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A Stochastic Programming with Recourse Model for Supply Chain and Marketing 

Planning of Short Life Cycle Products 

Abstract 

A firm that deals with a short life-cycle product needs to make strategic supply chain 

decisions such as capacity planning and initial marketing decisions such as advertising 

well in advance under uncertain future demand. The firm initially can only generate a set 

of demand scenarios and provide a realistic assessment of the demand only after 

observing actual demand during the initial periods. In this paper, we provide an 

integrated marketing and supply chain framework and suggest the use of a two stage 

stochastic programming with recourse to analyze this situation. The original model is a 

stochastic non linear model with integer constraints, which is extremely difficult to solve. 

So, we suggest an innovative approach to convert it to a linear mixed integer stochastic 

program. In the numerical study, we discuss in detail the behavior of optimal pricing and 

advertising policies in the presence of a supply constraint and the benefits of including 

stochsticity and marketing decisions that can shape the demand process while planning 

for the new products. 

Keywords: Marketing, stochastic programmmg with recourse, innovation diffusion, 

supplies chain and capacity management under uncertainty, advertising and pricing. 



1. Introduction 

The firms that deal with short life-cycle products need to make strategic supply 

chain decisions such as capacity planning well in advance under an uncertain demand. In 

the presence of a short life cycle, the capacity decision is irreversible because the lead 

time required to adjust the capacity is often too long (Ho et al. 2002). As a result, in 

industries such as semiconductor, video game consoles when the demand exceeds the 

supply, the firm looses sales (Business Week 2007). On the other hand, when the 

capacity is excess, the capacity costs that include plants, mortgage payments, rents, 

wasted training etc. considerably erode profits (Shapiro 1977). Cohen et al. (2000) 

suggested that there should be an explicit link between the demand diffusion and capacity 

planning decisions. Cantamessa and Valentini (2000) enhanced the demand model by 

using a Bass diffusion process (Bass 1969) and investigated the benefits associated with 

implementing backorder, delayed product launch and lost sales strategies. 

This research stream assumed that the demand for an innovation is deterministic. 

Nonetheless, it is a common knowledge that the demand is stochastic in nature 

(Kurawarwala and Matsuo 1996). For example, Nintendo revised the forecast for its wii 

console from 14 millions to 17.5 millions (Marketing Week 2007). Also, innovation and 

imitation factors that influence the diffusion process dynamics depend upon social and 

customer behaviors such as individualism, uncertainty avoidance, power distance, 

masculinity, and peer pressure (Yaveroglu and Donthu 2002, Vanden Bulte and 

Stremersh 2004) that can not be predicted accurately. For example, Sega experienced a 

slower than anticipated diffusion pattern for its console (Thomke 1999). Therefore, it is a 



strong assumption to model the diffusion parameters as deterministic. Hence, 

Kurawarwala and Matsuo (1996) and Kumar and Swaminathan (2003) suggested that 

there is a need to include the stochasticity in the Bass diffusion model while making 

integrated production and marketing decisions for innovations. 

Stochastic programming with a recourse model is well suited to solve such 

problems (Bienstock and Shapiro 1988). It is been often used to plan the capacity under 

uncertain situations (Ahmed et al. 2003). The underlying problem is modeled as a two 

(multi) stage stochastic prograIilming with recourse where the first stage decides the 

capacity for the entire horizon while the second stage takes recourse actions to correct 

infeasibilities. Because the focus of this research was on improving computational 

efficiencies, it neither considered the diffusion effects nor integrated the marketing 

decisions with operations planning and investigated their impact on the profits. 

The main objective of this work is to extend the prior work by explicitly modeling 

the uncertainty inherent in the innovation diffusion process and propose an enhanced two 

stage stochastic programming model with recourse to compute robust supply chain plans 

for the innovations. The original model is a nonlinear binary stochastic programming 

model that does not guarantee optimality, and so we suggest an innovative approach that 

converts it to a stochastic mixed integer program that can now be solved to optimality. 

Researchers increasingly understand the need to integrate marketing and supply 

chain decisions (Ulusoy and Yagzac 1995, Shah 2004). The prior research (Cantamessa 

and Valentini 2000) relies on passive options such as incurring backorders and lost sales 

to handle the demand explosion occurring during the diffusion process. Nonetheless, firm 

can adjust its pricing and advertising policies to manage the demand growth. For 



example, Apple Inc. slashed iPhone price by $ 200 to boost sales after observing low 

demand (Michaels and Dalrymple 2007). Therefore, in our model, we explicitly include 

marketing variables namely price and advertising that can influence the diffusion process 

as recourse actions in addition to backorders and lost sales. This approach is thus 

motivated by Ulusoy and Yagzac (1995) and Khmelnitsky and Kogan (1996) that 

combine capacity and tactical marketing decisions. However, unlike our work, their 

research neither considered the diffusion effects nor did they incorporate the uncertainty 

in the demand process in their optimization models. Quick response manufacturing 

literature suggests the importance of adjusting sourcing and inventory decisions after 

observing initial sales for new products (Fisher and Raman 1996). In the paper, we 

demonstrate the importance of adjusting marketing decisions in response to actual sales 

behavior. 

The rest of the paper is organized as follows. In the next section, we propose both 

nonlinear and mixed integer stochastic programming models with recourse. In Section 3, 

we report experimental design and report the results of the numerical study. Finally, 

conclusion and managerial implications are discussed in Section 4. 

2. Stochastic Programming Model with a Recourse 

2.1 Stochastic non linear programming model with recourse 

The demand for an innovation typically follows a diffusion process. Bass (1969) 

proposed an innovation diffusion model, which is parsimonious and has found a good 

empirical fit across several product categories (Mahajan et al. 2000). The model is 

intuitive and is based on the theory that the diffusion is first accepted by innovators who 



subsequently motivate potential adopters to purchase the innovation. In our paper, we use 

the Bass model because of these strengths. Bass (1969) modeled the demand process 

using the following differential equation. 

(1) 

where d(/) is instantaneous demand at time t, p and q are constantsE (0,1), which 

represent the effects of mass media and the adopters on the potential adopters 

respectively. D(t) is the cumulative number of adopters at time t while m is the market 

potential. 

Now, we extend the original Bass model to include marketing variables namely 

price and advertising. Among the various ideas proposed to model the effects -of pricing 

and advertising, we have decided to use the approach that suggests that price affects the 

overall market size and advertising affects the shape of adoption curve. It implies that 

price influences a consumer's decision to buy the product and so affects the potential 

market but not the timing of purchase. On the other hand, advertising does not affect the 

decision to buy the product but the timing of purchase. Empirical study by Jain and Rao 

(1990) have shown that price at time t effects the overall market size at time t as shown 

below 

m(/) = mP/ (2) 

where e is the price elasticity of demand. Figure 1 shows how price can influence the 

diffusion process. 
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Figure 1. Demand dynamics as a function of price 

Several advertising models have been proposed in the literature that attempt to influence 

imitators and innovators in different ways (Mahajan et al. 2000). An empirical study by 

Horskey and Simon (1983) has shown that p, the coefficient of an external influence 

could be represented as a function of advertising expenditure with diminishing returns. 

p(t) = PI + P2 log A(/) (3) 

where PI is the effect of the mass media as in the Bass model while P2 denotes an 

advertising effectiveness. A(t) denote advertising expenses incurred in time t. Note that 

p(t) = PI when the advertisement expenditure is zero. Figure 2 graphically illustrates 

how advertising can bring forward the future demand. Based on the past experience with 

similar products, the finn would be in a position to estimate the value of P2. Now, we 

rewrite the Bass model (equation 1) to capture the pricing and advertising effects by 

using equations 2 and 3 as 
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Figure 2. Demand growth as a function of advertising 

Revenue can then be written as 

T 

R(t) = Id(t)P(t) - A(t) (5) 
1=1 

Equation 4 assumes that the firm can correctly estimate the parameters of the 

diffusion process. But, as discussed in the introduction section, these parameters are 

subject to randomness. We believe that the impact of pricing and advertising can be 

measured from past experience (experience with similar markets and similar category of 

products), but it is very unlikely that past performance will be able to estimate the 

original Bass model parameters in a precise manner. At best, by using the past data on 

similar products and the feel of the market, initially, the firm can generate a set of 

demand scenarios. For example, management can consider scenarios where the market 



potential is likely to be low, moderate and high. Similarly, the timing of peak can be early 

or late and peak demand during peak can be high or low. This information Can be 

subsequently used to estimate the Bass model parameters (Shah 2004). Now, we rewrite 

the demand equations in the presence of the uncertainty as below. We assume that P2 

and e can be estimated correctly. Note that our stochastic demand model (equation 6) can 

also represent the uncertainty in the price elasticity and advertising effectiveness if it 

exists in certain situations. Also, our demand model can also easily incorporate influence 

of advertising on imitators. This offers more flexibility in modeling realistic situations. 

(6) 

T 

R S (I) = IdS (t)P(/)- A(/) (7) 
1=1 

Where s represents a scenario. The firm can provide a realistic assessment of the 

demand only after observing actual demand during initial periods. For example, both 

Fisher and Raman (1996) and Bass (1969) have shown that the demand process 

(subsequently its parameters) can be predicted with certainty after observing the actual 

initial demand. So, we divide the product life cycle in two stages where the demand 

process is random in stage I while it becomes deterministic in the second stage once the 

firm obtains the actual demand data and uses it to correctly estimate the parameter values. 

Figure 3 shows the sequence of events and decisions taken in both stages. 
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Two-stage stochastic programming model is based on the following assumptions. 

First, random events related to the demand process occur with probabilities that are 

independent of the first stage decisions. Second, the truth regarding the diffusion process 

is revealed before the start of the second stage so that the firm can use an appropriate 

contingency plan in the second stage. Third, the overall objective is to maximize the 

expected profits over the two stages. Note that because there always exist a contingency 

plan, which is a combination of advertising, pricing, backorders, and inventory decisions, 

the feasibility is always ensured. The two stages only conceptually divide the product life 

cycle into two parts based on demand uncertainty and therefore each stage can consist of 

several periods. In our model, we assume that the first stage consists of the first period 

while the second stage consists of the remaining periods. 

Let, 

Indices 

t time,1. .. T 

) 



s scenarios; 1... S 

c capacity options available, 1 ... C 

Parameters 

Dr' demand in period t under scenario s as a function of price and adv (equation 6) 

a production cost per unit 

h, inventory holding cost per unit in period t 

w, backorder cost per unit in period t. For the final period, it denotes lost sales cost 

Fe plant size if the capacity option c is selected 

Ie capacity investment cost if the capacity option c is selected 

P discounting factor 

ifts probability of occurrence of scenario s 

Variables 

First stage variables 

Ye binary variables would take value 1 when the capacity of size c is selected 

XI production quantity in stage 1 (period 1) 

~ price in stage 1 

Al advertising in stage 1 

i; inventory at the end of stage 1 (period 1) in scenario s 

bt backorder at the end of stage 1 (period 1) in scenario s 

Second stage variables 



p]S price in stage 2 under scenario s 

A; advertising in stage 2 under scenario s 

x,' production quantity for the period t (in stage 2) under scenario s 

i,' inventory at the end of the period t (in stage 2) under scenario s 

b,' backorder at the end of the period t (in stage 2) under scenario s 

Maximize 

s c s 
I¢s(~Dn-AI -aXl - I IcYc - I¢s(hli: +wlbn {first stage} 
s=1 c=1 s=1 

S T 

+ II¢sP'-I(~sD: -A; -aXIS -hlils -w,b:) 
s=1 ,=2 

SUbject to 

First stage constraints 

X ·s b S D S 
I -ll + I = I s = 1, ... ,S 

Second Stage Constraints 

c 
X/ ~IFJc t = 2, ... ,T s = 1, ... ,S 

c=1 

X s ·s bS ·s bS DS , + l,_1 - 1-1 -1, + , = , t = 2, ... ,T s = 1, ... ,S 

V t = 1, ... ,T,s = 1, ... ,S 

{sec ond stage} 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 



The objective function (eq. 8) maximizes the discounted expected profits by 

subtracting investment costs, expected production costs, expected inventory and 

backorder costs from expected revenues. Constraints (eq. 9 and 13) keep production in 

each period below the manufacturing capacity under all scenarios. Constraints (eq. 11 

and 14) are inventory and backlog equations for each period under each scenario. We 

assume that the demand is completely backlogged until the last period where it results in 

the lost sales due to insufficient capacity. So, backlog cost per unit in the period T is the 

lost sales cost per unit and inventory holding cost per unit in the period T is the salvage 

value per unit. We also do not take into account the learning effects. 

Modeling Extensions 

Similar to Shah (2004), one can add the sourcing decisions in our model by 

including the sourcing constraints and the sourcing costs in the objective function for 

each scenario in both stages. Similar to Cantamessa and Valentini (2000), we can also 

incorporate the lost sales and learning effects in each period for each scenario in our 

model and relax the above assumption. These extensions would however increase the 

complexity of the model. Our main objective to limit the model complexity is to 

effectively bring out the insights regarding marketing decisions under the supply 

constraints. 

Both the revenue function in the objective function (eq. 8) and the constraints (eq. 

11 and 13) are non linear in nature. Also, the model contains integer variables such as r.,. 

Non linear stochastic programming with recourse with integer constraints is an extremely 



difficult problem to solve. It is also impossible to analytically prove the optimality and 

compute the closed form expressions for the optimal decision variables. Meta-heuristics 

methods such as tabu search, genetic algorithms can be used to fmd a good solution. But, 

it is not possible to prove the optimality of the best solution found in the search process. 

Hence, in the next section, we suggest an inno~ative modeling approach to convert this 

problem to a mixed integer stochastic programming model that can be solved to 

optimality in a reasonable amount of time. 

2.2 Mixed Integer Stochastic Programming Model with Recourse 

Instead of treating pricing and advertising variables as continuous, we suggest the 

firm should identify a discrete feasible set of both pricing and advertising options. This 

modeling approach has several advantages. First, it allows us to convert a non linear 

model into a linear model as discussed below. Second, the optimal solution sometimes 

suggests the use of extravagant prices when non linear demand functions are used 

(Welam 1977). This happens because the demand remains positive even at the arbitrary 

high prices, which subsequently results in infinite profits. When the firm uses the feasible 

set, this problem is automatically resolved. Third, it allows us to incorporate the valuable 

judgment and experience of a marketing manager in the optimization model. Fourth, in 

practice, the firm often uses innovative pricing ideas such as psychological pricing, which 

can result in discrete pricing (Holdershaw et al. 1997). Our approach allows us to include 

the outcomes of such strategies in the model. 

Let, e denote the feasible set of the pricing policies while ti1 denote the feasible 

set of advertising options available to the firm. We defme a marketing strategy as 



combination of pricing and advertising options. We define u = (J x tiT and w= (J x tiT as the 

marketing strategies that are available in stage I and stage II respectively. Let, ZII/ be a 

binary variable that takes value 1 when the marketing strategy u is selected in stage 1 

while Z2:. denotes the binary variable that takes value 1 when the marketing strategy w 

is selected in stage 2 under scenario s. Let, Z,';,.. be a binary variable that takes value 1 

when the strategy u is selected in stage 1 and the strategy w is selected in stage 2. 

Because these binary variables together completely define both the diffusion path and 

price and advertising in each period under each scenario s, we can write both revenue and 

demand (equations 7 and 6) for each period under each scenario as parameters. This 

allows us to convert the non linear terms in the previous formulation (equations 8, 11, 13) 

into linear equations. 

Let, R:,..,. be the revenue generated when the firm selects the strategies u and w in 

the first and second stages respectively under scenario s. D,~ be the demand in period 1 

under scenario s when the firm selects the strategy u. D:w, be the demand in the period t 

(stage 2) when the firm selects strategies u and w respectively. We now write the mixed 

integer stochastic program: 

Maximize 

s u w c s 
III (Ps(R:WZ,·".)-aX l - I Ie>:' - It/>5(h1i; +w1b;){jirslstage} 
5=1 1/=1..-=1 e=1 

S T 

-I I t/>5pH (aX; + h,;; + w,b; ) 
5=1 1=2 

Subject to 

5=1 (16) 

{sec ond stage} 



First stage constraints 

r: 

XI -it +bt = LY1uD,~ s =1, ... ,S 
,,=1 

u 
LZ1" =1 
1/=1 

Second Stage Constraints 

u w 
X s ·s b S ·s b S 

'" '" ZS D S 
( + '(-I - t-l - It + ( = L.." L.." /I'" tl/W 

ZI" +Z2: -2Z;'" ~ 1 

U If' 

L LZ,~, =1 
11=1 ... =1 

X s ·s b S 0 
t ,It' t ~ 

1/=1 __ 1 

(17) 

(18) 

(19) 

(20) 

(21) 

t = 2, ... ,T s = 1, ... ,S (22) 

t = 2, ... ,T s = 1, ... ,S (23) 

s=I, ... ,S (24) 

s = 1, ... ,S u = 1, ... ,U w = 1, ... W (25) 

s =1, ... ,S (26) 

\;j t = 1, ... , T,s = 1, ... , S (27) 

Constraint (20) implies that a single marketing strategy is selected in stage 1. Constraint 

(24) ensures that under each scenario, the firm selects one marketing strategy in stage 2. 



Constraints (25 and 26) together imply that the firm selects a single demand stream over 

the product life cycle for each scenario. 

3. Numerical Study 

The objective of this study is to show how the optimal capacity, pricing and 

marketing decisions can vary with the uncertainty in the diffusion process, operations and 

market characteristics. In this numerical study, we consider a firm that wants to 

determine the joint capacity, production and marketing plans for a new product with a life 

cycle of around 1.5 years. 

3.1 Experimental Set Up 

In the base experiment, we solved the SMIP as an expected value problem where 

the random parameters were replaced with their expected values that resulted in a 

deterministic mixed integer program. In the base experiment, though capacity decision 

was included as a variable, we excluded the pricing and advertising decisions and so used 

passive-strategies such as backorders and lost sales to manage the demand growth. Our 

base experiment was similar to Cantamessa and Valentini (2000) so that we could show 

the benefits of including the stochastic behavior and marketing decisions in the new 

product planning models. Demand, revenue and production data were prepared using a 

spreadsheet while the mathematical programs were modeled using AMPL and were 

subsequently solved using CPLEX. 

In the first experimental setup, we assumed that there is no discounting while in 

the second set up, we assumed discounting effects. In all experimental set ups, we kept 



parameters, inventory cost per unit per unit time, backorder cost per unit per unit time, 

discounting at high and low levels. For inventory and backorder costs, we used $.25 and 

$1 values while for discounting, 1 and 0.6 values were used as low and high levels. 

We assumed six scenarios for the diffusion process which are shown in Table l. 

We refer to the first three (last three) scenarios as imitative (innovative) because their p/q 

ratio is lower (higher) respectively. For scenario distribution, we used three situations: in 

a symmetric case, we used the probability distribution (0.166, 0.166, 0.166, 0.166, 0.166, 

0.166), in a slight asymmetric case, we used (0.1, 0.3, 0.1, 0.1, 0.3, 0.1) while for a 

complete asymmetric case, we used (0.025, 0.45, 0.025, 0.025, 0.45, 0.025). 

The production cost per unit is $4. We assumed that all the unfulfilled orders are 

backlogged. At the end of the life cycle, the firm would incur a lost sales cost of $ 7 

while the salvage value of the inventory per unit was $ 3. The inventory holding cost per 

unit per unit time was set at $0.5. The capacity expansion decisions were modeled by 

assuming that four levels of capacities were available. The capacity size and investment 

costs vectors could be represented as (650, 850, 1050, 1250) and (6500, 8500, 10500, 

12500) respectively. The price elasticity of demand was -2 while the advertising 

effectiveness was 0.001. Based on the finn's prior experience and judgment, the finn has 

suggested the following three pricing options (9, 10, and 11) and two advertising options 

(0, 50). We have decided to work with a unit period of three months that resulted in six 

periods during the product life cycle. We however found that the influence of inventory 

holding rate was insignificant. The other parameters are kept at a constant level as we 

believed that their influence of the optimal policies would be insignificant. The parameter 



values were somewhat extreme and had been chosen to bring out the characteristics of the 

optimal policies with greater evidence. 

Parameters Sl S2 S3 S4 S5 S6 

m 5000 4000 6000 5000 4000 6000 

P 0.005 0.005 0.005 0.025 0.025 0.025 

q 0.45 0.45 0.45 0.25 0.25 0.25 

Table 1. Diffusion process scenarios used in the study 

3.2 Results and Discussion 

3.2.1 Base Case 

In the base experiments, we exclude the marketing variables and hence the firm 

uses increased backorder, inventory build up and lost sales options to manage the 

demand. From an operations perspective, these strategies are intuitive and are consistent 

with the prior research. Also, because these experiments do not take into account the 

demand uncertainty, the firm is not able to handle the extreme situations effectively. As a 

result, the profits erode considerably in the base case. We quantify the benefits of using 

our model as _7t.::..e _-_7t.:;..b where tte denote profits under experiments (1, 2) and ttb denote 

the profits under the base case, which are shown in Figure 4. The Figure 4 suggests that 

the magnitude of the benefits increase as per unit backorder costs and discounting 

increase and also when scenario distribution becomes more symmetric. In the subsequent 

sections, we discuss the reasons behind these improvements. As the Figure 4 shows, there 



was not much difference between slight and complete asymmetric results and hence have 

excluded them in the results (Tables 2 and 3) for parsimony. 
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Figure 4. Increase in profits as a function of our model 

3.2.3 Experiment 1 

Table 2 reports the results of the experiment 1. The firm selects a higher capacity 

level under the symmetric case than the asymmetric case. This happens because under 

asymmetric case, the firm attempts to reduce the "excess" capacity expansion costs as it 

anticipates that the lower market demand situation is more likely. 

Behavior of inventory and backordering strategies is similar to the prior research 

where the inventory is gradually increased during the initial period which is subsequently 

depleted during the peak demand while backorders occur mainly during and for some 

time after the peak demand. This happens because of the property of the diffusion process 

where the demand is below the capacity level initially which exceeds the capacity during 

the peak time and fmally decreases during the decline phase. Hence, we do not report 



these results in detail (in Tables 2 and 3). The important difference is that these variables 

are strategically adjusted with our model by shaping the demand process. 

In the first stage, the firm selects base price (10) to hedge against the uncertainty 

in the diffusion process. Advertising decision for this stage however depends upon the 

per unit backorder cost. When the backorder cost is low, then the firm uses advertising to 

accelerate the diffusion process to minimize the inventory holding costs in the initial 

periods. However, as the backorder costs increase, the firm aims to build inventory in the 

early stages that can be used to meet the demand during the peak demand and hence does 

not accelerate the product growth by increasing the advertising expenditure in this 

situation. 

Scenario Backorder First stage Decisions Second Stage Recourse Decisions 

capacity pnce Adv SI S2 S3 S4 S5 S6 

Symmetric Low 1050 10 50 pnce 10 9 10 10 9 11 

Adv 0 0 0 0 0 0 

High 1050 10 0 pnce 11 10 11 11 10 11 

Adv 0 0 0 0 0 0 

Low 850 10 50 pnce 11 10 11 11 10 11 

Asymmetric Adv 0 0 0 0 0 0 

High 850 10 0 pnce 11 11 11 11 11 11 

Adv 0 0 0 0 0 0 

.. 
Table 2. First and second stage deciSIOns for expertments 1 



We observe that in the second stage, the firm has chosen a lower advertising level. When 

there is no discounting, it is not beneficial for the firm to encourage customers to 

purchase the product early from a revenue perspective. As discussed earlier, higher 

advertising tends to reduce the inventory holding costs if the inventory increases in the 

absence of advertising. However, in the second stage, because the inventory 40es not 

increase much, there is no incentive for the firm to increase advertising. As a result, the 

firm prefers zero advertising option. 

The optimal pricing in the second stage depends upon both scenano and 

backorder costs. In general, when the demand turns out to be high (low), then the firm 

tends to increase (decrease) prices to match supply with demand. This behavior is similar 

to revenue management notion that charges higher prices when demand exceeds the 

supply. This is consistent with Apple Inc. decision to cut iPhone price after observing low 

demand. Also, when the backorder costs are high, then the firm chooses higher prices to 

decelerate the demand growth in order to reduce the backorder costs. 

3.2.4 Experiment 2 

Table 3 shows the results of the experiment 2. When the discounting is high, there 

is an incentive for the firm to advertise in the first stage because it results in demand 

acceleration which subsequently results in the increased discounted revenues. Hence, the 

firm selects a higher advertising level in the first stage. Similar to set up 1, the firm 

chooses the base price to hedge against the uncertainty in the demand process. 



Scenario Backorder First stage Decisions Second Stage Recourse Decisions 

capacity pnce Adv SI S2 S3 S4 S5 S6 

Symmetric Low 1050 10 50 pnce 9 9 10 10 9 11 

Adv 50 50 50 0 0 0 

High 1050 10 50 pnce 9 9 10 10 9 11 

Adv 50 50 50 0 0 0 

Low 850 10 50 pnce 10 9 11 10 9 11 

Asymmetric Adv 50 50 50 0 0 0 

High 850 10 50 pnce 10 9 11 11 10 11 

Adv 50 50 50 0 0 0 

Table 3. First and second stage decisions for experiments 2 

Second stage advertising decision depends upon whether the diffusion curve 

exhibits the innovative or imitative behavior. When the process follows the imitative 

behavior, then the firm is able to build inventory in the fIrst stage that is available to meet 

the increased demand resulting from higher advertising in the second stage. As a result, 

the fIrm is able to increase the discounted revenue by spending more on advertising. 

Figure 2 showed the demand growth as a function of advertising in the imitative case in 

both stages. 

On the other hand, when the diffusion pattern is innovative, the firm is not able to 

build enough inventories in the fIrst stage as the demand for the product is high. In this 



situation, when the firm increases advertising, then it only results in increased backorders 

as the firm does not have enough supply to meet the demand. Consequently, the firm 

decides not to advertise when the process follows the innovative behavior. This finding 

can be supported by Nintendo's decision to stop advertising for its wii console due to 

insufficient supply (Marketing Week 2007). 

Similarly, when the process is imitative, the firm accelerates the diffusion process 

by reducing prices so as to increase the discounted revenue. In contrast, the firm decides 

not to decrease them in the innovative case because there are not enough inventories to 

meet the increased demand. Figure 1 showed the diffusion process dynamics as a 

function of price in both stages. It can be seen that both advertising and pricing decisions 

in the second stage behave in the same fashion in the high uncertainty situation. 

4 Conclusions and Future Research 

In this paper, we provided an integrated framework for linking marketing and 

supply chain decisions for a short life cycle product. We suggested the use of a two stage 

stochastic programming with recourse to model the problem. Original model that 

included price elasticity and logarithmic advertising function resulted in a stochastic non 

linear model with integer constraints which was extremely difficult to solve. So, we used 

an innovative approach to convert it to a linear mixed integer stochastic program. 

Our computational experiments demonstrated the importance of including the 

stochastic diffusion process and marketing decisions in the production planning model of 

the new product. Optimal advertising and pricing decisions depended upon the operations 

characteristics. For example, when the discounting was low, then in the first stage, the 



optimal advertising was low (high) when backorder costs were high (low). Also, the firm 

increased the price as the backorde1; costs increased. 

As the discounting factor increased, the firm used the option of high advertising 

and low pricing when the diffusion process followed the imitative path. However, for the 

innovative diffusion process, the firm decided not to advertise and mainly chose the 

pricing policies that did not accelerate the product growth. These contrasting behaviors 

were the consequences of the supply constraints. Thus, our results demonstrated the 

importance of including the supply constraints while deciding optimal pricing and 

advertising strategies. 

Our research could be extended in several directions. Because the objective of the 

study was to propose an enhanced model and show the benefits of integrating marketing 

and supply chain decisions, we have not focused on improving computational speed. 

Stochastic mixed integer programs of moderate size can be solved to optimality in a 

reasonable amouilt of time and also because of the strategic nature of the problem, we 

believe that computational time is not a major issue. Still, it may be worthwhile to 

develop a computational algorithm that solves our model efficiently. We consistently 

found that advertising depends upon operations costs and constraints. An analytical 

model can be developed to prove the optimality of some of our fmdings and draw further 

insights on advertising under supply constraints. 
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