INTEGER PROGRAMMING
by

V. Chandru? & M. R. Rao?

March 1998

Please address all correspondence to :

Dr. M.R. Rao

Indian Institute of Management Bangalore
Bannerghatta Road

Bangalore 560 076

India

Fax: (080) 6644050

'To appear as a chapter of the Handbook of Algorithms edited by M.J. Atallah, CRC Press (1998)
’CS & Automation, Indian Institute of Science, Bangalore-560 012, India. chandru@csa.iisc.ernet.in

*Indian Institute of Management Bangalore, Bangalore 560 076, India. mrao@jiimb.ernet.in

Copies of the Working Papers may be obtained from the FPM & Research Office

INTEGER PROGRAMMING?

V1iAy CHANDRU, Indian Institute of Science, Bangalore 560 012, India.
M.R. Rao, Indian Institute of Management, Bangalore 560 076, India.

JANUARY, 1998

Abstract

Integer programming is an expressive framework for modeling and solving discrete opti-
mization problems that arise in a variety of contexts in the engineering sciences. Integer
programming representations work with implicit algebraic constraints (linear equations
and inequalities on integer valued variables) to capture the feasible set of alternatives,
and linear objective functions (to minimize or maximize over the feasible set) that spec-
ify the criterion for defining optimality. This algebraic approach permits certain natural
extensions of the powerful methodologies of linear programming to be brought to bear on
combinatorial optimization and on fundamental algorithmic questions in the geometry of

numbers.

1 Introduction

In 1957 the Higgins lecturer of mathematics at Princeton, Ralph Gomory, announced that he would
lecture on solving linear programs in integers. The immediate reaction he received was: “But that’s
impossible!”. This was his first indication that others had thought about the problem [57]. Gomory
went on to work on the foundations of the subject of integer programming as a scientist at IBM
from 1959 until 1970 (when he took over as Director for Research). From cutting planes and the
polyhedral combinatorics of corner polyhedra to group knapsack relaxations, the approaches that
Gomory developed remain striking to researchers even today.

There were other pioneers in integer programming who collectively played a similar role in de-
veloping techniques for linear programming in Boolean or 0-1 variables. These efforts were directed
at combinatorial optimization problems such as Routing, Scheduling, Layout and Network Design.
These are generic examples of combinatorial optimization problems that often arise in computer
engineering and decision support.

Unfortunately, almost all interesting generic classes of integer programming problems are N'P-

Hard. The scale at which these problems arise in applications and the explosive exponential complex-

‘Readers unfamiliar with linear programming methodology are strongly encouraged to consult the chapter on linear
programming in this handbook.

ity of the search spaces preclude the use of simplistic enumeration and search techniques. Despite
the worst-case intractability of integer programming, in practice we are able to solve many large
problems and often enough with off-the-shelf software. Effective software for integer programming is
usually problem specific and based on sophisticated algorithms that combine approximation methods

with search schemes and that exploit mathematical (and not just syntactic) structure in the problem

at hand.

An abstract formulation of combinatorial optimization is
(CO) min{f(I): I €T}

where Z is a collection of subsets of a finite ground set E = {ej,e2,...,en} and f is a criterion

(objective) function that maps 2F (the power set of E) to the reals. The most general form of an

integer linear program is
(MILP) nelgx {ex: Ax > b, z; integer Vj € J}
x n

which seeks to minimize a linear function of the decision vector x subject to linear inequality con-
straints and the requirement that a subset of the decision variables are integer valued. This model
captures many variants. If J = {1,2,...,n}, we say that the integer program is pure and mized
otherwise. Linear equations and bounds on the variables can be easily accomodated in the inequality
constraints. Notice that by adding in inequalities of the form 0 < z; <1 for a j € J we have forced
z; to take value 0 or 1. It is such Boolean variables that help capture combinatorial optimization
problems as special cases of (MILP).

The next section contains preliminaries on linear inequalities, polyhedra, linear programming and
an overview of the complexity of integer programming. These are the tools we will need to analyze
and solve integer programs. Section 3, is the testimony on how integer programs model combinatorial
optimization problems. In addition to working a number of examples of such integer programming
formulations, we shall also review formal representation theories of (Boolean) mixed integer linear
programs.

With any mixed integer program we associate a linear programming relaxation obtained by
simply ignoring the integrality restrictions on the variables. The point being, of course, that we
have polynomial-time (and practical) algorithms for solving linear programs (see Chapter Editor:
Please Insert the Number of the Chapter on Linear Programming of this handbook). Thus

the linear programming relaxation of (MILP) is given by
(LP) min{cx: Ax > b}
xER™

The thesis underlying the integer linear programming approaches is that this linear program-

ming relaxation retains enough of the structure of the combinatorial optimization problem, to be a

useful weak representation. In Section 4 we shall take a closer look at this thesis in that we shall
encounter special structures for which this relaxation is “tight”. For general integer programs, there
are several alternate schemes for generating linear programming relaxations with varying qualities of
approximation. A general technique for improving the quality of the linear programming relaxation
is through the generation of valid inequalities or cutting planes.

The computational art of integer programming rests on useful interplays between search method-
ologies and algebraic relaxations. The paradigms of Branch & Bound and Branch & Cut are the
two enormously effective partial enumeration schemes that have evolved at this interface. These will
be discussed in Section 5. It may be noted that all general purpose integer programming software
available today uses one or both of these paradigms.

A general principle, is that we often need to disaggregate integer formulations to obtain higher
quality linear programming relaxations. To solve such huge linear programs we need specialized
techniques of large-scale linear programming. These aspects are described in the chapter (Chapter
-Editor: Please Fill In) on linear programming in this handbook. The reader should note that
the focus in this chapter is on solving hard combinatorial optimization problems. We catalog several
special structures in integer programs that lead to tight linear programming relaxations (Section 6)
and hence to polynomial-time algorithms. These include structures such as network flows, matching
and matroid optimization problems. Many hard problems actually have pieces of these nice structures
embedded in them. Successful implementations of combinatorial optimization have always used
insights from special structures to devise strategies for hard problems.

The inherent complexity of integer linear programming has led to a long-standing research pro-
gram in approximation methods for these problems. Linear programming relaxation and Lagrangean
relaxation (Section 6) are two general approximation schemes that have been the real workhorses
of computational practice. Primal-Dual strategies and Semi-Definite relaxations (Section 7) are two
recent entrants that appear to be very promising.

Pure integer programming with variables that take arbitrary integer values is a natural extension
of diophantine equations in number theory. Such problems arise in the context of cryptography,
dependence analysis in programs, the geometry of numbers and Presburgher arithmetic. Section 8
covers this aspect of integer programming.

We conclude the chapter with brief comments on future prospects in combinatorial optimization

from the algebraic modeling perspective.

2 Preliminaries

2.1 Polyhedral Preliminaries

Polyhedral combinatorics is the study of embeddings of combinatorial structures in Euclidean space
and their algebraic representations. We will make extensive use of some standard terminology from
polyhedral theory. Definitions of terms not given in the brief review below can be found in [95,124].

A (convex) polyhedron in R™ can be algebraically defined in two ways. The first and more
straightforward definition is the implicit representation of a polyhedron in ®” as the solution set to
a finite system of linear inequalities in n variables. A single linear inequality ax < ag; a # 0 defines
a half-space of R™. Therefore geometrically a polyhedron is the intersection set of a finite number of
- half-spaces.

A polytope is a bounded polyhedron. Every polytope is the convex closure of a finite set of
points. Given a set of points whose convex combinations generate a polytope we have an explicit
or parametric algebraic representation of it. A polyhedral cone is the solution set of a system of
homogeneous linear inequalities. Every (polyhedral) cone is the conical or positive closure of a finite
set of vectors. These generators of the cone provide a parametric representation of the cone. And
finally a polyhedron can be alternately defined as the Minkowski sum of a polytope and a cone.
Moving from one representation of any of these polyhedral objects to another defines the essence of
the computational burden of polyhedral combinatorics. This is particularly true if we are interested
in “minimal” representations.

A set of points x!, ..., x™ is affinely independent if the unique solution of)iy Aixt =0, Y=
0is \;=0forz=1,...,m. Note that the maximum number of affinely independent points in R is
n+1. A polyhedron P is of dimension k, dim P = k, if the maximum number of affinely independent
points in P is k+ 1. A polyhedron P C R" of dimension n is called full-dimensional.

An inequality ax < ag is called valid for a polyhedron P if it is satisfied by all x in P. It is called
supporting if in addition there is an X in P that satisfies aX = ag. A face of the polyhedron is the set
of all x in P that also satisfy a valid inequality as an equality. In general, many valid inequalities
might represent the same face. Faces other than P itself are called proper. A facet of Pis a maximal
nonempty and proper face. A facet is then a face of P with a dimension of dim P — 1. A face of
dimension zero, i.e. a point v in P that is a face by itself, is called an eztreme point of P. The
extreme points are the elements of P that cannot be expressed as a strict convex combination of
two distinct points in P. For a full-dimensional polyhedron, the valid inequality representing a facet
is unique up to multiplication by a positive scalar, and facet-inducing inequalities give a minimal

implicit representation of the polyhedron. Extreme points, on the other hand, give rise to minimal

parametric representations of polytopes.

The two fundamental problems of linear programming (which are polynomially equivalent) are:

e Solvability This is the problem of checking if a system of linear constraints on real (rational)

variables is solvable or not. Geometrically, we have to check if a polyhedron, defined by such

constraints, is nonempty.

e Optimization This is the problem (LP) of optimizing a linear objective function over a poly-

hedron described by a system of linear constraints.

Building on polarity in cones and polyhedra, duality in linear programming is a fundamental
concept which is related to both the complexity of linear programming and to the design of algorithms
for solvability and optimization. Here we will state the main duality results for optimization. If we

take the primal linear program to be
i : >b
(P) min{cx: Ax > b}
there is an associated dual linear program

(D) max{bTy:ATy=c",y 20}

and the two problems satisfy

1. For any % and y feasible in (P) and (D) (i.e. they satisfy the respective constraints), we have

cx > bTy (weak duality). Consequently, (P) has a finite optimal solution if and only if (D)

does.

2. x* and y* are a pair of optimal solutions for (P) and (D) respectively, if and only if x* and

y* are feasible in (P) and (D) (i.e. they satisfy the respective constraints) and cx* = bTy*
(strong duality).

3. x* and y* are a pair of optimal solutions for (P) and (D) respectively, if and only if x* and y*
are feasible in (P) and (D) (i.e. they satisfy the respective constraints) and (Ax* —b)Ty* = 0

(complementary slackness).

The strong duality condition gives us a good stopping criterion for optimization algorithms. The
complementary slackness condition, on the other hand gives us a constructive tool for moving from
dual to primal solutions and vice-versa. The weak duality condition gives us a technique for obtaining
lower bounds for minimization problems and upper bounds for maximization problems.

Note that the properties above have been stated for linear programs in a particular form. The

reader should be able to check, that if for example the primal is of the form

(P') min{cx : Ax = b, x > 0}
XER™

then the corresponding dual will have the form

(D) ggﬁ{bTy : ATy < T}

The tricks needed for seeing this is that any equation can be written as two inequalities, an un-
restricted variable can be substituted by the difference of two non-negatively constrained variables
and an inequality can be treated as an equality by adding a non-negatively constrained variable to
the lesser side. Using these tricks, the reader could also check that duality in linear programming is

involutory (i.e. the dual of the dual is the primal).

2.2 Linear Diophantine Systems

Let us first examine the simple case of solving a single equation with integer (rational) coefficients

and integer variables.

61T+ a2Z2+ - -+ anTp = b (1)

A classical technique is to use the Euclidean algorithm to eliminate variables. Consider the first

iteration in which we compute a,2, and the integers §; and §2 where

a2 = ged(ay,a3) = a3 + &ay

Now we have a reduced equation that is equivalent to equation (1).
a12Z12 +a3z3+ -+ anZp = b (2)

It is apparent that integer solutions to equation (2) are linear projections of integer solutions to
equation (1). However, it is not a simple elimination of a variable as happens in the case of equations
over reals. It is a projection to a space whose dimension is one less than the dimension we began with.
The solution scheme reduces the equation to a univariate equation and then inverts the projection
maps. All of this can be accomplished in polynomial time since the Euclidean algorithm is “good”.

Solving a system of linear diophantine equations Ax = b, x € Z™ now only requires a matrix
version of the simple scheme described above. An integer matrix, of full row rank, is said to be in
Hermite Normal Form if it has the appearance [L|0] where L is nonsingular and lower triangular
with nonnegative entries satisfying the condition that the largest entry of each row is on the main
diagonal. A classical result (cf. [113]) is that any integer matrix A with full row rank has a unique
Hermite Normal Form HNF(A) = AK = [L|0].where K is a square unimodular matrix (an integer
matrix with determinant +1).

The matrix K encodes the composite effect of the elementary column operations on the matrix

A needed to bring it to normal form. The elementary operations are largely defined by repeated

invocation of the Euclidean algorithm in addition to column swaps and subtractions. Polynomial-time
computability of Hermite normal forms of integer matrices was first proved by Kannan and Bachem
[75] using delicate and complicated analysis of the problems of intermediate swell. Subsequently, a

much easier argument based on modulo arithmetic was given by Domich, Kannan and Trotter [36].

As consequences, we have that:

e Linear Diophantine Systems can be solved in polynomial time. Assuming A has been prepro-
cessed to have full row rank, to solve Ax = b,x € Z™ we first obtain HNF(A) = AK = [L|0].
The input system has a solution if and only if L™'b is integral and if so, a solution is given by

L~'b
0

x=K

e KRONECKER: (cf. [113]) Ax = b,x € Z™ has no solution if and only if there ezists a y € ™

such that ytA is integral and y*b is not. A certificate of unsolvability is always available from

the construction described above.

e The solutions to a Linear Diophantine System are finitely generated. In fact, a set of generators

can be found in polynomial time. {x € Z"|Ax = b} = {3+ ¥, 3?1\ € 2}, x° =
L~ 'b
K and [x!,x2,---,x™] = K(0,I)t.
0

In summary, linear diophantine systems are a lot like linear systems over the reals (rationals).
The basic theory and complexity results for variable elimination in both constraint domains are
similar. This comfortable situation changes when we move on to linear inequalities over the integers

or equivalently to non-negative solutions to linear diophantine systems.

2.3 Computational Complexity of Integer Programming

Any algorithm for integer programming is a universal polynomial-time decision procedure on a non-
deterministic Turing machine. This statement is credible not only because the solvable systems of
linear inequalities (with rational coefficients) over integer-valued variables describe an A"P-complete
language but also because integer programs are expressive enough to capture most decision problems
in NP via straightforward reductions. This expressiveness derives from our ability to embed senten-
tial inference and combinatorial structures with equal ease in integer programs. We will see ample
demonstration of this expressiveness in the next section. This relationship of integer programming
with NP is akin to the relationship of linear programming with P.

COMPLEXITY OF LINEAR INEQUALITIES:

From our earlier discussion of polyhedra, we have the following algebraic characterization of

extreme points of polyhedra.

=1

Theorem 2.1 Given a polyhedron P, defined by {x : Ax < b}, where A is m x n, x* is an eztreme
point of P if and only if it is a face of P satisfying A'x* = b* where ((4%), (b*)) is a submatriz of (4,b)
and the rank of A* equals n.

Corollary: The decision problem of verifying the membership of an input string (A,b) in the
language L1 = {(A4,b): Ix such that Ax < b} belongs to N'P.

Proof: It follows from the theorem that every extreme point of the polyhedron @ = {x : Ax < b}
is the solution of an (n X n) linear system whose coefficients come from (4,b). Therefore we can
guess a polynomial length string representing an extreme point and check its membership in Q in
polynomial time. O

A consequence of Farkas Lemma [45] (duality in linear programming) is that the decision problem

of testing membership of input (4,b) in the language
Lr={(A,b):3 x such that Ax < b}

is in NP coN'P. That L; € P, follows from algorithms for linear programming [81,77]. This is
as far down the polynomial hierarchy that we can go since L is known to be P-complete (that is,

complete for P with respect to log-space reductions.

COMPLEXITY OF LINEAR INEQUALITIES IN INTEGER VARIABLES:
The complexity of integer programming is polynomially equivalent to the complexity of the
language

Lip = {(A,b): Ix € Z such that Ax < b}

We are assuming that the input coefficients in A4, b are integers (rationals). It is very easy to encode
Boolean satisfiability as a special case of L;p with appropriate choice of A,b as we shall see in the
next section. Hence L;p is N'P-hard.

It remains to argue that the decision problem of verifying the membership of an input string (4, b)
in the language Lp belongs to N'P. We will have to work a little harder since integer programs may
have solutions involving numbers that are large in magnitude. Unlike the case of linear programming
there is no extreme point characterization for integer programs. However, since linear diophantine
systems are well behaved, we are able to salvage the following technical result that plays a similar

role. Let a denote the largest integer in the integer matrices A, b and let ¢ = max{m,n} where 4 is

m X n.

FINITE PRECISION LEMMA [103]: If B is an r X n submatrix of A with rank B < n then 3 a nonzero

integral vector z = (2,22, +-z,) in the null space of B such that |z;| < (aq)?+! Vj.

Repeated use of this lemma shows thatif {x € Z : Ax < b} is solvable then there is a polynomial
size certificate of solvability and hence that £yp belongs to N'P.

8

As with any N'P-hard problem, researchers have looked for special cases that are polynomial-

time solvable. The following table is a summary of the important complexity classification results in

integer programming that have been obtained to date.

Input Data Generic Problem Complexity
Solvability Does 3 an x satisfying:
1. | n,m,A,Db Ax = b;x > 0, integer NP-Complete [16,54,7
2. |n,m,Ab Ax < b;x € {0,1}" NP-Complete [79,110
3. | n,mA4,b,d(>0) Ax =b (mod d); x > 0, integer P [50,6]
4. | n,m,A,b Ax = b;x integer P [50,6]
5. | n,m,A,b Ax=b;x>0 P [81,77]
6. | n,(m=1),(A>0),(b>0) Ax = b;x > 0, integer NP-Complete [110]
7. | n,(m=2),(4>0),(b>0) alx > by;a?x < by;x > 0, integer | NP-Complete [76]
8. | (n=k),m,ADb Ax = b;x > 0, integer P [87]
9. | n,(m=k),A,Db Ax < b;x integer P [87)
Optimization Find an x that
maximizes cx subject to:
10. | n,m, A, b,c Ax = b;x > 0, integer NP-Hard [54,79]
11. | n,m, A,b,c Ax < b;x € {0,1}" NP-Hard [79,110)
12. | n,(m=1),(A > 0),(b>0),c Ax = b;x > 0, integer NP-Hard [110]
13. [n,(m=1),(A>0),(b>0),c Ax < b;x € {0,1}" NP-Hard [110]
14. | n,m, A,b,c, (d; > 2Vi) Ax = b (mod d); x > 0, integer NP-Hard [20]
15. | (n=k),m,A,b,c Ax = b;x > 0, integer P [87]
16. | n,(m =k),A,b,c Ax < b; x integer P [87]
17. | n,m,A,b,c Ax=b;x>0 P [81,77]
18. | n,m, (A is graphic)#,by,by,dy,d2 | d) < x < d2,by < Ax < by, x € Z | P [44,101]

A is a graphic matrix if it has entries from {0,+1,+2} such that the sum of absolute values of

the entries in any column is at most 2.

Table 1i: Summary of Complexity Results

3 Integer Programming Representations

We will first discuss several examples of combinatorial optimization problems and their formulation
as integer programs. Then we will review a general representation theory for integer programs that
gives a formal measure of the expressiveness of this algebraic approach. We conclude this section
with a representation theorem due to Benders [10] which has been very useful in solving certain

large-scale combinatorial optimization problems in practice.

3.1 Formulations

Formulating decision problems as integer or mixed integer programs is often considered an art form.
However, there are a few basic principles which can be used by a novice to get started. As in all
art forms though, principles can be violated to creative effect. We list below a number of example

formulations, the first few of which may be viewed as principles for translating logical conditions into

models.
1. DiscrRETE CHOICE :
CONDITION MODEL

Xe {31’52)"':5P} X = Z?:l Sj 6_1'
S, 6=1,8=00r V]

2. DicHoTOMY :

CONDITION MODEL

g(x) >0 g(x)> ég g and h are

or finite lower
h(x) >0 h(x)> (1-6)h boundsong, h
or both 6=0o0r1l respectively.

3. K-FoLD ALTERNATIVES :

condition model

at least k of gi(x) > & g i=1,.,m
gi(x) >0,i=1,..,m L b6 <m-—k

maust hold 6=00r1

10

4. CONDITIONAL CONSTRAINTS :

condition model
(f(x)>0 = g(x)20) g(x) > og flgis an

[f(x) < (1-8) f upper/lower bound
(f(x) £ 0or g(x) > 0or both) §=0o0rl on f/g

5. F1xep CHARGE MODELS:

condition model
f(z)=0ifz=0 f(z)=Ky+ecz
f(z)=K+czifz>0 z<Uy U an upper bound
z2>0 onczc
y=0o0rl

6. PIECEWISE LINEAR MODELS:

A £ (x)
41
condition model
26_
20 f(:l:) = 56, + 62+ 363
B 6>0=>6,=4 4W, <6 <4
3>0=>6,=6 6W, < §, < 6W;
0 <63 <5W,
4 10 15 x Wy, Wy =0orl
Figure 1: A Polyline
7. CAPACITATED PLANT LOCATION MODEL :
i= {1,2,..,m} possible locations for plants
i= {1,2,..,n} demand sites

k; = capacity of plant 1, if opened

fi = fixed cost of opening plant i

ci; = per unit production cost at 7 plus
transportion cost from 2 to j

d; = demand at location j

11

Choose plant locations so as to minimize
Formulation:

miny., Ej Cij Tij

st 3 Tij

25 Tij

Tij

Yi

If the demand d; is less than the capacity k; for

total cost and meet all demands.

+

i fiw
d; Vi

ki v Vi
0 Vi, j
OorlVi

vV IN IV

some tj combination, it is useful to add the

constraint z;; < d;jy; to improve the quality of the linear programming relaxation.

8. TRAVELING SALESMAN PROBLEM (ALTERNATE

FORMULATIONS): A recurring theme in inte-

ger programming is that the same decision problem can be formulated in several different ways.

Principles for sorting out the better ones have been the subject of some discourse [121]. We

now illustrate this with the well known traveling salesman problem. Given a complete directed

graph D(N,A) with distance ¢;; of arc (%, j), we are to find the minimum length tour beginning

at node 1 and visiting each node of D(N,A) exactly once before returning to the start node 1.

Formulation 1 :

min 37, Y7oy Cij Tij

s.t. Z?:l Tij

1V:

i1 Tij = 1Y)

Ties Lies Tii 2 1VPCN
z;; = Oorl Vij
Formulation 2 :
min 37, 30 Gij Tij
st. Yiog T = 1 Vi
Shiz; = 1V
T Vi~ Ly % = LVi#l
% < (r-l)z;i=12,..,n
j=2,.,n

z; = Oorl Vij
vij 2 0 Vi

9. NoNLINEAR FORMULATIONS: If we allow arbitrary nonlinear objective and constraint func-

tions the general integer programming problem is

closely related to Hilbert’s tenth problem and

is undecidable [69]. However, when the integer variables are restricted to 0 — 1, the problem is

12

10.

of the form
(NIP) min{f(x)|gi(x)<0,i=1,..m,x€ {0,1}"}

and we can capture a rich variety of decision problems (Modular Design, Cluster Analysis, Capi-
tal Budgeting under Uncertainty and Production Planning in Flexible Manufacturing Systems,
to name a few). Restricting the constraints to linear assignment constraints while allowing

quadratic cost functions yields the Quadratic Assignment Problem (QAP)

min Y20 Pk Cijkl Tik Tl
st. Y,z = 1 Vk
Yk Tik = 1Vi
Oorl Vik

Tik
which includes the Travelling Salesman Problem and Plant Location Problems as special cases.

Karmarkar [78] has advocated solving integer programs, by first formulating them as minimizing
an indefinite quadratic function over a polyhedral region, and then solving the continuous model

using interior point methods.

The other side of the coin is that these problems are extremely hard to solve and the most

successful strategies to date for these problems are via linearization techniques and semi-definite

relaxations.

COVERING AND PACKING PROBLEMsS: A wide variety of location and scheduling problems
can be formulated as set covering or set packing or set partitioning problems. The three
different types of covering and packing problems can be succinctly stated as follows: Given
(a) a finite set of elements M = {1,2,..,m}, and
(b) a family F of subsets of M with each member Fj, j = 1,2,..,n having a profit (or cost)

c; associated with it,

find a collection, S, of the members of F that maximizes the profit (or minimizes the cost)

while ensuring that every element of M is in

(P1): at most one member of S (set packing problem)
(P2): at least one member of S (set covering problem)

(P3): exactly one member of S (set partitioning problem)

The, three problems (P1), (P2) and (P3) can be formulated as integer linear programs as

follows:

13

11.

Let A denote the m X n matrix where

1 if element i € F;
A =

0 otherwise

The decision variables are z;, j = 1,2,..,n where

1 if Fjis chosen

T; =
0 otherwise

The set packing problem is

(P1) Max cx
Subject to Ax < en

T; = 0 O’I‘I,] = 1,2,..,72.
where e,,'is a m-dimensional column vector of 1s.

The set covering problem (P2) is (P1) with less than or equal to constraints replaced by
greater than or equal to constraints and the objective is to minimize rather than maximize.
The set partitioning problem (P3) is (P1) with the constraints written as equalities. The set
partitioning problem can be converted to a set packing problem or a set covering_ problem
(see [98]) using standard transformations. If the right hand side vector e,, is replaced by a

non-negative integer vector b, (P1) is referred to as the generalised set packing problem.

The airline crew scheduling problem is a classic example of the set partitioning or the set cover-
ing problem. Each element of M corresponds to a flight segment. Each subset F; corresponds
to an acceptable set of flight segments of a crew. The problem is to cover at minimum cost,

each flight segment exactly once. This is a set partitioning problem. If dead heading of crew is

permitted, we have the set covering problem.

PACKING AND COVERING PROBLEMS IN A GRAPH: Suppose A is the node-edge incidence
matrix of a graph. Now, (P1) is a weighted matching problem. If in addition, the right hand
side vector e, is replaced by a non-negative integer vector b, (P1) is referred to as a weighted
b-matching problem. In this case, each variable z; which is restricted to be an integer may h:;we
a positive upper bound of u;. Problem (P2) is now referred to as the weighted edge covering
problem. Note that by substituting for z; = 1 — y;, where y; = 0 or 1, the weighted edge

covering problem is transformed to a weighted b-matching problem in which the variables are

restricted to be 0 or 1.

Suppose A is the edge-node incidence matrix of a graph. Now, (P1) is referred to as the weighted

vertex packing problem and (P2) is referred to as the weighted vertex covering problem. It is

14

12.

easy to see that the weighted vertex packing problem and the weighted vertex covering problem
are equivalent in the sense that the complement of an optimal solution to one problem defines

an optimal solution to the other. The set packing problem can be transformed to a weighted

vertex packing problem in a graph G as follows:

G contains a node for each z; and an edge between nodes j and k exists if and only
if the columns A j and Ay are not orthogonal. G is called the intersection graph of
A. Given G, the complement graph G has the same node set as G and there is an
edge between nodes j and k in G if and only if there is no such corresponding edge in
G. A clique in a graph is a subset, k, of nodes of G such that the subgraph induced
by k is complete. Clearly, the weighted vertex packing problem in G is equivalent to

finding a maximum weighted clique in G.

SATISFIABILITY AND INFERENCE PROBLEMS: In propositional logic, a truth assignment is an
assignment of “true” or “false” to each atomic proposition z,,z,,..z,. A literal is an atomic
proposition z; or its negation —~z;. For propositions in conjunctive normal form, a clause is
a disjunction of literals and the proposition is a conjunction of clauses. A clause is obviously
satisfied by a given truth assignment if at least one of its literals is true. The satisfiability

problem consists of determining whether there exists a truth assignment to atomic propositions

such that a set S of clauses is satisfied.

Let T; denote the set of atomic propositions such that if any one of them is assigned “true”,
the clause 1 € S is satisfied. Similarly let F; denote the set of atomic propositions such that if

any one of them is assigned “false”, the clause i € S is satisfied.

The decision variables are

1 if atomic proposition j is assigned true
z;=
0 if atomic proposition j is assigned false

The satisfiability problem is to find a feasible solution to
(P4) Y zj— z;21-|F|i€Ss
JET: JEF;

zj=0orl forj=1,2,.,n

By substituting z; = 1 —y;, where y; = 0 or 1, for j € F;, (P4) is equivalent to the set covering

problem

13.

n

(P3) Min) (z;+13))

=1

subject to sz-i— Zyjz 12€ S
JET; JEF;

z;j+y; 21 3=12,.,n

z;,y;=00rl 3=1,2,.,n

Clearly (P4) is feasible, if and only if (P5) has an optimal objective function value equal to n.

Given a set S of clauses and an additional clause k ¢ S, the logical inference problem is to find

out whether every truth assignment that satisfies all the clauses in S also satisfies the clause

k. The logical inference problem is

(P6) Min Z z;— Z z;

JET, JEF;

subject to Z:cj— Z:z:jz 1-|F]|i€S
JET; JEF;

,Z;j=00rl1 3=1,2,.,n

The clause k is implied by the set of clauses S, if and only if (P6) has an optimal objective
function value greater than — | Fi |. It is also straightforward to express the MAX-SAT

problem (i.e. find a truth assignment that maximizes the number of satisfied clauses in a given

set S) as an integer linear program.

MUuLTI-PROCESSOR SCHEDULING: Given n jobs and m processors, the problem is to allocate
each job to one and only one of the processors so as to minimize the make span time, i.e
minimize the completion time of all the jobs. The processors may not be identical and hence

job 7 if allocated to processor i requires p;; units of time. The multi-processor scheduling

problem is
(P7) Min T

16

subject to Y%, zii=1 j=12,.,n
Yo pizii—-T<0 i=12,.,m

z;;j=0o0rl Vij
Note that if all p;; are integers, the optimal solution will be such that T is an integer.

3.2 Jeroslow’s Representability Theorem

R. Jeroslow [70], building on joint work with J. K. Lowe [71], characterized subsets of n-space that
can be represented as the feasible region of a mixed integer (Boolean) program. They proved that a
set is the feasible region of some mixed integer/linear programming problem (MILP) if and only if
it is the union of finitely many polyhedra having the same recession cone (defined below). Although
this result is not widely known, it might well be regarded as the fundamental theorem of mixed
integer modeling.

The basic idea of Jeroslow’s results is that any set that can be represented in a mixed integer
model can be represented in a disjunctive programming problem (i.e., a problem with either/or
constraints). A recession direction for a set S in n-space is a vector x such that s + ax € S for all

s € § and all a@ > 0. The set of recession directions is denoted rec(S). Consider the general mixed

integer constraint set below.

f(x,y,A)<b (3)
xeER", ye¥®?

A= (A1,..., M), with X; € {0,1} forj=1,...,k

Here f is vector-valued function, so that f(x,y, A) < b represents a set of constraints. We say that a

set § C R™ is represented by (3) if,
x € § if and only if (x,y,) satisfies (3) for some y, A.

If f is a linear transformation, so that (3) is a MILP constraint set, we will say that S is MILP

representable. The main result can now be stated.

Theorem 3.1 (Jeroslow, Lowe [71,70]) A set in n-space is MILP representable if and only if it

is the union of finitely many polyhedra having the same set of recession directions.

17

3.3 Benders Representation

Any mixed integer linear program (MILP) can be reformulated so that there is only one continuous
variable. This reformulation, due to Benders [10], will in general have an exponential number of
constraints. Benders representation suggests an algorithm for mixed integer programming (known
as Benders Decomposition in the literature because of its similarity to Dantzig-Wolfe Decomposition,

cf. [95]) that uses dynamic activation of these rows (constraints) as and when required.

Consider the (MILP)
max{cx +dy : Ax+ Gy < b, x>0,y > 0 and integer}
Suppose the integer variables y are fixed at some values, then the associated linear program is
(LP) max{cx:x€P={x: Ax < b -Gy, x> 0}}

and its dual is
(DLP) min{w(b—-Gy): we@Q ={w: wA>c,w>0}}

Let {wF}, k = 1,2, -, K be the extreme points of @ and {u’}, j = 1,2,--,J be the extreme rays
of the recession cone of @, Cqo = {u: ud > 0, u > 0}. Note that if Q is nonempty, the {u’} are all
the extreme rays of Q.

From linear programming duality, we know that if Q is empty and w/(b—Gy) > 0,7=1,2,---,J
for some y > 0 and integer then (LP) and consequently (MILP) has an unbounded solution. If Q
is non-empty and uw(b—-Gy) >0,j=1,2,---,J for some y > 0 and integer then (LP) has a finite
optimum given by

min{w*(b ~ Gy))

Hence an equivalent formulation of (MILP) is

mazT a
a < dy+wk(b—GY)) k=1y2)"°1K
w(b-Gy) > 0, j=1,2,---,J

Yy 2 O and integer

a unrestricted

which has only one continuous variable a as promised.

3.4 Aggregation

An integer linear programming problem with only one constraint, other than upper bounds on the

variables, is referred to as a Knapsack problem. An integer linear programming problem with m

18

constraints can be represented as a Knapsack problem. In this section, we show this representation
for an integer linear program with bounded variables [96,53]. We show how two constraints can be
aggregated into a single constraint. By repeated application of this aggregation, an integer linear
program with m constraints can be represented as a Knapsack problem.

Consider the feasible set S defined by two constraints with integer coefficients and m non-negative

integer variables with upper bounds, i.e.,
n .oon
S = {x| Za,—z_.,- =d;; ijz,- =dy; 0 < z; < uj and z; integer}
=1 i=1

Consider now the problem

n
(P) =z=max{| Za,-z,- —dy| : 0 < z; < ujand z; integer, j = 1,2,...,n}
=1

This problem is easily solved by considering two solutions, one in which the variables z; with
positive coefficients are set to u; while the other variables are set to zero and the other in which the
variables z; with negative coefficients are set to u; while the other variables are set to zero.

Let a be an integer greater than z, the maximum objective value of (P).

It is easy to show that S is equivalent to

n
K = {x| Z(a,- + abj)z; = dy + ady; 0 < zj < u; and z; integer}
j=1

Note that if x* € §, then clearly x* € K. Suppose x* € K. Now we show that 3°7_; b;z; = da.
Suppose not and that

ijz,- =dy+k (4)

i=1
where k is some arbitrary integer, positive or negative.

Now multiplying (4) by a, and subtracting it from the equality constraint defining K, we have
Y=t a;z; = dy — ak

But since | 27, a2} — di| < q, it follows that k=0 and x* € S.

4 Polyhedral Combinatorics

One of the main purposes of writing down an algebraic formulation of a combinatorial optimization
problem as an integer program is to then examine the linear programming relaxation and understand
how well it represents the discrete integer program [107]. There are somewhat special but rich classes

of such formulations for which the linear programming relaxation is sharp or tight. These special

structures are presented next.

19

4.1 Special Structures and Integral Polyhedra

A natural question of interest is whether the LP associated with an ILP has only integral extreme
points. For instance, the linear programs associated with matching and edge covering polytopes in a
bipartite graph have only integral vertices. Clearly, in such a situation, the ILP can be solved as LP.

A polyhedron or a polytope is referred to as being integral if it is either empty or has only integral

vertices.

Definition 4.1 A 0,+1 matriz is totally unimodular if the determinant of every square submatriz

is 0 or £1.

Al bl
Theorem 4.2 Hoffman and Kruskal [64] Let A= | A, | be a 0,1 matrizandb= | b, | be

A; b3
a vector of appropriate dimensions. Then A is totally unimodular if and only if the polyhedron

P(A,b) = {x : A;x < by;42x > by; A3x = bs; x > 0}

is integral for all integral vectors b.

The constraint matrix associated with a network flow problem (see for instance [1]) is totally

unimodular. Note that for a given integral b , P(A4,b) may be integral even if A is not totally

unimodular.

Definition 4.3 A polyhedron defined by a system of linear constraints is totally dual integral(TDI)
if for each objective function with integral coefficients, the dual linear program has an integral optimal

solution whenever an optimal solution ezists.

Theorem 4.4 Edmonds and Giles [43]
If P(A) = {x : Ax < b} is TDI and b is integral, then P(A) is integral.

Hoffman and Kruskal [64] have in fact shown that the polyhedron P(A4,b) defined in Theorem 4.2
is TDI. This follows from Theorem 4.2 and the fact that A is totally unimodular if and only if AT is

totally unimodular.

Balanced matrices, first introduced by Berge [13] have important implications for packing and

covering problems (see also [14]).

Definition 4.5 A 0,1 matriz is balanced if it does not contain a square submatriz of odd order with

two ones per row and column.

20

Theorem 4.6 Berge [13], Fulkerson, Hoffman and Oppenheim [52])

Let A be a balanced 0,1 matriz. Then the set packing, set covering and set partitioning polytopes
associated with A are integral, i.e., the polytopes

P(A) ={x : x>0;Ax <1}

Q(A)={x : 0<x<1;Ax>1} and

R(A) ={x : x> 0;Ax=1}

are integral.

Ay
Let A= | A, | bea balanced 0,1 matrix. Fulkerson, Hoffman and Oppenheim [52] have shown
A3
that the polytope P(4) = {x: A;x < 1;42x > 1; A3x = 1;x > 0} is TDI and by the theorem of
Edmonds and Giles [43] it follows that P(A) is integral.

Truemper [119] has extended the definition of balanced matrices to include 0,+1 matrices.

Definition 4.7 A 0,£1 matriz is balanced if for every square submatriz with ezactly two nonzero

entries in each row and each column, the sum of the entries is a multiple of 4.

Theorem 4.8 Conforti and Cornuejols [26]

Suppose A is a balanced 0,21 matriz. Let n(A) denote the column vector whose it* component is
the number of —1s in the i*" row of A. Then the polytopes

P(A)={x : Ax<1-n(4);0<x<1}

QA)={x : Ax>1-n(4);0<x<1}

R(A)={x : Ax=1-n(4);0<x<1}

are integral.

Note that a 0,+1 matrix A is balanced if and only if AT is balanced. Moreover A is balanced
(totally unimodular) if and only if every submatrix of A is balanced (totally unimodular). Thus if A
is balanced (totally unimodular) it follows that Theorem 4.8 (Theorem 4.2) holds for every submatrix
of A.

Totally unimodular matrices constitute a subclass of balanced matrices, i.e., a totally unimodular
0,+1 matrix is always balanced. This follows from a theorem of Camion [17] which states that a
0, %1 is totally unimodular if and only if for every square submatrix with an even number of nonzeros
entries in each row and in each column, the sum of the entries equals a multiple of 4. The 4 x 4 matrix
in Figure 2 illustrates the fact that a balanced matrix is not necessarily totally unimodular. Balanced
0, £1 matrix have implications for solving the satisfiability problem. If the given set of clauses defines

a balanced 0,%1 matrix, then as shown by Conforti and Cornuejols [26], the satisfiability problem

21

is trivial to solve and the associated MAXSAT problem is solvable in polynomial time by linear

programming. A survey of balanced matrices is in Conforti et al [29].

- -

110 0 (1 1 0]
111 1 01 1
A=‘ A:
101 0 1 0 1
[10 0 1| 11 1]

Figure 2. A Balanced Matrix and A Perfect Matrix

Definition 4.9 A 0,1 matriz A is perfect if the set packing polytope P(A) = {x : Ax < 1;x > 0}

is integral.

The chromatic number of a graph is the minimum number of colors required to color the vertices
of the graph so that no two vertices with the same color have an edge incident between them. A graph
G is perfect if for every node induced subgraph H, the chromatic number of H equals the number
of nodes in the maximum clique of H. The connections between the integrality of the set packing

polytope and the notion of a perfect graph, as defined by Berge [11,12], are given in Fulkerson [51],
Lovasz [89], Padberg [97], and Chvatal [25].

Theorem 4.10 Fulkerson [51], Lovasz [89], Chvatal [25]
Let A be 0,1 matriz whose columns correspond to the nodes of a graph G and whose rows are the

incidence vectors of the mazimal cliques of G. The graph G is perfect if and only if A is perfect.

Let G4 denote the intersection graph associated with a given 0,1 matrix A (see Section 3.1).
Clearly, a row of A is the incidence vector of a clique in G4. In order for A to be perfect, every
maximal clique of G4 must be represented as a row of A because inequalities defined by maximal
cliques are facet defining. Thus by Theorem 4.10, it follows that a 0, 1 matrix A is perfect if and only
if the undominated (a row of A is dominated if its support is contained in the support of another
row of A) rows of A form the clique-node incidence matrix of a perfect graph.

Balanced matrices with 0,1 entries, constitute a sub-class of 0,1 perfect matrices, i.e., if a 0,1

matrix A is balanced, then A is perfect. The 4 x 3 matrix in Figure 2 is an example of a matrix

which is perfect but not balanced.
Definition 4.11 A 0,1 matriz A is ideal if the set covering polytope

Q(A)={x : Ax>1;0<x <1}

is integral.

(3]
o

Properties of ideal matrices are described by Lehman [85], Padberg [99] and Cornuejols and
Novick [32]. The notion of a 0,1 perfect (ideal) matrix has a natural extension to a 0,%1 perfect
(ideal) matrix. Some results pertaining to 0, £1 ideal matrices are contained in Hooker [65] while some
results pertaining to 0,+1 perfect matrices are given in Conforti, Cornuejols and De Francesco [27].

An interesting combinatorial problem is to check whether a given 0,+1 matrix is totally unimod-
ular, balanced or perfect. Seymour’s [116] characterization of totally unimodular matrices provides
a polynomial time algorithm to test whether a given matrix 0,1 matrix is totally unimodular. Con-
forti, Cornuejols and Rao [30] give a polynomial time algorithm to check whether a 0,1 matrix is
balanced. This has been extended by Conforti et al [28] to check in polynomial time whether a 0,1
matrix is balanced. An open problem is that of checking in polynomial time whether a 0,1 matrix is
perfect. For linear matrices (a matrix is linear if it does not contain a 2 x 2 submatrix of all ones),

this problem has been solved by Fonlupt and Zemirline [47] and Conforti and Rao [31].

4.2 Matroids

Matroids and submodular functions have been studied extensively, especially from the point of view of
combinatorial optimization (see for instance Nemhauser & Wolsey [95]). Matroids have nice proper-
ties that lead to efficient algorithms for the associated optimization problems. One of the interesting
examples of a matroid is the problem of finding a maximum or minimum weight spanning tree in a
graph. Two different but equivalent definitions of a matroid are given first. A greedy algorithm to

solve a linear optimization problem over a matroid is presented. The matroid intersection problem

is then discussed briefly.

Definitions 4.12 Let N = {1,2,-,n} be a finite set and let F be a set of subsets of N. Then
I = (N,F) is an independence system if S} € F implies that S; € F for all S; C S,. Elements
of F are called independent sets. A set § € F is a mazimal independent set if SU {5} ¢ F for all
J € N\S. A mazimal independent set T' is a mazimum if |T| > |S| for all § € F.

The rank v(Y') of a subset Y C N is the cardinality of the mazimum independent subset X C Y.
Note that r(¢) = 0, 7(X) < |X| for X C N and the rank function is non-decreasing, i.e. r(X) < r(Y)
for XCY CN.

A matroid M = (N, F) is an independence system in which every mazimal independent set is a

mazimum.

Examples 4.13 Let G = (V, E) be an undirected connected graph with V as the node set and E as
the edge set.

23

(1) Let I = (E,F) where F € F if F C E is such that at most one edge in F is incident to each
node of V, i.e. F € F if F is a matching in G. Then I = (E, F) is an independence system

but not a matroid.

(i1) Let M = (E,F) where F € F if F C E is such that Gg = (V, F) is a forest i.e. Gg contains
no cycles. Then M = (E,F) is a matroid and mazimal independent sets of M are spanning

trees.

An alternate but equivalent definition of matroids is in terms of submodular functions.

Definitions 4.14 Let N be a finite set. A real valued set function f defined on the subsets of N is
submodular if f(XUY)+ f(XNY) < f(X)+ f(Y) for X,YCN.

Examples 4.15 Let G = (V, E) be an undirected graph with V as the node set and E as the edge
set. Let c;; > 0 be the weight or capacity associated with edge (ij) € E. For S C V, define the cut
function ¢(S) = Ties, jev\s Gij- The cut function defined on the subsets of V' is submodular since
(X)+¢(Y) = e(XUY) - c(XNY) = Tiex\y,jer\x 2¢i5 2 0.

Definitions 4.16 A non-decreasing integer valued submodular function r defined on the subsets of
N, is called a matroid rank function if r(¢) = 0 and r({j}) < 1 for j € N. The pair (N,r) is called
a matroid.

A non-decreasing, integer-valued, submodular function f, defined on the subsets of N is called a

polymatroid function if f(¢) = 0. The pair (N,r) is called a polymatroid.

4.2.1 Matroid Optimization

In order to decide whether an optimization problem over a matroid is polynomially solvable or not,
we need to first address the issue of representation of a matroid. If the matroid is given either
by listing the independent sets or by its rank function, many of the associated linear optimization
problems are trivial to solve. However, matroids associated with graphs are completely described
by the graph and the condition for independence. For instance, the matroid in which the maximal
independent sets are spanning trees, the graph G = (V, E) and the independence condition of no
cycles describes the matroid.

Most of the algorithms for matroid optimization problems require a test to determine whether a
specified subset is independent or not. We assume the existence of an oracle or subroutine to do this

checking in running time which is a polynomial function of |N| = n.

Maximum Weight Independent Set

24

Given a matroid M = (N,F) and weights w; for j € N, the problem of finding 2 maximum
weight independent set is maxper {Zjep wj}. The greedy algorithm to solve this problem is as

follows:

Procedure: Greedy

0. Initialize: Order the elements of N so that w; > w4y, ¢ =1,2,---,n—1. Let

T=¢,:=1.

1. If w; <0 or ¢ > n, stop T is optimal, i.e. z;=1 for j€ T and z; = 0 for
j¢T. If w;>0 and TU{i} €F, add element i to T.

2. Increment ¢ by 1 and return to step 1.

Edmonds [40,41] derived a complete description of the matroid polytope, the convex hull of
the characteristic vectors of independent sets of a matroid. While this description has a large
(exponential) number of constraints, it permits the treatment of linear optimization problems on
independent sets of matroids as linear programs. Cunningham [35] describes a polynomial algorithm
to solve the separation problem® for the matroid polytope. The matroid polytope and the associated
greedy algorithm have been extended to polymatroids (40,93].

The separation problem for a polymatroid is equivalent to the problem of minimizing a submod-
ular function defined over the subsets of N, see Nemhauser and Wolsey [95]. A class of submodular
functions that have some additional properties can be minimized in polynomial time by solving a
maximum flow problem (Rhys [109], Picard and Ratliff [106]). The general submodular function can
be minimized in polynomial time by the ellipsoid algorithm (Grétschel, Lovasz and Schrijver [60)).

The uncapacitated plant location problem (see Section 6.1 can be reduced to maximizing a

submodular function. Hence it follows that maximizing a submodular function is NP-hard.

4.2.2 Matroid Intersection

A matroid intersection problem involves finding an independent set contained in two or more matroids
defined on the same set of elements.
Let G = (V1, V3, E) be a bipartite graph. Let M; = (E, %), = 1,2 where F € F if F CE

is such that no more than one edge of F is incident to each node in V;. The set of matchings in

*The separation problem for a convex body K is to test if an input point x belongs to K and if it does not to produce
a linear halfspace that separates x from K. It is known [60,80,100] that linear optimization over K is polynomially

equivalent to separation from K.

25

G constitute the intersection of the two matroids M,,i = 1,2. The problem of finding a maximum
veight independent set in the intersection of two matroids can be solved in polynomial time (Lawler
34], Edmonds [40,42], Frank [49]). The two (poly) matroid intersection polytope has been studied
by Edmonds [42].

The problem of testing whether a graph contains a Hamiltonian path is NP-complete. Since this
problem can be reduced to the problem of finding a maximum cordinality independent set in the

intersection of three matroids, it follows that the matroid intersection problem involving three or

more matroids is NP-hard.

4.3 Valid Inequalities, Facets and Cutting Plane Methods

In Section 4.1, we were concerned with conditions under which the packing and covering polytopes
are integral. But in general these polytopes are not integral and additional inequalities are required
to have a complete linear description of the convex hull of integer solutions. The existence of finitely
many such linear inequalities is guaranteed by Weyl’s Theorem [120].

Consider the feasible region of an ILP given by

Pr={x : Ax < b;x > Oand integer}

(5)

Recall that an inequality fx < fo is referred to as a valid inequality for Py if fx* < fo for all x* € Py.
A valid linear inequality for Pr(A,b) is said to be facet defining if it intersects Pr(A, b) in a face of
dimension one less than the dimension of P;(A4,b). In the example shown in Figure 3, the inequality

Ty + z3 < 1is a facet defining inequality of the integer hull.

The Relaxation
(172,172, 1)

._/_i & Ty +z2+z3 < 2
— > T z. T3 2> 1
v — S A\(2, 1, 172) LT
Cut & B g 0<zy,22,2z3 < 1
AN (1.1,0)
R
/
/
,,' Facet The Integer Hull
,/

/

! Ty +2z2+23 < 2
(0,0,0) (1,0,0) Ty -z2—-2z3 2 -1
Figure 3: Relaxation, Cuts and Facets z2+z3 < 1

0331;32133 <1

Let u > 0 be a row vector of appropriate size. Clearly udx < ub holds for every x in Pj.

26

Let (uA); denote the j** component of the row vector uA and |[(uA);] denote the largest integer
less than or equal to (ud);. Now, since x € Py is a vector of non-negative integers, it follows that
¥ ; [(uA);]z; < |ub] is a valid inequality for Pr. This scheme can be used to generate many valid
inequalities by using different u > 0. Any set of generated valid inequalities may be added to the
constraints in (5) and the process of generating them may be repeated with the enhanced set of
inequalities. This iterative procedure of generating valid inequalities is called Gomory-Chvatal (GC)
Rounding. It is remarkable that this simple scheme is complete, i.e. every valid inequality of Pr can
be generated by finite application of GC rounding [24,113].

The number of inequalities needed to describe the convex hull of Py is usually exponential in the
size of A. But to solve an optimization problem on Pj, one is only interested in obtaining a partial
description of P; that facilitates the identification of an integer solution and prove its optimality.

This is the underlying basis of any cutting plane approach to combinatorial problems.
4.3.1 The Cutting Plane Method
Consider the optimization problem

max{cx : x € P = {x: Ax < b; x > 0 and integer}}

The generic cutting plane method as applied to this formulation is given below.

Procedure: Cutting Plane
1. Initialize A'+ A and b’ « b.
2. Find an optimal solution X to the linear program
max{cx : A’x < b’; x >0}
If X € P;, stop and return X.

3. Generate a valid inequality fx < fy for P; such that fx > fy (the

inequality “‘“cuts’’ X).
4. Add the inequality to the constraint system, update

A’ b’
A« , b«

f fo

Go to step 2.

In Step 3 of the cutting plane method, we require a suitable application of the GC rounding scheme

(or some alternate method of identifying a cutting plane). Notice that while the GC rounding scheme

27

will generate valid inequalities, the identification of one that cuts off the current solution to the linear
programming relaxation is all that is needed. Gomory [56] provided just such a specialization of the
rounding scheme that generates a cutting plane. While this met the theoretical challenge of designing
a sound and complete cutting plane method for integer linear programming, it turned out to be a
weak method in practice. Successful cutting plane methods, in use today, use considerable additional
insights into the structure of facet-defining cutting planes. Using facet cuts makes a huge difference
in the speed of convergence of these methods. Also, the idea of combining cutting plane methods

with search methods has been found to have a lot of merit. These branch and cut methods will be

discussed in the next section.

4.3.2 The b-Matching Problem
Consider the b-matching problem:
max{ex: Ax < b, x > 0 and integer} (6)

where A is the node-edge incidence matrix of an undirected graph and b is a vector of positive
integers. Let G be the undirected graph whose node-edge incidence matrix is given by A and let

W C V be any subset of nodes of G (i.e., subset of rows of A) sucﬁ that b(W) = 3";cw b: is odd.

Then the inequality

xW)= 3 2. < 2(bW) - 1) (7)

e€E(W) 2

is a valid inequality for integer solutions to (6) where E(W) C E is the set of edges of G having both
ends in W. Edmonds [39] has shown that the inequalities (6) and (7) define the integral b-matching
polytope (see also [44]). Note that the number of inequalities (7) is exponential in the number of
nodes of G. An instance of the successful application of the idea of using only a partial description
of P;is in the blossom algorithm for the matching problem, due to Edmonds [39].

An implication of the ellipsoid method for linear programming is that the linear program over
P; can be solved in polynomial time if and only if the associated separation problem can be solved
in polynomial time (see Grotschel, Lovasz and Schrijver [60], Karp and Papadimitriou [80], and
Padberg and Rao [100]). The separation problem for the b-matching problem with or without upper
bounds was shown by Padberg and Rao [101], to be solvable in polynomial time. The procedure
involves a minor modification of the algorithm of Gomory and Hu [59] for multiterminal networks.
However, no polynomial (in the number of nodes of the graph) linear programming formulation of
this separation problem is known. Martin [92] has shown that if the separation problem can be
expressed as a compact linear program then so can the optimization problem. Hence an unresolved
issue is whether there exists a polynomial size (compact) formulation for the b-matching problem.

Yannakakis [123] has shown that, under a symmetry assumption, such a formulation is impossible.

BDIN

4.3.3 Other Combinatorial Problems

Besides the matching problem several other combinatorial problems and their associated polytopes
have been well studied and some families of facet defining inequalities have been identified. For
instance the set packing, graph partitioning, plant location, maximum cut, travelling salesman and
Steiner tree problems have been extensively studied from a polyhedral point of view (see for instance
Nemhauser and Wolsey [95]).

These combinatorial problems belong to the class of NP-complete problems. In terms of a worst-
case analysis, no polynomial time algorithms are known for these problems. Nevertheless, using a
cutting plane approach with branch and bound or branch and cut (see Section 5), large instances of
these problems have been successfully solved, see Crowder, Johnson and Padberg [34], for general
0 — 1 problems, Barahona et al [7] for the maximum cut problem, Padberg and Rinaldi [102] for the
traveling salesman problem and Chopra, Gorres and Rao [23] for the Steiner tree problem.

5 Partial Enumeration Methods

In many instances, to find an optimal solution to an integer linear programing problems (ILP), the
structure of the problem is exploited together with some sort of partial enumeration. In this section,

we review the branch and bound (B & B) and branch and cut (B & C) methods for solving an ILP.

5.1 Branch and Bound

The branch and bound (B & B) method is a systematic scheme for implicitly enumerating the
finitely many feasible solutions to an ILP. Although, theoretically the size of the enumeration tree
is exponential in the problem parameters, in most cases, the method eliminates a large number of

feasible solutions. The key features of branch and bound method are
(i) Selection/Removal of one or more problems from a candidate list of problems.

(ii) Relaxation of the selected problem so as to obtain a lower bound (on a minimization problem)

on the optimal objective function value for the selected problem.

(iii) Fathoming, if possible, of the selected problem.

(iv) Branching Strategy: If the selected problem is not fathomed, branching creates sub-problems
which are added to the candidate list of problems.

The above four steps are repeated until the candidate list is empty. The B & B method sequen-

tially examines problems that are added and removed from a candidate list of problems.

29

Initialization:

Initially the candidate list contains only the original ILP which is denoted as
(P) min{cx: Ax < b, x > 0 and integer}

Let F(P) denote the feasible region of (P) and z(P) denote the optimal objective function value of
(P). For any x in F(P), let zp(X) = cx.

Frequently, heuristic procedures are first applied to get a good feasible solution to (P). The best
solution known for (P) is referred to as the current incumbent solution. The corresponding objective
function value is denoted as z;. In most instances, the initial heuristic solution is not either optimal
or at least not immediately certified to be optimal. So further analysis is required to ensure that an
optimal solution to (P) is obtained. If no feasible solution to (P) is known, 2 is set to oco.
Selection/Removal:

In each iterative step of B & B, a problem is selected and removed from the candidate list for
further analysis. The selected problem is henceforth referred to as the candidate problem (CP).
The algorithm terminates if there is no problem to select from the candidate list. Initially there
is no issue of selection since the candidate list contains only the problem (P). However, as the
algorithm proceeds, there would be many problems on the candidate list and a selection rule is
required. Appropriate selection rules, also referred to as branching strategies, are discussed later.
Conceptually, several problems may be simultaneously selected and removed from the candidate list.
However, most sequential implementations of B & B select only one problem from the candidate
list and this is assumed henceforth. Parallel aspects of B & B on 0 — 1 integer linear programs are
discussed in Cannon and Hoffman [18] and for the case of traveling salesman problems in [4].

The computational time required for the B & B algorithm depends crucially on the order in
which the problems in the candidate list are examined. A number of clever heuristic rules may be

employed in devising such strategies. Two general purpose selection strategies that are commonly

used are

(A) Choose the problem that was added last to the candidate list. This last-in-first-out rule (LI FO)

is also called depth first search (DFS) since the selected candidate problem increases the depth

of the active enumeration tree.

(B) Choose the problem on the candidate list that has the least lower bound. Ties may be broken
by choosing the problem that was added last to the candidate list. This rule would require that
a lower bound be obtained for each of the problems on the candidate list. In other words, when

a problem is added to the candidate list, an associated lower bound should also be stored. This

30

may be accomplished by using ad-hoc rules or by solving a relaxation of each problem before

it is added to the candidate list.

Rule (A) is known to empirically dominate the rule (B) when storage requirements for candidate
list and computation time to solve (P) are taken into account. However, some analysis indicates that
rule‘ (B) can be shown to be superior if minimizing the number of candidate problems to be solved
is the criterion (see Parker and Rardin [105]).

Relaxation

In order to analyze the selected candidate problem, (CP), a relaxation (C Pg) of (CP) is solved

to obtain a lower bound 2(CPg) < z(CP). (CPr) is a relaxation of (CP) if

(i) F(CP)C F(CPr),
(ii) for x € F(CP), zcpg(X) < zcp(X) and
(ili) for X,% € F(CP), zcps(X) < zcpg(X) implies that zcp(X) < zop(X).

Relaxations are needed because the candidate problems are typically hard to solve. The relax-
ations used most often are either linear programming or Lagrangean relaxations of (C P), see Section
6 for details. Sometimes, instead of solving a relaxation of (C'P), a lower bound is obtained by using
some ad-hoc rules such as penalty functions.

Fathoming

A candidate problem is fathomed if

(FC1) analysis of (C Pg) reveals that (C P) is infeasible. For instance if F(C Pg) = ¢, then F(CP) = ¢.

(FC2) analysis of (C Pg) reveals that (C P) has no feasible solution better than the current incumbent
solution. For instance if z(C Pr) > z1, then z(CP) > z(CPg) > z;.

(FC3) analysis of (C Pg) reveals an optimal solution of (CP). For instance, if xg is optimal for (C Pr)
and is feasible in (C'P), then (xg) is an optimal solution to (CP) and z(CP) = z¢cp(XR)-

(FC4) analysis of (C Pgr) reveals that (C’P) is dominated by some other problem, say CP*, in the
candidate list. For instance if it can shown that z(CP*) < z(CP), then there is no need to
analyze (CP) further.

If a candidate problem (C P) is fathomed using any of the criteria above, then further examination
of (CP) or its descendants (sub-problems) obtained by separation is not required. If (FC3) holds,
and z(CP) < zj, the incumbent is updated as xg and 2z is updated as z(CP).

31

Separation/Branching: If the candidate problem (C P) is not fathomed, then C P is separated into
several problems, say (CPy),(CP),---,(CP,) where | Ji_, F(CP,) = F(CP) and typically

F(CP)NF(CP) = ¢ Yi#j.

For instance a separation of (CP) into (CP,),i=1,2,---,q is obtained by fixing a single variable,
say zj, to one of the g possible values of ¢; in an optimal solution to (C P). The choice of the variable
to fix depends upon the separation strategy which is also part of the branching strategy. After
separation, the sub-problems are added to the candidate list. Each sub-problem (CP,) is a restriction

of (CP) since F(CP,) C F(CP). Consequently 2(CP) < z(CF,) and z(CP) = min; z(CP).

The various steps in the B & B algorithm are outlined below.

Procedure: B & B

0. Initialize: Given the problem (P), the incumbent value z; is obtained
by applying some heuristic (if a feasible solution to (P) is not

available, set zy = +00). Initialize the candidate list C « {(P)}.

1. Optimality: If C =0 and zr = +o0o, then (P) is infeasible, stop. Stop

also if C = 0 and z; < +o0o0, the incumbent is an optimal solution to

(P).

2. Selection: Using some candidate selection rule, select and remove a

problem (CP)€C.

3. Bound: Obtain a lower bound for (CP) by either solving a relaxation
(CPr) of (CP) or by applying some ad-hoc rules. If (CPgr) is
infeasible, return to Step 1. Else, let Xgr be an optimal solution of

(CPR).

4. Fathom: If z(CPRr) > z;, return to Step 1. Else if xp is feasible in
(CP) and z(CP) < z1, set z1 + z(CP), update the incumbent as xgr and

return to Step 1. Finally, if xg is feasible in (CP) but z(CP) > z,

return to Step 1.

5. Separation: Using some
separation or branching rule, separate (CP) into (CP;),i=1,2,---,q and

set C+ C U {CP,),(CP,),---,(CP,)} and return to Step 1.

6. End Procedure.

32

Although the B & B method is easy to understand, the implementation of this scheme for a

particular ILP is a nontrivial task requiring
(A) a relaxation strategy with efficient procedures for solving these relaxations.
(B) efficient data-structures for handling the rather complicated book-keeping of the candidate list
(C) clever strategies for selecting promising candidate problems and
(D) separation or branching strategies that could effectively prune the enumeration tree.

A key problem is that of devising a relaxation strategy (A), i.e. to find “good relaxations” which
are significantly easier to solve than the original problems and tend to give sharp lower bounds. Since

these two are conflicting, one has to find a reasonable trade-off.

5.1.1 Branch and Cut

In the last few years, the branch and cut (B & C) method has become popular for solving combina-
torial optimization problems. As the name suggests, the B & C method incorporates the features of
both the branch and bound method presented above and the cutting plane method presented in the
previous section. The main difference between the B & C method and the general B & B scheme is
in the bound step (Step 3).

A distinguishing feature of the B & C method is that the relaxation (C Pg) of the candidate
problem (CP) is a linear programming problem and instead of merely solving (CPr), an attempt is
made to solve (C P) by using cutting planes to tighten the relaxation. If (C Pr) contains inequalities
that are valid for (CP) but not for the given ILP, then the GC rounding procedure may generate
inequalities that are valid for (C P) but not for the ILP. In the B & C method, the inequalities that
are generated are always valid for the ILP, and hence can be used globally in the enumeration tree.

Another feature of the B & C method is that often heuristic methods are used to convert some
of the fractional solutions, encountered during the cutting plane phase, into feasible solutions of the
(C P) or more generally of the given ILP. Such feasible solutions naturally provide upper bounds for
the ILP. Some of these upper bounds may be better than the previously identified best upper bound
and if so, the current incumbent is updated accordingly.

We thus obtain the B & C method by replacing the bound step (Step 3) of the B & B method
by Steps 3(a) and 3(b), and also by replacing the fathom step (Step 4) by Steps 4(a) and 4(b) given

below.

33

3(a) Bound: Let (CPgr) be the LP relaxation of (CP). Attempt to solve
(CP) by a cutting plane method which generates valid inequalities for

(P). Update the constraint System of (P) and the incumbent as

approriate.

Let Fx < f denote all the valid inequalities generated during this phase. Update the constraint
system of (P) to include all the generated inequalities, i.e. set AT « (AT, FT) and bT « (b7, f7T).
The constraints for all the problems in the candidate list are also to be updated.

During the cutting plane phase, apply heuristic methods to convert some of the identified frac-
tional solutions into feasible solutions to (P). If a feasible solution, %, to (P), is obtained such that

cX < zr, update the incumbent to X and z; to cx. Hence the remaining changes to B & B are as

follows:

3(b) If (CP) is solved go to Step 4(a). Else, let X be the solution obtained
vhen the cutting plane phase is terminated, (we are unable to identify a

valid inequality of (P) that is violated by X.) go to Step 4(b).

4(a) Fathom by Optimality: Let x* be an optimal solution to (CP). If z(CP) <

zr, set xy + z(CP) and update the incumbent as x*. Return to Step 1.

4(b) Fathom by Bound: If cx > 27, return to Step 1. Else go to step 5.

The incorporation of a cutting plane phase into the B & B scheme involves several technicalities
which require careful design and implementation of the B & C algorithm. Details of the state of the

art in cutting plane algorithms including the B & C algorithm are reviewed in Junger, Reinelt and

Thienel[72].

6 Relaxations

The effectiveness of a partial enumeration strategy like branch and bound is closely related to the
quality of the relaxations used to generate the bounds and incumbents. We describe four general
relaxation methods that together cover the most successful computational techniques for bound eval-
uation in the practice of partial enumeration for integer programming. These are linear programming

relaxation, Lagrangean relaxation, group relaxation and semi-definite relaxation methods.

6.1 LP Relaxation

A linear programming relaxation is derived from an integer programming formulation by relaxing

the integrality constraints. When there are alternate integer programming formulations, modeling

34

the same decision problem, it becomes necessary to have some criteria for selecting from among the
candidate relaxations. We illustrate these ideas on the plant location model, a prototypical integer

programming example.
Plant Location Problems

Given % set of customer locations N = {1,2,..,n} and a sct of potential sites for plants M =
{1,2\: ..,m}, the plant location problem is to identify the sites where the plants are to be located so
that the customers are served at a minimum cost. There is a fixed cost f; of locating the plant at
site i and the cost of serving customer j from site % is ¢;;. The decision variables are

y; is set to 1 if a plant is located at site 7 and to 0 otherwise.

T;; is set to 1 if site ¢ serves customer j and to 0 otherwise.

A formulation of the problem is

(P8) Min ¥R, T%,cjzii +9fi%

=1
subjectto YT, z;=1 j=12,.,n
zi; —¥%u <0 i=12,.,m;j=12,.,n

yi=0orl 1=1,2,..,.m

z;; =0o0r1 1=1,2,.,m; 3=1,2,..,n

Note that the constraints z;; — y; < 0 are required to ensure that customer j may be served from
site 7 only if a plant is located at site i. Note that the constraints y; = 0 or 1, force an optimal
solution in which z;; = 0 or 1. Consequently the z;; = 0 or 1 constraints may be replaced by
non-negativity constraints z;; > 0.

The linear programming relaxation associated with (P8) is obtained by replacing constraints
¥ = 0 or 1, and z;; = 0 or 1 by non-negativity contraints on z;; and y;. The upper bound
constraints on y; are not required provided f; > 0, ¢ = 1,2,..,m. The upper bound constraints on

T;; are not required in view of constraints } -, z;; = 1.

Remark:

It is frequently possible to formulate the same combinatorial problem as two or more
different ILPs. Suppose we have two ILP formulations (F1) and (F2) of the given com-
binatorial problem with both (F1) and (F2) being minimizing problems. Formulation
(F1) is said to be stronger than (F2) if (LP1), the the linear programming relaxation of
(F1), always has an optimal objective function value which is greater than or equal to
the optimal objective function value of (LP2) which is the linear programming relaxation

of (F2).

35

It is possible to reduce the number of constraints in (P8) by replacing the constraints z;; —y; < 0

by an aggregate:

n
ngj -ny; <0 :=1,2,..,m
j=1

However, the disaggregated (P8) is a stronger formulation than the formulation obtained by aggre-
grating the constraints as above. By using standard transformations, (P8) can also be converted into

a set packing problem.

6.2 Lagrangean Relaxation

This approach has been widely used for about two decades now in many practical applications.
Lagrangean relaxation, like linear programming relaxation, provides bounds on the combinatorial
optimization problem being relaxed (ie. lower bounds for minimization problems).

Lagrangean relaxation has been so successful because of a couple of distinctive features. As
was noted earlier, in many hard combinatorial optimization problems, we usually have some “nice”
tractable embedded subproblems which admit efficient algorithms. Lagrangean relaxation gives us
a framework to “jerry-rig” an approximation scheme that uses these efficient algorithms for the
subproblems as subroutines. A second observation is that it has been empirically observed that well-
chosen Lagrangean relaxation strategies usually provide very tight bounds on the optimal objective
value of integer programs. This is often used to great advantage within partial enumeration schemes
to get very effective pruning tests for the search trees.

Practitioners also have found considerable success with designing heuristics for combinatorial
optimization by starting with solutions from Lagrangean relaxations and constructing good feasible
solutions via so-called “dual ascent” strategies. This may be thought of as the analogue of rounding
strategies for linear programming relaxations (but with no performance guarantees - other than
empirical ones).

Consider a representation of our combinatorial optimization problem in the form:
(P) z=min{cx: Ax>b, x€ X CR"}

Implicit in this representation is the assumption that the explicit constraints (Ax > b) are “small” in
number. For convenience let us also assume that that X can be replaced by a finite list {x!,x2,...xT}.

The following definitions are with respect to (P)

e Lagrangean L(u,x)= u(Ax — b) + cx where u are the Lagrange multipliers.

e tt Lagrangean Subproblem minyex {L(u,x)}

36

e Lagrangean-Dual Function L(u)= min,(e?x{L(u,x)}
e Lagrangean-Dual Problem (D) d = maxuy>o{L(u)}

It is easily shown that (D) satisfies a weak duality relationship with respect to (P), i.e., z > d.
Che discreteness of X also implies that £(u) is a piece-wise linear and concave function (see Shapiro

'115]). In practice, the constraints X are chosen such that the evaluation of the Lagrangean Dual

“unction L£(u) is easily made.

An Example: Traveling Salesman Problem (TSP)

For an undirected graph G, with costs on each edge, the TSP is to find a minimum cost set
H of edges of G such that it forms a Hamiltonian cycle of the graph. H is a Hamiltonian

cycle of G if it is a simple cycle that spans all the vertices of G. Alternately H must satisfy:
1. exactly two edges of H are adjacent to each node, and

2. H forms a connected, spanning subgraph of G.

Held and Karp [63] used these observations to formulate a Lagrangean relaxation approach

for TSP, that relaxes the degree constraints (1). Notice that the resulting subproblems are

minimum spanning tree problems which can be easily solved.

The most commonly used general method of finding the optimal multipliers in Lagrangean re-
laxation is subgradient optimization (cf. Held et al. [62]). Subgradient optimization is the non-
differentiable counterpart of steepest descent methods. Given a dual vector u*, the iterative rule for

creating a sequence of solutions is given by:
uFtl = vk 4 ¢, 7(u¥)

where i is an appropriately chosen step size, and 7(u") is a subgradient of the dual function £ at

uk. Such a subgradient is easily generated by

y(uk) = Ax* - b

k

where x* is an optimal solution of minxex {L(u*,x)}.

Subgradient optimization has proven effective in practice for a variety of problems. It is possible
to choose the step sizes {tx} to guarantee convergence to the ‘optimal solution. Unfortunately,
the method is not finite, in that the optimal solution is attained only in the limit. Further, it
is not a pure descent method. In practice, the method is heuristically terminated and the best
solution in the generated sequence is recorded. In the context of non-differentiable optimization, the

Ellipsoid Algorithm was devised by Shor [118] to overcome precisely some of these difficulties with

the subgradient method.

37

The Ellipsoid Algorithm may be viewed as a scaled subgradient method in much the same way as
variable metric methods may be viewed as scaled steepest descent methods (cf. [2]). And if we use

the Ellipsoid method to solve the Lagrangean dual problem, we obtain the following as a consequence

of the polynomial-time equivalence of optimization and separation.

Theorem 6.1 The Lagrangean dual problem is polynomial-time solvable *if and only if the La-
grangean subproblem is. Consequently, the Lagrangean dual problem is N'P-Hard if and only if

the Lagrangean subproblem is.

The theorem suggests that in practice, if we set up the Lagrangean relaxation so that the sub-

problem is tractable, then the search for optimal Lagrangean multipliers is also tractable.

6.3 Group Relaxations

A relaxation of the integer programming problem is obtained by dropping the non-negativity restric-

tions on some variables. Consider the integer linear program
(ILP) max{cx : Ax = b, x > 0 and integer}

where the elements of A,b are integral.

Suppose the linear programming relaxation of (/LP) has a finite optimum, then an extreme-point

B~'b
optimal solution x* = where B is a non-singular submatrix of A. Let A = (B,N),
0
XB et as
X = , and ¢ = (cp,cn). By dropping the non-negativity constraint on xg, substituting
XN

xg = B~!(b — Nxy), ignoring the constant term cgB~!b in the objective function, and changing

the objective function from maximize to minimize, we obtain the following relaxation of (ILP).
(ILPg) min{(cgB™'N - cn)xy : xg = B~!(b — Nxy), xp integer, xy > 0 and integer}
Now xg = B~!(b — Nxy) and xp integer is equivalent to requiring

B~ 'Nxy = B~ 'b(mod 1)

where the congruence is with respect to each element of the vector B~!'b taken modulo 1.

Hence (ILPg) can be written as
(ILPg) min{(cgB™'N —cn)xy : B"'Nxy = B 'b(mod 1), xy > 0 and integer}

Since A and b are integer matrices, the fractional parts of elements of B~!N and B~!b are of the

form (deL‘B) where k € {0,1,...,|detB| - 1}. The congruences in (ILPg) are equivalent to working

38

in a product of cyclic groups. The structure of the product group is revealed by the Hermite Normal
Form of B (see Section 2.2). Hence Hence (ILPg) is referred to as a group (knapsack) problem and

is solved by a dynamic programming algorithm [58].

6.4 Semi-Definite Relaxation

Semi-definite programs are linear optimization problems defined over a cone of positive semi-definite
matrices. These are models that generalize linear programs and are specializations of convex program-
ming models. There are theoretical and “practical” algorithms for solving semi-definite programs
in polynomial time [3]. Lovédsz and Schrijver [91] suggest a general relaxation strategy for 0 — 1
integer programming problems that obtains semi-definite relaxations. The first step is to consider a

homogenized version of a 0 — 1 integer program (solvability version).
Fr = {xe®"*! : Ax>0,z9=1, z; € {0,1} fori=1,2,---,n}

The problem is to check if Fr is non-empty. Note that any 0 — 1 integer program can be put in
this form by absorbing a general right-hand-side b as the negative of zo column of A. Now a linear

programming relaxation of this integer program is given by:
{xeR™"™ : Ax>0,20=1,0<z; <zofori=1,2,---,n}
Next, we define two polyhedral cones.
K={xe®f* :4x>0,0<z;<zofori=0,1,---,n}

K1 = Cone generated by 0 — 1 vectors in Py

Lovész and Schrijver [91] show how we might construct a family of convex cones {C} such that
Kr C C C K for each C.

(i) Partition the cone constraints of K into T} = {4;x > 0} and T, = {A4;x > 0}, with the

constraints {0 < z; < zo fori = 0,1,---,n} repeated in both (the overlap can be larger).

(i) Multiply each constraint in T} with each constraint in T% to obtain a quadratic homogeneous

constraint.

(iii) Replace each occurance of a quadratic term z;z; by a new variable X;;. The quadratic con-

straints are now linear homogeneous constraints in Xj;.
(iv) Add the requirement that the (n+1) x (n+1) matrix X is symmetric and positive semi-definite.

(v) Add the constraints Xo; = Xj; for i =1,2,---,n.

39

The system of constraints on the X;; constructed in steps (iii), (iv) and (v) above define a cone
M, (T1, T;) parametrized by the partition T}, T,. We finally project the cone M, (T, T,) to R™*! as

follows.

C+(T1,T2) = Diagonals of matrices in My (T}, T3)

These resulting cones {C4 (T, T>)} satisfy
Kr € Ci(h,T2) € K

where the X;; in C4(T),T,) are interpreted as the original z; in K and K.

One semi-definite relaxation of the 0 — 1 integer program Fy is just C4(Ty,T?) along with the
normalizing constraint Xoo = zo = 1. For optimization versions of integer programming, we simply
carry over the objective function. An amazing result obtained by Lovasz and Schrijver [91] is that
this relaxation when applied to the vertex packing polytope (see Section 3.4) is atleast as good as
one obtained by adding “clique, odd hole, odd antihole and odd wheel” valid inequalities (see [61] for
the definitions) to the linear programming relaxation of the set packing formulation. This illustrates
the power of this approach to reveal structure and yet obtain a tractable relaxation. In particular,
it also implies a polynomial-time algorithm for the vertex packing problem on perfect graphs (cf.
[61]). Another remarkable success that semi-definite relaxations have registered is the recent result
on finding an approximately maximum weight edge cutset of a graph. This result of Goemans and
Williamson [55] will be described in the next section. While the jury is still out on the efficacy of
semi-definite relaxation as a general strategy for integer programming, there is little doubt that it

provides an exciting new weapon in the arsenal of integer programming methodologies.

7 Approximation with Performance Guarantees

The relaxation techniques’ we encountered in the previous section are designed with the intent of
obtaining a “good” lower (upper) bound on the optimum objective value for a minimization (maxi-
mization) problem. If in addition, we are able to construct a “good” feasible solution using a heuristic
(possibly based on a relaxation technique) we can use the bound to quantify the suboptimality of
the incumbent and hence the “quality of the approximation”.

In the past few years, there has been significant progress in our understanding of performance
guarantees for approximation of NP-Hard combinatorial optimization problems (cf.[117]). A p-
approximate algorithm for an optimization problem is an approximation algorithm that delivers a
feasible solution with objective value within a factor of p of optimal (think of minimization problems
and p > 1). For some combinatorial optimization problems, it is possible to efficiently find solutions

that are arbitrarily close to optimal even though finding the true optimal is hard. If this were true

40

of most of the problems of interest we would be in good shape. However, the recent results of Arora
et al. [5] indicate exactly the opposite conclusion.

A PTAS or polynomial-time approximation scheme for an optimization problem is a family of
algorithms A,, such that for each p > 1, A, is a polynomial-time p-approximate algorithm. Despite
concentrated effort spanning about two decades, the situation in the early 90’s was that for many
combinatorial optimization problems, we had no PTAS and no evidence to suggest the non-existence
of such schemes either. This led Papadimitriou and Yannakakis [104] to define a new complexity
class (using reductions that preserve approximate solutions) called MAXSNP and they identified
several complete languages in this class. The work of Arora et al. completed this agenda by showing
that, assuming P # NP, there is no PTAS for a MAXSNP-complete problem.

An implication of these theoretical developments is that for most combinatorial optimization
problems, we have to be quite satisfied with performance guarantee factors p > 1 that are of some
small fixed value. (There are problems, like the general traveling salesman problem, for which there
are no p-approximate algorithms for any finite value of p - of course assuming P # N'P). Thus one
avenue of research is to go problem by problem and knock p down to its smallest possible value.

A different approach would be to look for other notions of “good approximations” based on
probabilistic guarantees or empirical validation. A good example of the benefit to be gained from
randomization is the problem of computing the volume of a convex body. Dyer and Frieze [37] -have
shown that this problem is #P-hard. Barany and Furedi‘(8] provide evidence that no polynomial-
time deterministic approximation method with relative error less than (en)?, where ¢is a constant, is
likely to exist. However, Dyer et al. [38] have designed a fully-polynomial randomized approximation
scheme (FPRAS) for this problem. The FPRAS of Dyer et al. citeDFK uses techniques from integer

programming and the geometry of numbers (see Section 8).

LP RELAXATION AND ROUNDING

Consider the well known problem of finding the smallest weight vertez cover in a graph (see
Section 3.1). So we are given a graph G(V, E) and a nonnegative weight w(v) for each vertex v € V.
We want to find the smallest total weight subset of vertices S such that each edge of G has at least

one end in S (This problem is known to be MAXSNP-Hard). An integer programming formulation
of this problem is given by

min{z w(v)z(v) : z(u) + z(v) > 1, Y(u,v) € E, z(v) € {0,1}Vv € V}
veV
To obtain the linear programming relaxation we substitute the z(v) € {0,1} constraint with
z(v) > 0 for each v € V. Let x* denote an optimal solution to this relaxation. Now let us round the

fractional parts of x* in the usual way, that is, values of 0.5 and up are rounded to 1 and smaller

41

values to 0. Let X be the 0-1 solution obtained. First note that Z(v) < 2z*(v) for each v € V. Also,
for each (u,v) € E, since z*(u) + z*(v) > 1, at least one of z(u) and z(v) must be set to 1. Hence
% is the incidence vector of a vertex cover of G whose total weight is within twice the total weight
of the linear programming relaxation (which is a lower bound on the weight of the optimal vertex
cover). Thus we have a 2-approximate algorithm for this problem which solves a linear programming
relaxation and uses rounding to obtain a feasible solution.

The deterministic rounding of the fractional solution worked quite well for the vertex cover
problem. One gets a lot more power from this approach by adding in randomization to the rounding
step. Raghavan and Thompson [108] proposed the following obvious randomized rounding scheme.
Given a 0—1 integer program, solve its linear programming relaxation to obtain an optimal x*. Treat
the z;* € [0, 1] as probabilities , i.e. let Probability{z; = 1}= z;*, to randomly round the fractional
solution to a 0—1 solution. Using Chernoff bounds on the tails of the Binomial distribution, they were
able to show, for specific problems, that with high probability, this scheme produces integer solutions
which are close to optimal. In certain problems, this rounding method may not always produce a
feasible solution. In such cases, the expected values have to be computed as conditioned on feasible
solutions produced by rounding. More complex (non-linear) randomized rounding schemes have been
recently studied and have been found to be extremely effective. We will see an example of non-linear

rounding in the context of semi-definite relaxations of the max-cut problem below.

PrRIMAL DUAL APPROXIMATION

The linear programming relaxation of the vertex cover problem, we saw above, is given by

(Pvc) min{)_ w(v)z(v):z(uw) +z(v) > 1, Y(u,v) € E, z(v)>0Vv eV}
veV

and its dual is
(Dye) max{ Z y(u,v): Z y(u,v) <w(v), Vv € V, y(u,v) > 0VY(u,v) € E}
(uv)EE u|(u,v)EE
The primal-dual approximation approach would first obtain an optimal solution y* to the dual
problem (Dyc). Let V C V denote the set of vertices for which the dual constraints are tight, i.e.,
VJ: frev: Y v(uv) = ww)}
ul(u,v)EE

The approximate vertex cover is taken to be V. It follows from complementary slackness that V is
a vertex cover. Using the fact that each edge (u,v) is in the star of at most two vertices (u and v),
it also follows that V is a 2-approximate solution to the minimum weight vertex cover problem.

In general, the primal-dual approximation strategy is to use a dual solution, to the linear pro-

gramming relaxation, along with complementary slackness conditions as a heuristic to generate an

42.

integer (primal) feasible solution which for many problems turns out to be a good approximation of
the optimal solution to the original integer program.

It is a remarkable property of the vertex covering (and packing) problem that all extreme points
of the linear programming relaxation have values 0, } or 1 [94]. It follows that the deterministic
rounding of the linear programming solution to (Pyc) constructs exactly the same approximate

vertex cover as the primal-dual scheme described above. However, this is not true in general.

SEMI-DEFINITE RELAXATION AND ROUNDING

The idea of using semi-definite programming to approximately solve combinatorial optimization
problems appears to have originated in the work of Lovasz [90] on the Shannon capacity of graphs.
Grotschel, Lovasz and Schrijver [61] later used the same technique to compute a maximum stable
set of vertices in perfect graphs via the ellipsoid method. As we saw in Section 7.4, Lovasz and
Schrijver [91] have devised a general technique of semi-definite relaxations for general 0 — 1 integer
linear programs. We will present a lovely application of this methodology to approximate the the
maximum weight cut of a graph (the maximum sum of weights of edges connecting across all strict
partitions of the vertex set). This application of semi-definite relaxation for approximating MAXCUT
is due to Goemans and Williamson [55].

We begin with a quadratic Boolean formulation of MAXCUT

max{% > w(y,v)(1-z(uw)z(v)): z(v)€{-1,1}Vve V}
(u,v)EE

where G(V, E) is the graph and w(u, v) is the non-negative weight on edge (u,v). Any {-1, 1} vector
of x values provides a bipartition of the vertex set of G. The expression (1 — z(u)z(v)) evaluates to
0 if u and v are on the same side of the bipartition and 2 otherwise. Thus, the optimization problem
does indeed represent exactly the MAXCUT problem.

Next we reformulate the problem in the following way.

e We square the number of variables by allowing each x(v) to denote an n-vector of variables

(where n is the number of vertices of the graph).

e The quadratic term z(u)z(v) is replaced by x(u)-x(v) which is the inner product of the vectors.

e Instead of the {—1,1} restriction on the z(v), we use the Euclidean normalization ||x(v)|| = 1

on the x(v).

So we now have a problem

ma.x{—l- Z w(u,v)(1-x(u) -x(v)): |x(¥)||=1VveV}
2 (uw)EE

43

which is a relaxation of the MAXCUT problem (note that if we force only the first component of the
x(v)’s to have nonzero value, we would just have the old formulation as a special case).

The final step is in noting that this reformulation is nothing but a semi-definite program. To see
this we introduce n x n Gram matrix Y of the unit vectors x(v). So Y = XTX where X = (x(v) :
v € V). So the relaxation of MAXCUT can now be stated as a semi-definite program.

max{-;- Z w(u,v)(1=Yuy): Y20, Y,)=1VveV}
(uw)EE

Note that we are able to solve such semi-definite programs to an additive error € in time polynomial
in the input length and log% using either the Ellipsoid method or Interior Point methods (see [3] and
Chapters Editor: Please cross reference chapters on Linear programming, Approximation
and Nonlinear Programming of this handbook).

Let x* denote the near optimal solution to the semi-definite programming relaxation of MAXCUT
(convince yourself that x* can be reconstructed from an optimal Y* solution). Now we encounter
the final trick of Goemans and Williamson. The approximate maximum weight cut is extracted from
x* by randomized rounding. We simply pick a random hyperplane H passing through the origin.
All the v € V lying to one side of H get assigned to one side of the cut and the rest to the other.

Goemans and Williamson observed the following inequality.

Lemma 7.1 For x; and X2, two random n-vectors of unit norm, let (1) and z(2) be +1 values with
opposing sign if H separates the two vectors and with same signs otherwise. Then E(1 —x;Tx;) <

1.1393 - E(1 — z(1)z(2)) where E denotes the ezpected value.

By linearity of expectation, the lemma implies that the expected value of the cut produced
by the rounding is at least 0.878 times the expected value of the semi-definite program. Using
standard conditional probability techniques for derandomizing, Goemans and Williamson show that
a deterministic polynomial-time approximation algorithm with the same margin of approximation

can be realized. Hence we have a cut with value at least 0.878 of the maximum value.

8 Geometry of Numbers and Integer Programming

Given an integer program with a fixed number of variables (k) we seek a polynomial-time algorithm
for solving them. Note that the complexity is allowed to be exponential in k, which is independent
of the input length. Clearly if the integer program has all (0, 1) integer variables this is a trivial
task, since complete enumeration works. However if we are given an “unbounded” integer program

to begin with, the problem is no longer trivial.

44

8.1 Lattices, Short Vectors and Reduced Bases

Euclidean lattices are a simple generalization of the regular integer lattice Z™. A (point) Lattice is
specified by {by,---,b,} a basis (where b; are linearly independent n - dimensional rational vectors).

The Lattice L is given by :
n
L={x: x=zz‘-b¢; z € Z Vi}

1=1

B = (b; : by: ---i by,) a basis matrix of L

Theorem 8.1 |detB| is an invariant property of the lattice L (ie for every basis matriz B; of L we
have invariant d(L) = |detB;|).

Note that
d(L) = I, |b;| where |b;|denotes the Euclidean Length of b;

if and only if the basis vectors {b;} are mutually orthogonal. A “sufficiently orthogonal” basis B

(called a reduced basis) is one that satisfies a weaker relation
d(L) < ¢, I, |b;| where ¢, is a constant that depends only on n

One important use (from our perspective) of a reduced basis is that one of the basis vectors has
to be “short”. Note that there is sunstantive evidence that finding the shortest lattice vector is
NP-Hard [61]. Minkowski proved that in every lattice L there exists a vector of length no larger
than ¢\/n {/d(L) (with ¢ no larger than 0.32). This follows from the celebrated Minkowski’s Convex

Body Theorem which forms the centerpiece of the geometry of numbers [19].

Theorem 8.2 Minkowski’s Convex Body Theorem: If K C R" is a convez body that is cen-

trally symmetric with respect to the origin, and L C R™ is is a lattice such that vol(K) > 2"d(L)

then K contains a lattice point different from the origin.

However, no one has been successful thus far in designing an efficient algorithm (polynomial-time)
for constructing the short lattice vector guaranteed by Minkowski. This is where the concept of a
reduced basis comes to the rescue. We are able to construct a reduced basis in polynomial time and
extract a short vector from it. To illustrate the concepts we will now discuss an algorithm due to
Gauss (cf. [6]) that proves the theorem for the special case of planar lattices (n = 2). It is called the

60° Algorithm because it produces a reduced basis {by, b2} such that the acute angle between the

two basis vectors is atleast 60°.

45

Procedure: 60° Algorithm

Input: Basis vectors b; and b; with |bj| > |by].

Output: A reduced basis {bj;,b;} with at least 60° angle between the basis

vectors.

0. repeat until |b;| < |bg|

1. swap b; and by

bIb,
2. by & (b —mb;) and m= | €Z.
bi'b,

Here [a] denotes the integer nearest to a.

3. end

Ibyl72

Figure 4: A Reduced Basis

REMARKS:

(i) In each iteration the projection of (b — mb;) onto the direction of b, is of length atmost
Ib1l/2.

(ii) When the algorithm stops by must lie in one of the shaded areas at the top or at the bottom

of Figure 4 (since |b;| > |b;| and since the projection of b, must fall within the two vertical

lines about by).

(iii) The length of b, strictly decreases in each iteration. Hence the algorithm is finite. That it is

polynomial time takes a little more argument [82].

46

(iv) ‘The short vector by produced by the algorithm satisfies |b;| < (1.075)(d(L))2").

The only known polynomial-time algorithm for constructing a reduced basis in an arbitrary
dimensional lattice [86] is not much more complicated than the 60° algorithm. However, the proof

of polynomiality is quite technical (see [6] for an exposition).

8.2 Lattice Points in a Triangle

Consider a triangle T in the Euclidean plane defined by the inequalities
an1z1 + a12z2 < d;

a21T; + axnTy; < d;
a31T) + azz; < d;

The problem is to check if there is a lattice point (z;,z2) € Z? satisfying the three inequalities.
The reader should verify that checking all possible lattice points within some bounding box of T
leads to an exponential algorithm for skinny and long triangles. There are many ways of realizing a
polynomial-time search algorithm (73,46] for two-variable integer programs. Following Lenstra [88] we
describe one that is a specialization of his [87] powerful algorithm for integer programming (searching
for a lattice point in a polyhedron).

First we use a nonsingular linear.transform 7 that makes T equilateral (round). The transform
sends the integer lattice Z2 to a generic two-dimensional lattice L. Next we construct a reduced
basis {by,b;} for L using the 60° algorithm. Let B; denote the length of the short vector by. If
denotes the length of a side of the equilateral triangle 7(T') we can conclude that T is guaranteed
to contain a lattice point if ﬁ‘—\ > /6. Else I < v/68; and we can argue that just a few (no more
than 3) of the lattice lines {Affine Hull {b;} + kbs}kez can intersect T'. We recurse to the lower
dimensional segments (lattice lines intersecting with T') and search each segment for a lattice point.

Hence this scheme provides a simple polynomial-time algorithm for searching for a lattice point in a

triangle.

8.3 Lattice Points in Polyhedra

In 1979, H.W. Lenstra Jr. announced that he had a polynomial-time algorithm for integer program-
ming problems with a fixed number of variables. The final published version [87] of his algorithm
resembles the procedure described above for the case of a triangle and a planar lattice. As we have
noted before, integer programming is equivalent to searching a polyhedron specified by a system of

linear inequalities for an integer lattice point. Lenstra’s algorithm then proceeds as follows.

47

e First “round” the polyhedron using a linear transformation. This step can be executed in poly-

nomial time (even for varying n) using any polynomial-time algorithm for linear programming.

e Find a reduced basis of the transformed lattice. This again can be done in polynomial time

even for varying n.

e Use the reduced basis to conclude that a lattice point must lie inside or recurse to several lower

dimensional integer programs by slicing up the polyhedron using a “long” vector of the basis

to ensure that the number of slices depends only on n.

A slightly different approach based on Minkowski’s convex body theorem was designed by Kan-
nan [74] to obtain an O(nngL algorithm for integer programming (where L is the length of the input).
The following two theorems are straightforward consequences of these polynomial-time algorithms

for integer programming with a fixed number of variables.
Theorem 8.3 (Fixed Number of Constraints) Checking the solvability of
Ax<b;xe 2"
where A is (m x n) is solvable in polynomial time if m is held fized.
Theorem 8.4 (Mixed Integer Programming) Checking the solvability of
Ax<b;zj€Zforj=1,- -,k z; e Rforj=k+1,---,n
where A is (m X n) is solvable in polynomial time if min{m, k} is held fized.

A related but more difficult question is that of counting the number of feasible solutions to an
integer program or equivalently counting the number of lattice points in a polytope. Building on

results described above, Barvinok [9] was able to show the following.
Theorem 8.5 (Counting Lattice Points) Counting the size of the set
{xezF: Ax < b}

is solvable in polynomial time if k is held fized.

8.4 An Application in Cryptography

In 1982, Adi Shamir [114] pointed out that Lenstra’s algorithm could be used to devise a polynomial-
time algorithm for cracking the basic Merkle-Hellman Cryptosystem (a knapsack based public-key
cryptosystem). In such a cryptosystem the message to be sent is a (0-1) string X € {0,1}". The

48

message is sent as an instance of the (0,1) knapsack problem which asks for an x € {0, 1}™ satisfying
Y, aiz; = ag. The knapsack problem is an A'P-hard optimization problem (we saw in Section
3.4 that any integer program can be aggregated to a knapsack). However, if {a;} form a super-
increasing sequence i.e., a; > Zi-;lx a; Vi the knapsack problem can be solved in time O(n) by a

simple algorithm:

Procedure: Best-Fit

0. 1¢mn

1. If a; < ap, ;¢ 1, ag ~ ag — q;

2.1+ (i-1)

3. If ap =0 stop and return the solution x
4. If 1=1 stop the knapsack is infeasible.

5. repeat 1.

However, an eavesdropper could solve this problem as well and hence the {a;} have to be en-
crypted. The disguise is chosen through two “secret” numbers M and U such that M > Y%, a; and U
is relatively prime to M (ie gcd(U, M) = 1). Instead of {a;}, the sequence {@; = Ua;(mod M)}i=1,2,-.n
is published and d@q = Uag(mod M) is transmitted.

Any receiver who “knows” U and M can easily reconvert {a;} to {a;} and apply the best fit
algorithm to obtain the message X. To find a; given &;, U and M, he runs the Euclidean Algorithm
on (U, M) to obtain 1 = PU + QM. Hence P is the inverse multiplier of U since PU = 1(mod M).
Using the identity a; = Pa; (mod M) Vi =0,1,---,n, the intended receiver can now use the best fit
method to decode the message. An eavesdropper knows only the {d;} and is therefore supposedly

unable to decrypt the message.

The objective of Shamir’s cryptanalyst (code breaker) is to find a P and in M (Positive integer)
such that :))
é; = Pa; mod M Vi =0,1,---,n
(*) {ai}i=1,-.n is a super increasing sequence.
rLa<M
It can be shown that for all pairs (P, M) such that (P/M) is “sufficiently”close to (P/M) will
satisfy (*). Using standard techniques from diophantine approximation it would be possible to guess

P and M from the estimate (P/M). However, the first problem is to get the estimate of (P/M).

This is where integer programming helps.

49

Since a; = Pa; (mod M) fori=1,2,---,n we have a;Pd; — y; M for some integers ¥1,%2,"* *, Yn-
i P ; :
Dividing by a;M we have (&‘.IM) =" :?— fori=1,2,---,n. For small 1(1,2,3,---,t) the LHS

a;

~ 0 since Y i—; @i < M and the {a;}i=i,..n are super-increasing. Thus (y1/a1), (y2/@2), -, (ve/@¢)
are “close to” (P/M) and hence to each other. Therefore a natural approach to estimating (P/M)

would be to solve the integer program:

Find y1,%2,---,¥: € Z such that :
(IP)| & < @iyy — a1 < g fori=2,3,. -t

O<yi<a;fori=1,2,---,1

This ¢ variable integer program provides an estimate of (P/M), whence Diophantine Approxima-
tion methods can be used to find P and M. If we denote by d a density parameter of the instance
where, d = %, the above scheme works correctly (with probability one as n — o00) if ¢ is chosen
to be (|d] +2) [114,83]. Moreover, the scheme is polynomial-time in n for fixed d. The probabilistic
performance is not a handicap since as Shamir points out: “... a cryptosystem becomes useless when

most of its keys can be efficiently crypta.na.lyzed”y [114].

9 Prospects in Integer Programming

The current emphasis in software design for integer programming is in the development of shells (for
example CPLEX [33], MINTO [111] and OSL [68]) wherein a general purpose solver like Branch
& Cut is the driving engine. Problem specific code for generation of cuts and facets can be easily
interfaced with the engine. We believe that this trend will eventually lead to the creation of general
purpose problem solving languages for combinatorial optimization akin to AMPL [48] for linear and
nonlinear programming,.

A promising line of research is the development of an empirical science of algorithms for combi-
natorial optimization [66]. Computational testing has always been an important aspect of research
on the efficiency of algorithms for integer programming. However, the standards of test designs and
empirical analysis have not been uniformly applied. We believe that there will be important strides
in this aspect of integer programming, and more generally of algorithms of all kinds. It may be useful
to stop looking at algorithmics as purely a deductive science, and start looking for advances through
repeated application of “hypothesize and test” paradigms [67], i.e. through empirical science.

The integration of logic-based methodologies and mathematical programming approaches is evi-
denced in the recent emergence of constraint logic programming (CLP) systems [112,15] and logico-
mathematical programming [70,21]. In CLP, we see a structure of Prolog-like programming language

in which some of the predicates are constraint predicates whose truth values are determined by

50

the solvability of constraints in a wide range of algebraic and combinatorial settings. The solution
scheme is simply a clever orchestration of constraint solvers in these various domains and the role of
conductor is played by SLD-Resolution. The clean semantics of logic programming is preserved in
CLP. A bonus is that the output language is symbolic and expressive. An orthogonal approach to
CLP is to use constraint programming methods to solve inference problems in logic. Imbeddings of
logics in mixed integer programming sets were proposed by Williams [122] and Jeroslow [70]. Effi-
cient algorithms have been developed for inference problems in many types and fragments of logic,
ranging from Boolean to Predicate to Belief logics [22].

A persistent theme in the integer programming approach to combinatorial optimization, as we
have seen, is that the representation (formulation), of the problem, deeply affects the efficacy of the
solution methodology. A proper choice of formulation can therefore make the difference between a
successful solution of an optimization problem and the more common perception that the problem is
insoluble and one must be satisfied with the best that heuristics can provide. Formulation of integer
programs has been treated more as an art form than a science by the mathematical programming
community (exceptions are Jeroslow [70] and Williams[121]). We believe that progress in represen-
tation theory can have an important influence on future of integer programming as a broad-based

problem solving methodology.

10 Defining Terms
e Polyhedron: The set of solutions to a finite system of linear inequalities on real-valued vari-
ables. Equivalently, the intersection of a finite number of linear half-spaces in R".

e Extreme Point: A corner point of a polyhedron.

e Linear Program: Optimization of a linear function subject to linear equality and inequality

constraints.

e Mixed Integer Linear Program: A linear program with the added constraint that some of

the decision variables are integer valued.

e Packing and Covering: Given a finite collection of subsets of a finite ground set, to find an
optimal subcollection that are pairwise disjoint (packing) or whose union covers the ground set

(covering).

e Integer Polyhedron: A polyhedron, all of whose extreme points are integer valued.

51

e Cutting Plane: A valid inequality for an integer polyhedron that separates the polyhedron

from a given point outside it.

e Relaxation: An enlargement of the feasible region of an optimization problem. Typically, the

relaxation is considerably easier to solve than the original optimization problem.

e Fathoming: Pruning a search tree.

e p-Approximation: An approximation method that delivers a feasible solution with objective

value within a factor p of the optimal value of a combinatorial optimization problem.

e Lattice: A point lattice generated by taking integer linear combinations of a set of basis

vectors.
e Reduced Basis: A basis for a lattice that is nearly orthogonal.
e Knapsack Problem: An integer linear program with a single linear constraint other than the

trivial bounds and integrality constraints on the variables.

References

[1] R.K.Ahuja, T.L.Magnati, and J.B.Orlin, Network flows: theory, algorithms and applications,
Prentice Hall, 1993.

[2] M.Akgul, Topics in Relaxation and Ellipsoidal Methods, Research notes in Mathematics, Pitman
Publishing Ltd., (1984).

[3] F.Alizadeh, Interior point methods in semidefinite programming with applications to combina-

torial optimization, SIAM J. on Optimization 5 (1995) 13-51.

(4] D.Applegate, R.E.Bixby, V.Chvital, and W.Cook, Finding cuts in large TSP’s, Technical Report,
‘AT&T Bell Laboratories, August 1994.

[5] S.Arora, C.Lund, R.Motwani, M.Sudan, and M.Szegedy, Proof verification and hardness of ap-

proximation problems, in Proceedings of the 33" IEEE Symposium on Foundations of Computer®

Science, 1992, pp. 14-23.

(6] A. Bachem and R. Kannan, Lattices and the Basis Reduction Algorithm , Technical Report,
Computer Science, Carnegie Mellon University (1984).

[7) F.Barahona, M.Jiinger, and G.Reinelt, Experiments in quadratic 0 — 1 programming, in Math-
ematical Programming 44, 1989, 127-137.

52

(8] I..Ba.rany and Z.Furedi, Computing the volume is difficult, Proceedings of 18th Symposium on
Theory of Computing, ACM Press (1986) 442-447.

[9] A.Barvinok, Computing the volume, counting integral points in polyhedra when the dimension
is fixed, in Proceedings of the 34** IEEE Conference on the Foundations of Computer Science
(FOCS) IEEE Press, (1993) 566-572.

[10] J.F.Benders, Partitioning procedures for solving mixed-variables programming problems, Nu-

merische Mathematik 4 (1962), pp. 238-252.

[11] C.Berge,”Farbung von Graphen deren samtliche bzw. deren ungerade Kreise starr sind (Zusam-
menfassung)”, Wissenschaftliche Zeitschrift, Martin Luther Universitat Halle-Wittenberg,
Mathematisch-Naturwiseenschaftliche Reihe(1961) 114 - 115.

[12] C.Berge,”Sur certains hypergraphes generalisant les graphes bipartites,” Combinatorial The-
ory and its Applications I (P.Erdos, A.Renyi and V.Sos eds.), Collog. Math. Soc. Janos
Bolyai,4,North Holland, Amsterdam(1970) 119-133.

[13] C.Berge,”Balanced matrices,”Mathematical Programming, 2 (1972), 19-31.

(14] C.Berge and M.Las Vergnas,”Sur un theoreme du type Konig pour hypergraphes,” Inter-
national Conference on Combinatorial Mathematics, Annals of the New York Academy of

Sciences,175(1970),32-40.

[15] A.Borning (Editor), Principles and Practice of Constraint Programming, LNCS Volume 874,
Springer-Verlag, 1994.

[16] I.Borosh, and L.B. Treybig, Bounds on positive solutions of linear diophantine equations, Proc.

Amer. Math. Soc., 55,(1976) p.299.

[17] P.Camion,” Characterization of totally unimodular matrices,” Proceedings of the American

Mathematical Society, 16(1965),1068-1073.

(18] T.L.Cannon and K.L.Hoffman, Large-scale zero-one linear programming on distributed work-

stations, Annals of Operations Research 22 (1990), 181-217.
[19] J.W.S.Cassels, An introduction to the geometry of numbers, Springer Verlag (1971).

[20] V.Chandru, Complexity of the supergroup approach to integer programming, Ph.D. Thesis,
Operations Research Center, M.I.T., (1982).

[21] V.Chandru and J.N.Hooker, "Extended Horn sets in propositional logic, » JACM, 38(1991),
205-221.

53

(22] V.Chandru and J.N.Hooker, Optimization Methods for Logical Inference, to be published by
Wiley Interscience, 1998.

(23] S.Chopra, E.R.Gorres and M.R.Rao, Solving Steiner tree problems by Branch and Cut, ORSA
Journal of Computing, 3, (1992) 149-156.

[24] V. Chv4tal, Edmonds polytopes and a hierarchy of combinatorial problems, Discrete Mathe-
matics 4 (1973) 305-337.

[25] V.Chvatal,”On certain polytopes associated with graphs,” Journal of Combinatorial Theory
B,18(1975),138-154.

[26] M.Conforti and G.Cornuejols,” A class of logical inference problems solvable by linear program-

ming,” FOCS,33(1992),670-675.

[27] M.Conforti, G.Cornuejols, and C.De Francesco, ”Perfect 0, &1 matrices, ”preprint, Carnegie
Mellon University, 1993.

[28] M.Conforti, G.Cornuejols, A.Kapoor, and K.Vuskovic, ” Balanced 0,+1 matrices,” Parts I-
I1,preprints, Carnegie Mellon University, 1994.

[29] M.Conforti, G.Cornuejols, A.Kapoor, K.Vuskovic, and M.R.Rao, Balanced Matrices, in Math-

ematical Programming, State of the Art 1994 (J.R.Birge and K.G.Murty eds.), University of
Michigan, 1994.

[30] M.Conforti, G.Cornuejols, and M.R.Rao, ” Decomposition of balanced 0,1 matrices,” Parts
I-VII, preprints, Carneigie Mellon University,1991.

[31] M.Conforti and M.R.Rao, " Testing balancedness and perfection of linear matrices,” Mathemat-
ical Programming,61(1993) 1-18.

[32] G.Cornuejols and B.Novick, "Ideal 0,1 matrices,” Journal of Combinatorial Theory,60(1994),145-
157.

(33] CPLEX Using the CPLEX callable Library and CPLEX mized integer library, CPLEX Opti-

mization, Inc., 1993.

[34] H.Crowder, E.L.Johnson and M.W.Padberg, Solving large scale 0-1 linear programming prob-
lems, Operations Research, 31, (1983) 803-832.

[35] W.H. Cunningham, Testing membership in matroid polyhedra, Journal of Combinatorial Theory
36B, (1984) 161-188.

54

(36] P.D.Domich, R. Kannan and L.E. Trotter, Hermite normal form computation using modulo

determinant arithmetic, Mathematics of Operations Research, 12, (1987), 50-59.

[37] M.Dyer and A.Frieze, On the complexity of computing the volume of a polyhedron, SIAM J.
on Computing 17 (1988) 967-974.

(38] M.Dyer, A.Frieze, and R.Kannan, A random polynomial time algorithm for approximating the

volume of convex bodies, Proceedings of 21st Symposium on Theory of Computing, ACM Press

(1989)375-381.

[39] J.Edmonds, Maximum matching and a polyhedron with 0-1 vertices, Journal of Research of the
National Bureau of Standards, 69B, (1965) 125-130.

[40] J. Edmonds, Submodular functions, matroids and certain polyhedra, in Combinatorial Struc-

tures and their Applications, edited by R. Guy et al., Gordon Breach, (1970) 69-87.
[41] J.Edmonds, Matroids and the greedy algorithm, Mathematical Programming, (1971) 127-136.
[42] J. Edmonds, Matroid intersection, Annals of Discrete Mathematics 4, (1979) 39-49.

[43] J.Edmonds and R.Giles,”A min-max relation for submodular functions on graphs,” Annals of

Discrete Mathematics,1(1977),185-204.

[44] J.Edmonds and E.L.Johnson, Matching well solved class of integer linear programs, in Combi-

natorial structure and their applications (R.Guy ed), Gordon and Breach, New York (1970).

[45] Gy. Farkas, A Fourier-féle mechanikai elv alkalmazdsai, (in Hungarian), Mathematikai és

Természettudomdnyi Ertesits 12 (1894) 457-472.

[46] S.D.Feit, A fast algorithm for the two-variable integer programming problem, JACM 31 (1984)
99-113.

[47] J.Fonlupt and A.Zemirline, A polynomial recognition algorithm for K, \ e-free perfect graphs,
Research Report, University of Grenoble (1981).

(48] R.Fourer, D.M.Gay, and B.W Kernighan, AMPL: A Modeling Language for Mathematical Pro-

gramming, Scientific Press, 1993.

[49] A. Frank, A weighted matroid intersection theorem, Journal of Algorithms 2, (1981) 328-336.

[50] M.A .Frumkin, Polynomial-time algorithms in the theory of linear diophentine equations, in (M.

Karpinski, ed.), Fundamentals of Computation Theory, Lecture Notes in Computer Science,

56,(1977) Springer-Verlag.

[51] D.R.Fulkerson, The perfect graph conjecture and the pluperfect graph theorem, in Proceedings
of the Second Chapel Hill Conference on Combinatorial Mathematics and its Applications, edited
by R.C.Bose, et al., 1970, pp. 171-175.

[52] D.R.Fulkerson, A.Hoffman, and R.Oppenheim, On balanced matrices, Mathematical Program-
ming Study, 1 (1974), 120-132.

[53] R.Garfinkel and G.L. Nemhauser, Integer Programming, Wiley, (1972).

[54] J.v.z.Gathen and M. Sieveking , Linear integer inequalities are NP-complete, STAM J. of Com-
puting,(1976).

[55] M.X.Goemans and D.P.Williamson, .878 approximation algorithms MAX CUT and MAX 2SAT,
in Proceedings of ACM STOC, (1994) 422-431..

[56] R.E.Gomory, Outline of an algorithm for integer solutions to linear programs, Bulletin of the

American Mathematical Society 64 (1958) pp. 275-278.

[57] R.E.Gomory, Early integer programming, in History of Mathematical Programming edited by
J.K. Lenstra, et al., North Holland (1991).

[58] R.E.Gomory, On the relation between integer and noninteger solutions to linear programs,

Proceedings of the National Academy of Sciences of the United States of America 53 (1965)
260-265.

[59] R.E.Gomory and T.C.Hu, Multi-terminal network flows, SIAM Journal of Applied Mathematics,
9, (1961) 551-556.

[60] M.Grétschel, L.Lovész and A.Schrijver, The ellipsoid method and its consequences in Combi-
natorial optimization, Combinatorica, 1, (1982) 169-197.

[61) M.Gr6tschel, L.Lovasz, and A.Schrijver, Geometric Algorithms and Combinatorial Optimization,
Springer-Verlag, 1988.

(62] M.Held, P.Wolfe and H.P.Crowder, Validation of Subgradient Optimization. Math. Program-
ming, 6, (1974) 62-88.

(63] M.Held, and R.M. Karp, The Travelling-Salesman Problem and Minimum Spanning Trees.
Operations Research, 18, (1970) 1138-1162; Part 1. Math. Programming, 1, (1971) 6-25.

[64] A.J.Hoffman and J.K.Kruskal, Integral boundary points of convex polyhedra, Linear Inequalities

and Related Systems, H.W.Kuhn and A.W.Tucker(editors), Princeton University Press, 1956,
223-246.

56

[65] J.N.Hooker, Resolution and the integrality of satisfiability polytopes, preprint, GSIA, Carnegie
Mellon University, 1992.

[66] J.N.Hooker, Towards and empirical science of algorithms, Operations Research, (1993).
[67] J.N.Hooker and V.Vinay, Branching rules for satisfiability, in Automated Reasoning, 1995, pp.
(68] IBM, Optimization Subroutine Library - Guide and Reference (Release 2), Third Edition, 1991.

[69] R.G.Jeroslow, There cannot be any algorithm for integer programming with quadratic con-

straints, Operations Research, 21 (1973) 221-224.

[70] R.G.Jeroslow, Logic-Based Decision Support: Mixed Integer Model Formulation, Annals of
Discrete Mathematics, Volume 40, North Holland, 1989.

[71] R.G.Jeroslow and J. K. Lowe, Modeling with integer variables, Mathematical Programming
Studies 22 (1984) 167-184.

[72] M.Jiinger, G.Reinelt, and S.Thienel, Practical problem solving with cutting plane algorithms,
in Combinatorial Optimization: Papers from the DIMACS Special Year, W.Cook, L.Lovdsz,
and P.Seymour (Editors), Series in Discrete Mathematics and Theoretical Computer Science,

Volume 20, AMS, (1995) 111-152.

[73] R.Kannan, A Polynomial algorithm for the Two-variable Integer programming Problem , JACM
27 (1980).

[74] R.Kannan, Minkowski’s convex body theorem and integer programming, Mathematics of Oper-

ations Research 12 (1987) 415-440.

[75] R.Kannan and A. Bachem, Polynomial algorithms for computing the Smith and Hermite normal

forms of an integer matrix, SIAM J. of Computing, 8, (1979),

[76] Kannan, R. and C.L. Monma (1978), On the computational complexity of integer programming
problems, in Lecture Notes in Economics and Mathematical Systems 157 (R. Henn, B. Korte

and W. Oettle, eds.), Springer-Verlag.

[77] N.K.Karmarkar, A New Polynomial-Time Algorithm for Linear Programming, Combinatorica,

4, (1984) 373-395.

(78] N.K.Karmarkar, An interior-point approach to NP-complete problems - Part I, in Contemporary
Mathematics, Volume 114, 1990, pp. 297-308.

[$,]
i |

[79] Karp, R. (1972). Reducibilities among combinatorial problems, in Complezity of Computer Com-
putations (R.E. Miller and J.W. Thatcher, eds.), Plenum Press, pp. 85-103.

[80] R.M.Karp and C.H.Papadimitriou, On Linear Characterizations of Combinatorial Optimization
Problems, SIAM Journal on Computing, 11 (1982), 620-632.

[81] L.G. Khachiyan, A polynomial algorithm in linear programming, Doklady Akademiia Nauk SSSR

244:5 (1979), pp. 1093-1096, translated into English in Soviet Mathematics Doklady, 20:1 (1979),
pp- 191-194.

[82] J.C.Lagarias, Worst-case complexity bounds for algorithms in the theory of integral quadratic
forms, Journal of Algorithms 1 (1980) 142-186.

[83] J.C.Lagarias, Knapsack public key cryptosystems and diophantine approximation, Advances in
Cryptology, Proceedings of CRYPTO 83, Plenum Press (1983) 3-23.

[84] E.L. Lawler, Matroid intersection algorithms, Mathematical Programming 9, (1975) 31-56.

[85] A.Lehman, On the width-length inequality, mimeographic notes(1965), Mathematical Program-
ming, 17 (1979), 403-417.

(86] A.K.Lenstra, H.W. Lenstra Jr and L.Lovdsz, Factoring Polynomials with Rational Coefficients
, Report 82-05, University of Amsterdam (1982).

[87] H.W. Lenstra Jr. Integer Programming with a Fixed Number of Variables , Mathematics of
Operations Research 8 (1983) 538-548.

[88] H.W. Lenstra Jr, Integer Programming and Cryptography , The Mathematical Intelligencer,
Vol.6, 1984.

(89] L.Lovdsz, Normal hypergraphs and the perfect graph conjecture, Discrete Mathematics, 2
(1972), 253-267.

[90] L.Lovasz, On the Shannon capacity of a graph, IEEE Transactions on Information Theory, 25
(1979), pp. 1-7.

[91] L.Lovasz and A.Schrijver, Cones of matrices and set functions, SIAM Journal on Optimization
1, (1991), pp. 166-190.

[92] R.K.Martin, Using separation algorithms to generate mixed integer model reformulations, Op-

erations Research Letters, 10, (1991) 119-128.

58

(93] C.J.H. McDiarmid, Rado’s theorem for polymatroids, Proceedings of the Cambridge Philosoph-
ical Society 78, (1975) 263-281.

[94] G.L.Nemhauser and L.E.Trotter Jr., Properties of vertex packing and independence system
polyhedra, Mathematical Programming 6 (1974) 48-61.

[95] G.L.Nemhauser and L.A.Wolsey, Integer and Combinatorial Optimization, John Wiley, 1988.

[96] M.W.Padberg, Equivalent knapsack-type formulations of bounded integer linear programs: an
alternative approach, Naval Research Logistics Quarterly, 19, (1972), 699-708.

[97] M.W.Padberg, Perfect zero-one matrices, Mathematical Programming 6, (1974) 180-196.

[98] M.W.Padberg, Covering, packing and knapsack problems, Annals of Discrete Mathematics, 4,
(1979), 265-287.

[99] M.W.Padberg, Lehman’s forbidden minor characterization of ideal 0,1 matrices, Discrete Math-
ematics, 111 (1993), 409-420.

[100] M.W .Padberg and M.R.Rao, The Russian method for linear inequalities, Part III, Bounded
integer programming, Preprint, New York University, (1981).

[101] M.W.Padberg and M.R.Rao, Odd minimum cut-sets and b-matching, Mathematics of Opera-
tions Research, 7, (1982) 67-80.

[102] M.W.Padberg and G.Rinaldi, A branch and cut algorithm for the resolution of large scale
symmetric travelling salesman problems, SIAM Review, 33, (1991) 60-100.

(103] C.H.Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complezity,
Prentice Hall (1982).

[104] C.H.Papadimitriou and M.Yannakakis, Optimization, approximation, and complexity classes,

in Journal of Computer and Systems Sciences 43, 1991, pp. 425-440.
[105] G.Parker, and R.L.Rardin, Discrete Optimization, John Wiley, 1988.
[106] J.C. Picard and H.D. Ratliff, Minimum cuts and related problems, Networks 5, (1975) 357-370.

[107] W.R.Pulleyblank, Polyhedral Combinatorics, in Handbooks in Operations Research and Man-

agement Science (Volume 1: Optimization), edited by G.L. Nemhauser, A.H.G. Rinooy Kan,
and M.J. Todd, North Holland (1989), 371-446.

[108] P.Raghavan and C.D.Thompson, Randomized rounding: a technique for provably good algo-
rithms and algorithmic proofs, Combinatorica, 7, pp. 365-374.

59

[109].J.M.W. Rhys, A selection problem of shared fixed costs and network flows, Management Sci-
ence, 17, (1970) 200-207.

[110] S. Sahni, Computationally related problems, SIAM J. of Computing, 3,(1974).

[111] M.W.P.Savelsbergh, G.S.Sigosmondi, and G.L.Nemhauser, MINTO, a Mixed INTeger Opti-
mizer, Operations Research Letters 15, (1994) 47-58.

[112] V.Saraswat, and P. Van Hentenryck (Editors), Principles and Practice of Constraint Program-
ming, MIT Press, 1995.

[113] A.Schrijver, Theory of Linear and Integer Programming, John Wiley, 1986.

[114] A. Shamir, A Polynomial-time Algorithm for Breaking the Basic Merkle-Hellman Cryptosys-
tem, Proceedings of the Symposium on the Foundations of Computer Science, IEEE Press (1982).

[115] J.F.Shapiro, A Survey of Lagrangean Techniques for Discrete Optimization. Annals of Discrete
Mathematics 5, (1979), 113-138.

[116] P.Seymour, Decompositions of regular matroids, Journal of Combinatorial Theory B, 28 (1980),
305-359.

[117] D.B.Shmoys, Computing near-optimal solutions to combinatorial optimization problems, in
Combinatorial Optimization: Papers from the DIMACS Special Year, W.Cook, L.Lovdsz, and

P.Seymour (Editors), Series in Discrete Mathematics and Theoretical Computer Science, Volume

20, AMS, 1995, 355-398.

[118] N.Z.Shor, Convergence Rate of the Gradient Descent Method with Dilation of the Space,
Cybernetics, 6, (1970).

(119] K.Truemper, Alpha-balanced graphs and matrices and GF(3)-representability of matroids,
Journal of Combinatorial Theory B, 55 (1992), 302-335.

[120] H.Weyl, Elemetere Theorie der konvexen polyerer, Comm. Math. Helv., Vol. I, (1935) 3-18,
(English translation in Annals of Mathematics Studies, 24, Princeton, 1950).

(121] H.P.Williams, Experiments in the Formulation of Integer Programming Problems, Mathemat-

ical Programming Study, vol 2, (1974).

(122] H.P.Williams, Linear and integer programming applied to the propositional calculus, Interna-

tional Journal of Systems Research and Information Science 2 (1987) 81-100.

60

[123] M.Yannakakis, Expressing Combinatorial optimization problems by linear programs, in Pro-

ceedings of ACM Symposium of Theory of Computing, (1988) 223-228.

[124] M.Ziegler, Convez Polytopes, Springer Verlag, 1995.

11 Other Sources

JOURNALS:
Research publications in integer programming are dispersed over a large range of journals. The

following is a partial list which emphasize the algorithmic aspects.

Mathematical Programming
Mathematics of Operations Research
Operations Research

Discrete Mathematics

Discrete Applied Mathematics
Journal of Combinatorial Theory (Series B)
INFORMS Journal on Computing
Operations Research Letters

SIAM Journal on Computing

SIAM Journal on Discrete Mathematics
Journal of Algorithms

Algorithmica

Combinatorica

NEWSLETTERS:

Integer programming professionals frequently use the following newsletters to communicate with

each other:

e INFORMS Today (earlier OR/MS Today) published by The Institute for Operations Research
and Management Science (INFORMS).

e INFORMS CSTS Newsletter published by the INFORMS computer science technical section.
e Optima published by the Mathematical Programming Society.

CONFERENCE PROCEEDINGS:
The International Symposium on Mathematical Programming (ISMP) is held once every three

years and is sponsored by the Mathematical Programming Society. The most recent ISMP was held

61

in August 1997 in Lausanne, Switzerland. A conference on Integer Programming and Combinatorial
Optimization (IPCO) is held on years when the symposium is not. Some important results in
integer programming are also announced in the general conferences on algorithms and complexity (for
example: SODA (SIAM), STOC (ACM) and FOCS (IEEE)). The annual meeting of the Computer
Science Technical Section (CSTS) of the INFORMS held each January (partial proceedings published

by Kluwer Press) is an important source for recent results in the computational aspects of integer

programming.

62

