

the delay cost is (D-D7r2a(l-Tilx) + (D-D (l-rc)2b7r22. Thus (i) and (ii) in

4.2 kre the most efficient equilibria which is restated in proposition 4.6.

Proposition 4.6: For D £ D one stage equilibria are more efficient than two

stage equilibria.

If D ^ a>1 J
2 . then equilibria (i) and (ii) in 4.4 do not exist. This

condition violates the condition required for (ii) and, $>s can be observed

from Figure 2, n2 becomes negative and so the condition rc s n2, necessary

for (i), can no longer be satisfied. So for fairly high values of D the

equilibrium is going to be efficient. This would suggest that if D & D, a

further increase in D could be beneficial though it should also be suggested

that this is a circuitous route to efficiency and as good decisions would be

reached by lettinjg just one individual decide. This seems to a blow to team

decision making and we investigate in the next propositions whether things

get any better when D is lower.

Proposition 4.7: For D ^ D there is a one stage equilibrium where player 2

agrees with player 1 and both types of player 1 say do which exists if n st

max in7,nB} where

iTTT " *22

(D — i;au — n12 / £
— If-,a + b a + b 22

a
a + Db

(D2 ~ D a d - i j a

a + Db a + Db ~ n**
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Proof: See Theorem 4.2 in appendix.

This equilibrium is similar to the first equilibrium in Proposition 4.2. The

conditions for its existence are however different. Since D s D and player 2

agrees with 1, player l(sx) will always say do and player 2(sx) will agree

with this decision. Player l(s2) has to choose between do and dx. If he says

do and player 2 is type s2 the wrong decision will have been reached with a

relative loss of ——r- - ir22. If on the other hand he says dx player 2(sx)

will conclude that he is type s2 and given the low value of D insist on do.

2(s2) would agree with dx and it would be the correct decision. Thus saying

dx would lead to the correct decision in any case but possibly with delay.

The first term in the denominator shows this cost. Thus, like before, n7 can

be interpreted as the ratio of the cost of saying do to the total cost.

Player 2(s2) faces a similar problem. If he says dx when 1 says do it is

possible that player 1 is type s2 and would agree. Then the correct decision

would have been reached but with delay. If 1 is type sx then he would

disagree and consequently there would have been two rounds of disagreement

and that would account for the power on the delay term in the denominator.

The numerator shows the cost of saying d , =cr- - ir , and this is less
a * JL/D

than the corresponding term for l(s2), ——r* - ir22. The cost of delay

implies that it is cheaper for 2(s2) to agree with do than it is for l(s2)

to say do. Even though the players have the same preferences the structure

of the game and the cost of delay induces different costs of reaching a

decision on the two possible outcomes.

Proposition 4.8: For D s D there are two two-stage equilibria:

(i) l(sx) says do and l(s2) says dx, 2(sx) disagrees and in next stage l(s2)
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agrees for n s n7.

(ii) l(sx> says dx and l(s2) says do, l(s1) disagrees with dx> 2(s2)

disagrees with both d0 and dx for ir5 a ir, D s — .
^22

Proof: See Theorem 4.2 in appendix.

In both of these equilibria player 1 separates. In (i) the separation is

what could be termed natural in that one would expect that it would be l(s2)

who would say dx given the structure of preferences and the values of the

parameters. Given the low value of D, 2(s1) disagrees with dx while type s2

agrees with player 1. In the second equilibrium player 1 separates in the

opposite manner. It is optimal for M s ^ to say dx secure in the knowledge

that player 2J will correct an erroneous decision. However, additional

restrictions on the cost of delay are necessary. In both of these equilibria

the game ends after two stages and this is achieved because player 1

separates and so there is a larger information content in his message.

Proposition 4.9: There is one three stage equilibrium where both types of

player 1 says do, 2(s2) disagrees and so does Hsx) in the next stage. This

equilibrium exists if nB £ n > max {n9$n€} where

D2a

D2a + b

D2a (D - l)a(l - nxx)
n +- nxxz +

D2a + b D2a + b

Proof: See Theorem 4.2 in appendix.

Here player l's message does not reveal any information and so the burden
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falls on 2(s2) to disagree and thus reveal his information. l(s1) realizes

that saying do raises the possibility of delay but still persists with it

because if he said dx player 2(s2) would agree. This term shows up in the

numerator while the remaining term in the expression involves the cost of

delay. Figure 4 shows the possible equilibria for D s D. The next

proposition deals with the existence of pure strategy equilibria and we

obtain as a corollary that a pure strategy equilibrium always exists for any

value of D.

1

0.8

0.6

0.2

T " Him

1

1.05 I.L5 1.2

D

Figure 4. nxx = 0.99, n12 = 0.5, ?r22 - 0.25, a = 45, b = 55, D ^ 1.25.

Proposition 4.10: Either the equilibrium in Proposition 4.7 or equilibrium

(i) in Proposition 4.8 always exists.

Proofi Note that n7 it for D £ —f-:
• a(l - it22)

, a condition which is always

satisfied since the maximum value n22 can attain is fa. Consequently the

maximum value that
bit,

can reach is 1. However, D > 1, so the

condition is always satisfied. So any n must satisfy the conditions for 4.7

or (ii) in 4.8.
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Corollary 1: If D ^ D a pure strategy Nash equilibrium always exists.

Corollary 2: A pure strategy equilibrium always exists for any value of D.

Proof: We get this result by combining Corollary 1 and the corollary to

proposition 4.3.

In the equilibrium in proposition 4.7 the decision is reached without any

delay and the information cost is the same as that in (13). In all other

equilibria the correct decision is always reached but with varying degrees

of costs of delay. In 4.8(i) the cost of delay is

12)ir(l-ir), (17)

while that for 4.8(ii) and 4.9 are, respectively,

_(l-ir)2, (18)
and (D-l)a(l-irxl)7r

2 + (D-l)a(l-ir12)w(l-ir) + (D-l)b7T22(l-ir)
a. (19)

A comparison of (17), (18) and (19) reveals that 4.8(i) is the best in terms

of economizing on delay. Also, comparing (13) and (17) reveals that 4.7 is

better than 4.8(i) if n £ ir7. Then, as a counterpart to proposition 4.6 we

get proposition 4.11.

Proposition 4.11: The efficient equilibria are those in proposition 4.7 and

(i) in proposition 4.8.

Combining 4.6 and 4.11 we see that there are two characteristics of

efficient equilibria. Either these involve decisions reached in one stage or

player 1 separates so that his message is informative. Overall the

difference in outcomes between D £ D and D ^ D is that for D £ D it is not

possible to reach the correct decision in any equilibrium though decisions

will be reached quickly while if D ss D decision making will take longer but

the correct decision is more likely to obtain. If the time between messages

is reduced so that D tends to one the only equilibria which will remain are
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those in proposition 4.8. Thus the equilibrium will be efficient as the cost

of delay goes down. Thus the Coase theorem holds as is stated in the next

proposition.

Proposition 4.12: As D tends to one only efficient equilibria remain.

From looking at the Figures 3 and 4 it can be seen that there are a number

of situations where there are multiple Nash equilibria. For example if D £ D

if the condition n2 £ w £ max{n3,ir4} is satisfied there will be two pure

strategy Nash equilibria, (ii) in proposition 4.2 and (i) in proposition

4.4. Results in the literature on there being an odd number of equilibria

for almost all games suggest that in that case there will be a mixed

strategy equilibria. Indeed, we can show that if D £ D and min {n^n^} £ n £

max in3$tz4} then (see Theorem 4.3 in appendix) there is an equilibrium where

l(s2) mixes between saying do and d1 while 2(s2) mixes between agreeing and

disagreeing on do. Since D £ D both players would immediately agree in the

next stage following a disagreement. Player l(sx) says do and 2(3^) agrees

with player 1. The probability with which l(sx) says do is given by

a
n.

n
12 " a + Db

- * a
(20)

a + Db «

and the probability with which player 2(s2) agrees with do is given by

a + Db 22 a + Db 22

This equilibrium can be regarded as a mixture of outcomes between the

equilibria in proposition 4.2 and equilibrium (i) in proposition 4.4. From
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our earlier discussion we know that the equilibria in proposition 4.2 are

the most efficient given the high cost of delay. This equilibrium can be

seen as an attempt to alleviate inefficiency. From (19) the probability of

saying do is the ratio of the losses from saying do and dx weighed by the

probabilities of player 1 receiving the signals sx and s2. An examination of

(19) reveals that the probability of saying do increases with D and n.

Similarly from (20) we can see that the probability for agreeing goes up

with an increase in n and D. Thus this mixed strategy equilibrium converges

to equilibrium (i) in proposition 4.2 which we know is efficient.

Similarly, if D s D and min {ir7,7r8} £ n £ max in6>n9} then there is a mixed

strategy equilibrium (Theorem 4.4 in appendix) where l(sx) and 2(sx) say do

in every stage. Player l(s2) mixes between saying do and dx and player 2(s2)

mixes between agreeing and disagreeing. The probability with which player

l(s2) says do is given by

n (D
1 - n a(l-ic22) - Db*22

and the probability of agreeing is given by

(D-lHnaU-rr,.) - (l-ir)bir22}

(l-tr){a(l-n22) -Dbn22} * K }

As in the discussion of our earlier mixed strategy equilibrium we can see

that this equilibrium is a mixture of the outcomes in the equilibrium in

proposition 4.7, (i) in proposition 4.8 and that in proposition 4.9. Since

the equilibrium in proposition 4.9 is less efficient than the other

equilibria this equilibrium can be seen to improve matters. Even though we

have not made an exhaustive investigation of all possible mixed strategy

equilibria we would argue that mixed strategy equilibria in this setting are
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plausible and can actually be beneficial.

The message which comes out of this section is that it is possible that

better decisions will be reached if the individuals within a team are

patient. Contrary to expectations it is not the case that better decisions

are reached if the cost of delay are lowered. If costs are to be lowered

they have to be lowered below D. Otherwise there are equilibria which

achieve the same outcomes as one-stage equilibria but with more

communication and delay. These equilibria would in some measure justify the

belief that in some cases institutions such as committees do not reach

better decisions and only serve to spend time in fruitless discussions. In

the next section we will we will look at equilibria when individuals do not

have identical preferences with regard to losses from different outcomes.

5. Biases in preferences

Casual introspection would suggest that as a general rule individuals in a

team rarely agree on the decisions to be reached which would suggest that

the contents of the previous section, while being interesting iti its own

right, is probably not very relevant. We would argue that such doubts are

misplaced because it is important to know how strongly the individuals

disagree. Let us assume that l's losses from the decisions do and dx are â

and b, while those of 2 for the same decisions are a2 and b. This difference

is enough to generate different preferences over outcomes and though we

could have assumed different preferences on the loss associated with

reaching a decision d± this is not necessary.

We could investigate the equilibria under the condition that
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«xx > « M > i^rs > i^Tb
 > «« (24)

but the results would not be very different from those in the previous

section. If the above condition holds then both players agree on the

decisions to be reached for the different events. Player 1 prefers do more

strongly than player 2 and that would change the values of the parameters

for which the equilibria in the previous section hold but the set of

equilibria would not change its important characteristics. Another condition

we could investigate is

i-^-b > nlx > nX2 > n2a > j - ^ (25)

Here, players 1 and 2 disagree on the decisions to be reached in all events

and there is no scope for communication nor would it help since no new

information would change peoples' minds as to what decision ought to be

reached. This is similar to a bargaining problem and we would argue that

there is an element of bargaining in team decision making but that is not

its sole feature. The above specification would leave no room for

investigation of the communication aspect.

Instead we will also assume that

Thus 1 and 2 have the same preferences over the events (s1,si) and (s^,s2).

They differ on the event (s^s^; 1 would like the decision to be do while 2

prefers dx. The situation is shown in Figure 5. Thus there are possibilities

for both bargaining and communication. These preferences are common

knowledge so that 1 and 2 are aware of their opponent's biases. The out of

equilibrium beliefs are the same as in section 32.
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UX2 ^22

a2 + b ax + b

Figure 5

In section 4 we conducted our investigation of the possible equilibria by

dividing up the possible values of the cost of delay, D, into two: (i) D £ D

and (ii) D < D. Recall that for D £ D the players found that it was not

worthwhile to incur delay to get the decision do for the event (sx,s2). In

this section the players are biased and disagree over the decision in case

of this particular event. We will denote

bit,,
(27)

a2(l - wX2)
-i-r- — . (28)

bir12

For D £ D player 1, who prefers do for (sx>s2) will not find it worthwhile

to insist on do even if player 2 were to concede in the next stage.

Similarly, for D £ D player 2 will concede to do even though he prefers dx.

To look at the possible equilibria we consider four possible ranges of D,

(i) D £ max{D, D>, (ii) D * D * D, (iii) D * D * D and (iv) D * min{D, D}.

In (i) both 1 and 2 find that in the event (sx,s2) it is not worth the while

to send the game into the next stage to get their desired outcome. In (ii)

and (iii) one individual finds D small enough to insist on their desired

outcome while in (iv) both individuals find that D is small enough to worth

insisting on their desired outcome provided the other individual concedes.

The set of equilibria for these four cases are shown in Theorem 5.1, 5.2,

5,3 and 5.5 in the appendix. The proofs are similar to the proofs for
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Theorem 4.1 and 4.2 and are not shown. Before we go on to discuss the

equilibria we will prove that for the first three cases the game will end

within three stages.

Proposition 5.1: Let K be the last stage where there is a disagreement,

then, for D 2t D or D £ D or both, K ^ 3.

Proof: Suppose K = 4; there are two possible sequences in which this could

occur (i) {do,dx,do,dx,do,dc} and (ii) {dx,do,dx,do,dx,dx}. Consider (i)

when 1 plays do in stage one 2(sx) would agree immediately if D £ D. So if 2

plays dx again 2 must be type s2. If 1 says? do again then 1 must be type sx

and D ^ D. Then 2 should agree with 1 since 1 will always say do. If D s D,

then 2(s2) would always say dx so the fact that 2 has agreed with do in

stage 4 indicates that 2 is type sx. If 1 persists with do 1 must be type sx

given that D £ D. Then 2(sx) should agree with do in the third stage. For

(ii) if 2 says do when 1 says dx then 2 must be sx so that both types of 1

should immediately agree with 2.

We will now go on to investigate the possible equilibria for each of the

values of D which we have described. We begin with a proposition on the

equilibria for case (i). It is straight forward to show that, as a

counterpart to Proposition 4.1, the game must end within two stages.

Proposition 5.2: The set of equilibria for D £ max{D,D} is the same as that

in Propositions 4.2 and 4.4 with the values of the parameters irx, ir3, n4,

ir5, ir6 replaced by £xx, ^X2, pxsf 0X4, £X5 respectively and n2 with £2X.

The value of these expressions are shown along with the corresponding

theorems in the appendix. There is a close correspondence between the
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it-terms in section 4 and the p-terms here. All of these expressions can be

derived by replacing the term a in section 4 with ax or a2 depending on

whether the condition is relevant for player 1 or 2. Even though the set of

equilibrium strategies are the same there are important differences.

Consider the first equilibrium in proposition 4.2 where both types of player

1 say d0 and player 2 agrees. This same equilibrium exists here if n £

maxiplxfp2X}. The condition n £ £X1 is necessary for l(s2) to say da and n £

£21 for 2(s2) to agree with player 1. In section 4 the corresponding

condition is n £ max{irl9ir2} and we showed that nx £ ir2 so that the only

condition necessary to achieve this equilibrium is ir fc irx. Figure 6 shows

that this is no longer the case. The values of the parameters in figure 6

are the same as that in figure 3: the only addition is a2 = 70. Now it is

possible for £21 to be greater than pxx; for low values of D, 2(s2) would

not be willing to agree with 1 when he says do. Thus disagreements are more

likely with biased individuals which should come as no great surprise. A

glance At ^21 will reveal that it increases with a2 and so this equilibrium

is less likely to obtain the more biased is player 2 in favor of dx. The

condition for the other one-stage equilibrium, where player 1 separates with

l(sx) saying do and l(s2) saying d1, remains the same as before.

Also, in section 4 two-stage equilibria could only exist along with one

stage equilibria. From figure 6 we can see that this property does not

extend to the case of different preferences. For n £ maxipxx,f$x:i,(iX3} and n

* £21 the only equilibria is one where both types of player 1 say do and

player 2(s2) disagrees. In the next stage both types of player 1 agree with

player 2 if confronted by a disagreement. In this example for values of D

less than 3 and n between nX4 and ir15 we will get the last equilibrium of
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the earlier section. In this equilibrium player l(s1) says dx and l(s2) says

do; 2(sx) disagrees on dx as does 2(s2) for do. Again, for high values of n

this equilibrium will exist without being accompanied by a one-stage

equilibrium.

0.8

0.6

0.-4

0.2

i.5

Figure 6. irlx = 0.99, ir12 = 0.5, n22 = 0.25, ax = 45, a2 = 70, b * 55,
D * 1.27.

Figure 6 shows a situation where a pure strategy Nash equilibrium always

exists, but as Figure 7 shows a pure strategy Nash equilibrium may not

exist. In Figure 7 If pxl * n s min{£X5,£X2,p2X} a pure strategy Nash

equilibrium will not exist. The above condition means that if Zis^) were to

respond by dx to l's do then both types of 1 would rather say dx. If 2 were

to agree with 1 when 1 said do both types of 1 would say do. If both types

of 1 did say do,i.e., they were to pool on do, 2(s2) would respond with dx.

However, if player 2(s2) does say dx when player 1 says do player 1 would

rather say dx; but if player 1 were to pool on dx and do were observed

player 2 would perceive that 1 is type sx and hence agree if 1 were to say

do. Thus given the out of equilibrium beliefs a pure strategy Nash

equilibrium does not exist. Of course there will be a mixed strategy
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equilibrium and by virtue of Proposition 5.1 the game would end within three

stages. However, a mixed strategy equilibrium must involve some disagreement

by the very nature of the game and this weuld reinforce our notion that

biases give rise to more disagreement.

0.8

0.6

0.4

0.2

2.5 3.5 4.5

Figure 7. nxx = 0.9, nX2 = 0.6, n22 = 0.4, ax = 9/11, a2 = 2, b = 1,

D £ 1.83

The possibility for increased disagreement could lead us to expect that

there would be more inefficiency when individuals are biased. By analogy

with Proposition 4.7 we could expect that one-stage equilibria are the most

efficient equilibria but since the two players are biased it is possible

that in comparing a one-stage equilibrium with a two stage equilibrium the

two individuals might reach different conclusions regarding which one is

better. The total costs for each of the four possible equilibria are the

same as that in (13)-(16) with a being replaced by ax and a2 depending on

which player we want to consider. A comparison of the costs of the various

equilibria show that it is still true that one-stage equilibria are more

efficient than two-stage equilibria. In our previous discussion we have

shown that it is possible that for some values of the parameters only two-

stage equilibria will exist and so we conclude that if the players are
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biased then the equilibria are more likely to be inefficient.

We have mentioned earlier that players 1 and 2 disagree over the best

decision to be reached in the event (sx,s2). One approach while

investigating the various equilibria would be to ask to what extent is

player 1 able tp reach his desired outcome. We would surmise that this task

would be facilitated if player 1 is more biased or is more patient.

Proposition 5.3 investigates this possibility and shows that the equilibrium

strategies for player 2 remain the same as in Proposition 5.2.

Proposition 5.3: The set of equilibria for D £ D £ D can be derived by

replacing the strategies of Player l(sx) saying do once and agreeing in the

next stage in proposition 5.2 with l(sx) saying do in every stage.

o.e

0.6

0.2

1.5

D
Figure 8. irxl = 0.9, irX2 = 0.6, n22 = 0.4, ax = 9/11, a2 « 2, b = 1,

D 2t 1.33.

The equilibria are shown in Figure 8 and the values of parameters are the

same as in figure 7. In the previous example player 2(s2) would find it

worthwhile to disagree if n ^ /321 while here the similar condition is it ̂

^22. Consequently there is more disagreement but at the same time player 1
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is more likely to get his preferred outcome. The shaded portion show the

values of n and D for which there are no pure strategy equilibria.

The situation is drastically changed if player 2 is made more patient or

becomes more biased. The results are shown in Proposition 5.4 and Figure 9.

The value of £14 which is high is not shown so that the other terms can be

shown properly. First, both types of player 1 saying do and player 2

agreeing is no longer an equilibrium. In fact, in all the equilibria player

2 disagrees with 1 if 1 says do. Also, for the first time we get new

equilibria which involve both types of player 1 saying d1; a result of the

lower value of D which now allows player 2 to insist on dx.

Proposition 5.4: (i) There is a one-stage equilibrium where player 1 says dx

and player 2 agrees, (ii) There are three two-stage equilibria: (a) player 1

says do, 2(s2) disagrees; (b) player 1 says dlf player 2(s1) disagrees; (c)

player H s ^ says do, l(s2) says dx and 2(s2) disagrees.

1.22

0 . 4

0 . 3

0 . 2

0 . 1

8

-B2 3

1.23 1.24 1.25 1.26 1.27

D

Figure 9. irlx = 0 .99 , ?r12 * 0 . 5 , ir22 = 0 .25 , ax * 45, a2 = 70 b = 55,
D 2: 1.22.
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The shift in fortunes of player 2 between Theorems 5.1, 5.2 and 5.3 suggest

that the player who moves first has an advantage. This advantage is

strengthened if the player has a stronger bias. For example if D ^ max{D,D},

and player 2 starts the game, we can show that equilibria where player 1

pools on do no longer exist. Equilibria involving player 1 separating in two

different ways exist but for different values of the parameters and we have

two other equilibrium where both types of player 2 start the game by sending

the message dx. The equilibria are shown in Theorem 5.4 without the

constraints on the parameters.

There is a fair degree of symmetry between Theorem 5.1 and 5.4. In both we

get equilibria which involve the player who starts the game pooling on the

decision towards which they are biased and the other player agreeing. There

is an equilibrium where player 1 separates with 2(8^ saying do, 2(s2)

saying dx and player 2 agrees. If we strengthen 2 by making D as D while

retaining D £ D we will have the same equilibria but 2 will be able to get

the decision of his choice for higher values of ir and D. Reversing the

constraints on D will produce equilibria similar to Theorem 5.3.

The last condition on D for which we will look for equilibria is D ^

min{D,D>. The results are shown in Proposition 5.5. The number of possible

equilibria increases and the comprise all the equilibria from Theorem 5.2

and 5.3 with the exception of (IV) from Theorem 5.2. The excluded

equilibrium involves l(sx) saying dx and l(s2) saying do and 2(sx) agreeing

with do. Since 2(s1) prefers dlf and D is low, agreeing with do is no longer

optimal.

Proposition 5.5: The equilibria for D s min{D,D} are the same as those in
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Proposition 5.2 and 5.3.

0.6

0.2

1.05 1.15 1.2

D
F i g u r e 10. irxi = 0 . 9 9 , TT12 = 0 . 5 , ir22 = 0 . 2 5 , ax = 4 5 , a 2 = 7 0 , b = 5 5 ,

D £ 1 . 2 2 .

From our earlier discussion there would still be a first î over advantage but

with the multiplicity of equilibria this will be diminished. Since D is

small the two players are more or less equals in strength of bargaining

power. This raises the specter of inefficient haggling over decisions and

the next focus of inquiry will be on the possibility of this occurring. As

can be seen from Figure 10 and proposition 5.6 there are values of D and n

for which there are no pure strategy equilibria. There will of course be

mixed strategy equilibria but we can no longer be sure that the game will

end within three stages. Proposition 5.7 shows the structure of mixed

strategy equilibria.

Proposition 5.6: If p22 £ TC £ max{pls,£i:i} there is no pure strategy

equilibrium.

Proof: The proof follows from noting that this condition does not satisfy
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any of the conditions for the existence of an equilibrium in Theorem 5.5.

If this condition is satisfied then both types of player 1 would say do if

player 2 would agree with do. However, if both types of player 1 did say do,

both types of player 2 would disagree. The condition n £ £1S ensures that

player 1 does not separate with H s ^ saying dx and l(s2) saying do, which

is a possible pure strategy equilibrium.3

Proposition 5.7:If

<r1(do|h\»i(s1|h
k)fs1) = 1, V k s x; o-jdjh^tejh*)^) = 0, V k > x

<r1(do|h
k
f»i(s1|h

k)fsa)

cr2(do|h
k,|ui(s1|h

k),s1)

<r2(do|h
k,ji(sjhk),s2) =* 0, V k * y; <r2(doih

k,*i(sjhk) ,s2) = 1, V k > y

is a equilibrium, then

(a) cr1(do|h
k,fi(s1|h

k),s2) = 1 and k > 0 =» cr1(do|h
T,/ii(sJhT),s2) = 1 V T > k.

(b) cr2(do|hk,M(s1|hk),s1) = 0 * cra(do|h1|
f»i(s1|h1|)ts1) = 0 V T) > k.

(c) 3 T, -q s . t . <r1(do|hT+k,fi(s1|hT+k),s2) = 0, ^ ( d j t l ^ ^ f s j h ^ ) ^ , ) = 1

V k.

(d) Let Ki2 = max{k: <r1Cdo|h
k,|Li(s1|h

k) ,s2) > 0> and

K21 = max{k: ira(d1|h
k
f»i(s1|h

fc) ,sx) > 0}.

Then K21 + 1 * K12 fe Kai - 1.

(e) Either x = K12 or K21 + 1 and y = «, or x = oo and y = K21 or K12 + 1.

Part (a) says that if l(s2) says do with probability one in any stage beyond

the first stage then he always says do from then on. Suppose l(s2) says do

with probability one in some stage k, then 2(sx) has a choice between saying

dx or ending the game by saying do. Ending the game now dominates ending the

game after one stage since no delay will take place and no added information
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about 1 is available as both types play do with probability one. So 2(sx)

should have said do with probability one in stage k - 1. If he has not then

2(s1) will play dx with probability one in stage k + l. Consequently l(s2)

will play do with probability one in stage k + 2. He has a choice of playing

dx and ending the game or playing do and prolonging the game. If he plays dx

then he should have done so in stage k so he must continue to say do. By a

similar argument 2(s2) should continue to say dx. This argument does not

hold for stage zero which is therefore an exception. Part (b) makes a

similar statement about 2(s1). Part(c) states that l(s2) and 2(sx) would not

continue in the game for ever.

Part (d) states that 2(sx) will play do and end the game earlier than l(s2).

As the game continues 2(sx) will eventually become so pessimistic about the

possibility of 1 being of type 2 that he will concede the game. Then l(s2)

will concede the game in the stage after that. Conceding earlier cannot

constitute an equilibrium because 2(s1) should then say dx with probability

one in the present stage and by parts (a) and (b) that cannot be an

equilibrium. Thus the first mover advantage is still present. Once the types

are revealed one of the two players have to concede the game. If it is l(sx)

who concedes then once K21 has passed and it is clear that player 2 is type

2, l(sx) should also concede. This is shown in part (e). If 2(s2) is to

concede then he should do so after the stage in which l(s2) concedes.

Proposition 5.6 is very similar to Proposition 2 in Chatter jee and

Samuelson(1987). Part (e) restates the argument in the proof of Theorem 5.4.

The structure of the equilibrium is similar to that in bargaining games.

Usually, in multistage bargaining there are a series of decreasing price

offers until one is accepted. Here l(s2) and 2(3^ insist on their preferred

outpomes but with decreasing insistence until 2's type is revealed and the
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game then ends within the next two stages.

Our final concern has to deal with the Coase conjecture which proposes that

if the time spent between each message is low then the members of a team

should be able to reach an efficient decision. This would be valid for

section 4 where we could show that as D goes to zero so does the possible

inefficiency. That is not true when the individuals are biased. Lowering D

raises the possibility of an equilibrium which takes more than three stages

and lowering D any further would increase the number of stages the two

individuals disagree. Thi$ has to inefficient because whatever the

preferences of the social planner these could be implemented with a pure

strategy equilibrium which takes only three stages. A comparison of costs in

case of Proposition 5.2 and 5.3 show that the equilibria there are

efficient. We earlier showed that there are inefficient equilibria if D £

max{D,D} and so lowering D does lead to better equilibria but lowering D

much further may not do so.

6. Conclusion

This paper investigates the possible equilibria in a two-person game of

information transmission. The issue at stake is how efficiently is

information aggregated across individuals and this issue is addressed from

the viewpoint of efficiency of information aggregation and efficiency in

terms of time taken to reach a decision. We have considered a simple model

where there are only two individuals and who receive only two signals

regarding the desirability of their two decisions. Obviously, the model

could be extended in different directions, but, within this simple

framework, it is possible to show the impact of disagreement among the team
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members over outcomes and how it can introduce delay and also show how the

cost of delay impacts on team decisions. These results should prove

significant in studying the structure of organizations in particular and

such is the intended direction of further research.
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Footnotes

1. The condit ion required for l ( s x ) to say dx i s
d )- n) * a ( l - nxx) + Dbir12(l - n).

°The left hand side shows the payoff from <r1(do|h°,s1) = 0, <r:L(do|

sx) = 1 and the right hand shows the payoff from <r1(do|h°> sx) = 1,
^ M o H d o ^ x * ' sx) = 0. Similarly, the condition for l(s2) to follow the
same strategy is
bnX2n + bn22(l - n) * a ( l - nX2) + Dbir22(l - n).
For 2(s x ) cr2(do |{do},s1) = 1 i s a dominant s trategy while <r2(do| {d 1 } , s 1 ) = 0
i s optimal i f
bnxxit + bir12(l - n) * D(a(l - nxx) + a ( l - w1 2)( l - rc)).
2 ( s 2 ) f inds <r2(do| {d x } , s 2 ) = 0 optimal i f
bir12ir + bTC22(l - n) * D(a(l - nX2) + a ( l - TT22)(1 - n)).r12

12 22 X2 22

To sustain the equilibrium strategy of cr2(do| {do},s2) = 0, given the out of- n )
equilibrium belief /Li(s1|{do>) = 0, we require D * r- . If, on the

other hand, player 2 believes fi(s1|{do>) = 1, then H s ^ would play the

strategy <r1(do|h°, sx) = 1, because that would be the dominant strategy
given that both types of 2 would agree with do by player 1. Then this
equilibrium does not agree with the intuitive criterion and should be
discarded.

2. The equilibrium which produces this outcome is

<rk(do|h
k,s1:) - 1 for h

k = h° and hk = {hk~\do}, t = 1,2.

<rk(do|h
k,st) = 0 for h

k = {hk"1,d1>, t • 1,2.

<rk(do|h
k,Si:) = 1 for h

k = {hk~\do}, t = 1,2.

<rk(do|h
k,st) = 0 for h

k = {hk"1,d1}, t = 1,2.

with out of equilibrium beliefs

ji(sjhk) = 1 for hk = {hk~\do}

fi(sjhk) = 0 for hk = {h*~x,dxy.
The question we, again, ask is what should the values of the parameters be

for this equilibrium to hold. Note that cr°(do|h°,s1) = 1 is a dominant

strategy. The payoff from <r°(do|h°,s2) = 1 is

ax(l - ni2)it-+ a1(l - TT22)(1 - it),

while that from (r°(do|h°,s2) = 0 is

bit127t + b i r 2 2 ( l - TT) .

So t h a t <r°(do |h°,s2) = 1 i s opt imal i f

a 1 ( l - w12)rc + a x ( l - n
22^^ - n) * bti12ic + ba^il - TI) , o r ,
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If 1 says cjo and 2 says dx then we require 1 to believe that 2 is type s2,
M(s1|{do,d1>) = 0. Then the payoff from <r1(do| {do,d1},s1) = 0 is Dbir12 while

that from <r1(dol{do,d1},s1) = 1 is D
2ax(l - nX2). So we would require

bir
Dbit12 £ D2axd - tt12), or D £ D s - i 2

Given the out of equilibrium be l i e f s <r1(do| {do ,dx},s2) = 0 i s a dominant
strategy.

The payoffs from cr2(do| <do},sx) = 1 and <r2(do| {do},sx) = 0 are
a2(l - ftlx)ir + a2(l - w12)(l - n) and
Dibnxxn + bir12(l - ir)} respectively. Thus we need
a2(l - nxx)n + a2(l - * 1 2Hl - ir) ^ D{bw:L1ic + b ^ ^ 1 ~ *)K o r

a2 + Db

U±X ~ *12

Similarly, we can show that <ra(do|{do}f sx) = 1 i s optimal if

Db

From (26) <r2(dQ| {d^.s^) = 0 is a dominant strategy for t = 1, 2. The final
condition we require is derived from consideration of player 2*s payoffs
from his strategies in the history {do,dlfdo}. Our stipulation of beliefs
requires player 2 to believe that he is facing sx and his payoff from

agreeing at this stage is D2a2(l - nX2) and that from dx is D
3brt12 and

saying do would be optimal if

D * ~ = a2(l - nX2)

Therefore, if the above conditions hold we will have our equilibrium.
Actually* if the last condition holds then n * p24 is automatically
satisfied. The reader can check that our arguments about the out of
equilibrium beliefs still hold and are, indeed, strengthened. A significant
difference for before is that 2(sx) agreeing with do is no longer a dominant

strategy and depends on whether D £ D.

3. Note that for other values of n there could be multiple Nash equilibria
and, consequently, mixed strategy equilibria. However, the mixed strategy
equilibria will involve a mixture of the pure strategy equilibria and the
game will end within three stages.
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APPENDIX

For the purpose of writing down the possible equilibrium it would be easier

to write down strategies in the pure reduced normal form. This would lessen

the burden of notation since we would not have to write down strategies for

histories which would not be reached. We would caution though the concept of

sequential equilibrium is valid only in the extensive form and when we write

down a particular equilibrium we have at the back of our mind a particular

sequential equilibrium. Player i type t's pure strategy is a double*

{nd }, d = 0,1 for t € {1,2}, i € {1,2}.

Player i's strategy is the number of periods he is going to say do(dx)

before ending the game by saying d1(do). A period is defined to be two

stages. Thus stage 0 and 1 comprise the first period. n<J = n., implies that

player i is going to say do for n-1 periods and dx in the nth period. There

is an asymmetry between player 1 and 2 in tha'c pla.yer 2 gets to observe

player T s choice of message in the first period before he makes a move. We

will denote a mixed strategy as S*1. Thi^ is the probability with which

player i of type t plays the pure strategy nd ~ n. The payoff from the pure

strategy n° is

n-1 n-1

S(n° ) S Son =yP(s r, J V a j l - rt ]
It 1* Li r L 2* x tr '

r-1 V-x V-l

The payoff from n^ is s \ m i l a r w i t h ajl - nto.l being replaced by b ^ and

vice versa. Also, the payoff for player 2 should reflect the fact that he

follows player 1 irt t h a t t h e p o Wer on D accompanying the first term should

become 2v - 1 a' ld t h a t i n t h e second term 2(n - 1). A mixed strategy is

denoted 6* w> , i c h i s t h e probability with which player i plays the pure

strategy nd = n T h u S f
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A Nash equilibrium is a pair {6i1:,5ar} such that

A pure strategy equilibrium is going to be a eight-tuple

{n^}; d » 0,1; t = 1,2; i = 1,2.

Theorem 4.1: For D £ D, there are four possible types of pure strategy

equilibria. These are

(I) {2, 1, 2, 1, 1, 1, 1, 1} for n * max <nxtn2}9

(II) {2, 1, 1, 2, 1, 1, 1, 1} for n s ir1>

( I I I ) {2, 1, 2, 1, 1, 1, 1, 2} for n2 * n * max {ir3,ir4},

(IV) {1 , 2, 2, 1, 2, 1, 1, 2} for ir5 2: ?t 2r ir6, D s

min{
bw22

a
— ifa + b 22 a + Db 22

where IT, m , w
*i2 ~ *22 2

3 (D -

a

(D -

a

D^12

+ b

l)bir1 2

+ b

**ii

a
a + b

' * 4 " (D - 1

(D

)bn

—
a

2 2

1
+

)bir22

b

a
a + b 12 a + b

' D

Proof:

(I) This equilibrium has been discussed in detail.

(II) The situation is the same as (I) with the only exception being that n1
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= 2, which i s optimal i f IT ^ n1.

( I I I ) The payoff for n° = 2 i s a ( l - nxx)n + Dbir12(l - IT) while that from

n1 = n i s birxlrc + bir12(l - n ) . Thus n° = 2 i s optimal i f a ( l - nxx)n +

Dbir12(l - it) =s bnxxn + bTT12(l - ir), or n £ n3. The payoff from n° = 2 i s

a ( l - n.9)n + Dbir_(l - n) whi le that of n1 = k i s bnrjn + brc,.(l - n)

making n° = 2 optimal i f n ^ irA. n° = 1 i s optimal i f D 2s D and so i s n1

12 4 21 21

= 1. For 2(s2) the equilibrium strategy n1 = 2 yields a payoff of Db?cl2ir +

Dbir^d - IT) while that from n1 = 1 would yield a(l - n.-)n + a(l - w^)(l
«^ 22

- IT). Then n1 « 2 would be optimal if n * n^.
22 2

(IV) The payoff from n1 = 2 is Da( l-Ttlx)7t + bir12(l-n) while that from n°

= 2 is $(l-nxx)n + DbTi12(l-?r). This gives n ̂  TC6. Similarly, the condition n

2= n6 can be derived.

Theorem 4.2: For D ̂  D, there are four possible pure strategy equilibria.

These are

(I) {oo, 1, 2, 1, oo, 1, 1, 1} for n 2: max {it7,ir8},

(II) {oo, 1, 1, 2, oo, 1, 1, 1} for ir s ir7,

(III) {oo, 1, 2, 1, oo, 1, 1, 2} for nB £ ir £ max {n9,it6},

( l r22
(IV) {1 , 2, 2 , 1, oo, 1, 2 , 2} for irs * TT, D S

bir22

a + b
where re, •

(D — x j cx\ x — n12- £

a + b + a + b "" **

a
a + Db

(D2 - l)a(l - ir12) a

a + Db a + Db
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D2a

D2a

D2a + b

D2a n

1 2

H b

(D

1 2

- l )a(

D2a H

1 - ir4 1)

i- b

Proof : The remarks made for Theorem 4.1 hold except that now since D ̂  D,

n° * oo and n° = oo are dominant strategies.
11 21

(I) For n° = 2 the payoff i s a(l - irX2)ir + a(l - ic22)(l - *) while for n*

= 2 the payoff i s Da(l - nX2)n + bir22(l - ir). Then the equilibrium strategy

is optimal if it £ n7. Given that 2(s2) believes that 1 i s type s2 if 1 says

d_, n° = 1 i s , also, optimal. The payoff for n1 = 1 i s a(l - itX2)ir + a(l -
22 22

i t 2 2)( l - ir) while that from n1 = 2 i s D2a(l - itX2)it + Pbir22(l - ir) so the

equilibrium s trategy i s optimal i f ir fc ira.

( I I ) The payoff for l ( s x ) from playing n° = co i s a ( l - irxx)ir + D2a(l -

wX2)(l - ir) while that from n1 = n i s Da(l - nxl)ir + birX2(l - ir). Then the

equilibrium s trategy i s optimal i f ir 2t n9. For l ( s 2 ) the payoff from n^ = 2

i s a ( l - irX2)ir + Dbir22(l - n) while that from nl = 2 i s Da(l - irX2)ir +

birM(l - ir). Then rt° = 2 i s optimal i f ir * ir6. From above n1 * 2 i s
a a 12 22

optimal i f ir ^ ir8.

( I I I ) The payoffs from H s 2 ) ' s s t r a t e g i e s can be seen in ( I ) . Now we w i l l

need ir =s ir5. The res t of the s t r a t e g i e s can be shown to be optimal from

observing ( I ) - ( I I ) .
(IV) For l ( s x ) the condit ion required i s Da(l-irxx)ir + Da(l-irX2) (1-ir) £ a ( l -

ff)n + D2a(l-irX2). Using the condit ion D s D t h i s reduces to ir * ir5.

Theorem 4.3: Let 5oa = $ and 8°* = 5 be such that
11 11 12 12

- Dbir,,} + 6 (1 - ir){a(l - irM) - Dbir22} = 0.
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AlSO, let 6
2

- ad-w12)>

ir{birxl - (l-it)(l-D)b7r •% ^

- n){a(l-Tr12) - Dbir12)

Then, if the conditions,

O2*- SO2*)*{bir,, - Da( l -
1 2

- irHbn1 2 - Da( l - ir1 0,

and

(1 - SO2*)ir{b7r12 - Da(l - jr )} + (1 - 5o a*)(l - it){btt22 - Dad - ir22)}

are met

o = o , o — o
11 11 12 12

SO 1 = 1 , 6 " = 1
21 21

0

ir{bit12 -
1 2

d-it)d-D)b7i 2

( l -n){ad-7r 2 2 ) - Dbn22}

constitutes a mixed strategy Nash equilibrium for D £ D.

Proof: Note that nx = 1 is a dominant strategy and both types of 1 would

say dx if 2 said dx when % said do in the previous period. Let 6
O2 = 602*,

6O2 = S°2* and S12* = 1 - «02*, 612* = 1 - 5O2*. Thus J(sJ mixes between
12 12 11 11 12 12

saying do once (n° = 2) and saying dx for one period (n
1 - 2) and l(s2)

mixes between spying do opce (n° = 2) and saying dx once (n = 2 ) . Let

611*, 5 1 2 = 612*
22 22 22

2( sJ play the strategy aM = 611*, 512 = 612* = 1 - S11*, so that 2 ( sJ
2 32 22 22 22 22 2

taixes b e t w e e n n x = 1 and n* = 2 . The p a y o f f f o r K s , ) f r o m n° = 2 i s a ( l
22 22 * 11

- ?r xj ir + a ( l - w 1 2 ) ( l - i r ) 5 ^ * + D b i r i 2 ( l - i r ) ( l - 5X1*} and t h a t f r o m n x =
11 12 ? 2 12 2 2 1 X

2 i s birxlir + birx2(l - n). gince l (s x ) must be indifferent between his pure

strategies that jneans

ir{birxx - icxx)} - D)bn
X2

- Db7iX2}
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Similarly l(s2) must be Indifferent between his pure strategies. The payoff

from n° = 1 is a(l - n,,)it + a(l - itM)(l - n)3
xx* + Dbw,-(1 - it)(l - SX1*)

12 1 2 2 2 22 2 2 22

and that from bir12ir + bjta2(l — it).Then

i it{birla - a(l-n1 2)} + (1-tr) (1-D)bit
22

(l-irMa(l-ir22) - Dbtr22}

5o2*it
For 2 of both types fi(d )

SO2*it + SO 2*(1 - it)
11 12

and
(1 - 8O2*)n + (1 - 6O2*)(1 - i t )

The payoffs for 2(s .) from n1 = 1 and nx = 2 are
22 22

a( l - it,,) - + a( l - it,,)
- it)

"it + 5o a"(l - it) ~ 8O2*it + SO2*(1 - it)
11 12 11 12

sO2*ci - it)
and Dbit,, + Dbn2

X2 Z
°2*it + 5°2*(1 - it) SO 2V + 6O2*(1 - tt)
11 12 11 12

2(s.) should be indifferent between these strategies so that

1 2

2* (1 - wHaU - n,,) - Dbn,,> = 0.

It remains to be shown that n° = 1 and n° = 1 are optimal. The payoff from
21 22

n° = 1 is
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(1 - 5O2*)n (1 - 5O2*)(1 - it)
11 - 11 ,

bir,, + bir,
(1 - SO2*)n + (1 - 5O2*)(1 - it) (1 - 5O2*)it + (1 - 362*)(1 - it)

11 12 11 12

The payoff from n° = 2 is
21

•Dad - i t u )
(1 - SO2*)n + (1 - 5O 2*)(1 - i t )

11 12

(1 - SO2*)(1 - n)
+ Da(l - IT,,). Then

(1 - 5 O 2 * ) * + (1 -5°2*)(1 -n)
11 12

( 1 - a ° * * ) i r { b i r - D a d - n.,)} + ( 1 - 5 O 2 ) ( 1 - i r H b n , , - D a d - i r 1 2 ) } s 0 .
1 1 • L 1 1X 1 2 ^* X*

Similarly for n° - 1 to be optimal it must be the case that

- dO2*)n{bnX2 - Da( l - rci2)} + (1 - 5O 2*)(1 - 7r){bir22 - Da( l - ?ra2)} * 0 .
11 12

Corollary: If D £ D and min {irlfira} ^ n 2: max {ir3>ir4}

then 5°2 = 1. S02 = (1 - 8") =
11 12 12

* 1 2

a + Db

5O1 = 1. 5 1 1 = 1
21 21

it{bitia - a(l-Tt12)} + ( l- i t)( l-D)bit2 2

22 ' 22 d - n M a d - n L , ) - Dbn,,}
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is a mixed strategy Nash equilibrium.

Proof: From theorem 3.1 if 611 = 0, then 5°2* = 1 if ir £ TT3. The rest of the
22 11 3

results follow from Substitution of this result.

Theorem 4.4: If D s D and min {ir7,ir8> £ ir £ max in6fn9} then

o — 1 , o =

12 1 - ir a(l-7T2 2) -

a000 = i , s 1 1 = i
21 21

- (l-ir)b7C22}

-Dbir22}

is a mixed strategy Nash equilibrium.

Proof: For K s J , n° = oo has a payoff of a(l-w_)ii + a(l-7r12) (I-
1 11 X i X 2 22

Da(l-ic12)(l-Tt)(l-6
xl) while that from n1 = 2 is Da(l-nr )ir + bn12(l-ir). For

1 2 22 11 " ' "

H s J the payoffs for n° = 2 and n1 = 2 are a(l-?r,2)ir + a(l-7r22) (l-
2 ^ J 11 11 1 2 2 2

and Da(l-ir12)ir + bir22(l-w). For 2(s2) the payoffs from n

22

1

22

= 1 and nx = 2 are
22

- it,,)

- 71)

n + 5oa*(l - it) it + 5"""(1 - it)
12 12

5oa*(l - n)
and D2a(l - n,J - + Dbn,,- "

n + 6O2"(1 - n) n + 5O2*(1 -
12 12

The required results can now be derived using steps used in the proof of
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Theorem 4.3 and the payoffs given above.

Theorem 5.1: Let D a max(D, D), then there are four possible pure strategy

equilibria. These are

(I) {2, 1, 2, 1, 1, 1, 1, 1} for IT s max ̂ u , 02X>,

(II) {2, 1, 1, 2, 1, 1, 1, 1} for n s 3X1,

( I I I ) {2, 1, 2, 1, 1, 1, 1, 2} for p 2 l i it s max {|312, 0X3>,

(IV) {1, 2, 2, 1, 2, 1, 1, 2} for 0X4 £ n * 3X5, D s

min{
a (1 - ir_3) bit..

bn22 'a2(l - nxl)
r'

where pl

a 2 + Db 2 2

(D - l)bit1

(D - l)bit1

(D - l)bit2

(D - l )bn 2

x ( l - irxx) + bit12 ' P « " a x ( l - ir12)

a,(l - n,J ~ bit
D • 2 ,_—¥- , D • -

bir1

Theorem 5.2: Let D a D a D, then there are four possible pure strategy

equilibria. These are

(I) {», 1, 2, 1, 1, 1, 1, 1} for n a max O x i, 022},

(II) {», l, l, 2, 1, 1, 1, 1} for n s pxx,

(III) {«, 1, 2, 1, 1, 1, 1, 2} for p22 a it £ max O X 3, 0x6h

(IV) {1, 2, 2, 1, 2, 1, 1, 2> for px7 * n a 0X5, D s
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a a(l - it22)

'a2(l -

where 3X6

2 1 2

D a , + b

D2a

D 2 a x

(Da

i x

+ b

- Da

a 2 •

D2

D 2 a x

a2

2 c i •
H Db

ax

+

+

a2

+

b

(D -

Db

rc12)

tr12

Da

* 2 2

a2

xd " «„)

+ b

a2

+ Db ™22

Theorem 5.3: If D * D s D, there are four p o s s i b l e Nash equilibrium. These

are

(I) {2, 1, 2 , 1, 1, 1, 1, oo} for n a max{01 2 ,01 3 ,02 4},

( I I ) {2, 1, 1, 2 , 1, 1, 1, oo} for 3 i 3 a n * 3 1 2 ,

( I I I ) <1, 2 , 1, 2 , 1, 1, 1, oo} for n s min <3 l 2 , 3 i 3 , 3 2 3 } ,

(IV) {1 , 2, 1, 2 , 2, 1, 1, «} for 3 2 3 s ir s min <314, 3 1 B } ,

Da, a,

where
Da2 + b l 2 a2 + Db

Theorem 5.4: If D a max{D,D} and player 2 starts the game, there are four

Nash equilibria. These are

(I) {1, 2, 1, 2, 1, 1, 1, 1}.
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( I I ) {2, 1, 1, 2, 1, 1, 1, 1>.

( I I I ) {1 , 2, 1, 2, 2, 1, 1, 1} .

(IV) {1 , 2, 2 , 1, 2 , 1, 1, 2 } .

Theorem 5.5: If P s min{D,D} there are seven pure s trategy e q u i l i b r i a . They

are

(I ) {oo, 1, 2 , 1, 1, 1, 1, 1} for n £ max {P1JL,£22>/325h

(II ) {oo, 1, 1, 2, 1, 1, 1, 1} for n * 3 l l f

( I I I ) {oo, 1, 2, 1, 1, 1, 1, 2} for (325 £ it * max {(31 3 ,01 6 ,02 2h

(IV) {2, 1, 2, 1, 1, 1, 1, oo} for n * max{312,(3X3,|822>

(V) {2, 1, 1, 2, 1, 1, 1, oo} for £13 * ir * £1 2 ,

(VI) {1, 2, 1, 2, 1, 1, 1, oo} for n s min {g^, p13, 023},

(VII) {1, 2, 1, 2, 2, 1, 1, oo} for p23 s n s min {pi4, 315},

where
a2 + Db

(D2 - I)a2(l - nxl) a2

a2 + Db
 + a2 + Db

Proof: As stated earlier the proof is similar to that of Theorem 4.1 and

4.2. One point to note is that since D £ min{D,D}, if the event is (s^s^

then both 1 and 2 should insist on their particular preferences. Thus there

can be two different Nash equilibria; one in which 1 concedes and another

one where 2 concedes once the player* s types are known to each other. The

proof is then straightforward.

Proof of Proposition 5.7: (a) Suppose <r2
+1(do| (h

k,do), jLt(sJh
k+x)) = 0, then

u1(<r
k(do|fx(h

k)) = u1(<r
k+2(do|fi(h

k+2)) since both types of player 2 say dx

and so no new information is available about player 2's type. Then if
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ux(<r*(doln(h
k)) » 1 is optimal it implies that uJo^tdJfiCh**2)) = 1 is

also optimal. Similarly it can be shown that in that if l(s2) is going to

say do with probability one in stage k + 2 then if 2(s1) says dx in stage k

+ 1 he should say dx in stage k + 3. Then by induction it can be shown that

player 1 and 2 will alternate between do and dx. (b) can be shown in a

similar manner. For (c) note that for any stage where l(s2) and 2(sx) play

do and dx the payoffs have to be the same. This is a feature of mixed

strategies. However this conflicts with another feature of mixed strategies

that the probabilities of the mixtures should add up to one. It is easier to

show (c) using mixed strategies. Suppose 5ln > 0. Then S(nx = n) = Stn1 =
12 21 21

n + 1). Simplifying this condition we get

n-l

D a 2 l l ~ W12J ~ "TCia *- ra 11 - l l ;

(D - 1 ) a 2 ( l - TI )

D a 2 ( l - irX2) - birX2 ( 1 - n)

00

which contradicts V 61" = 1.
L 1212

n-1
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