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Abstract

We study price dynamics in a service market environment where identical service providers
dynamically reset their prices to price discriminate informed and uninformed consumers. A
semi-Markovian game model for dynamic pricing is developed and a new maulti-time scale
actor-critic algorithm is proposed for multi-agent reinforcement learning. Also, experimental

résults on convergence to a Nash equilibrium are presented.



1 Introduction

E-commerce has undoubtedly changed how business is done. On the Internet, competition is
just a click away. This fact has potentially lead to intense price competition for commodity
products. Search engines like ACSES, and Web-based comparison shopping agents (also known
as shopbots), like Dealpilot.com allow consumers easy access to all competing firms’ prices.
In order to attract consumers, sellers use automated pricing agents, (also called pricebots) for
constant resetting of prices. Developing on Varian’s work (Varian 1980) in a physical retailer
market, Greenwald, Kephart and Tesauro (1999) have investigated "economics of shopbots” and
pricebot dynamics in commodity markets with infinite supply. In their models, some consumers
have access to shopbots while other consumers do not. These models generate equilibria: firms
randomize their prices in order to price discriminate between the searchers and non-searchers.

In the same vein, in this paper, we study price dynamics in an electronic service market with
sellers of identical service. This models a situation where online utility services or digital goods
or videos are offered for rent. Also, Application Service Providers (ASPs) form a good example
of the model presented here.

Since a seller of a service can process requests of consumers only at a finite rate, a buyer
approaching for service will incur waiting cost before his request is initiated. In our model,
we assume that shopbots not only will collate posted prices of all the sellers but also provide
information pertaining to posted ezpected delay at each such service provider. Further, each
service provider uses an automated pricing agent (or pricebot) to reset prices at random intervals.

Congestion ia; a characteristic of services and creates negative network externalities: the

utility to each consumer decreases with an increase in the total number of purchasers. In



a market withont congestion, competition in prices drives them downward resulting in zero
profits. In contrast, in service markets, the downward pressures on prices is countered to some
extent by the congestion or dis-uislities consumers incur from waiting costs. Competing firms
might choose to differentiate themselves by offering different prices, and thus different qualities
of service in terms of congestion. In a duopoly setting, one firm will offer a higher price than the
other, appealing only to the most congesf.ion sensitive customers while the majority of customers
will use the service of the other, less expensive firm. If the customers approaching the market
are heterogenous in their information acquisition capabilities or in their preferences for sellers,
competing firms have incentive to randomize their prices in order to price discriminate such
customers: a phenomenon widely prevalent in commodity markets. In this paper, we attempt
to make this intuition precise by developing a truly dynamic game model in a duopoly setting
and study its dynamics when pricing agents dynamically adjust prices based on competitor’s
behavior.

Nash equilibrium is a natural equilibrium concept in such games and is a point in the joint
policy space where no seller has incentive to deviate unilaterally. If all the sellers follow the
same rational learning algorithm that consistently attempts to learn a seller’s best response to
opponents’ actions, and if it converges, then the sellers will be locked in such a Nash equilibrium.

In this paper, we analyze price dynamics in a competitive two-seller market game where
both .the players follow the reinforcement learning based adaptive behavior. Q-learning based
algorithms have been suggested in Littman (1994, 2001)and Hu and Wellman (1998). However,
satisfactory convergence is confined only to zero-sum games where one person’s pay-off is negative

of the other player’s pay-off. In contrast, we consider a general-sum Markovian game and propose



an actor-critic-type of reinforcement learning scheme, a variant of the type discussed in Konda
and Borkar (2001) and Borkar (2002) in the following sense: we model the two players as
two actor-critic learners, but the actors (policies) are updated on different time scales with
the intuition that if two actors run on different time scales, the slower player sees the other
player as "equilibrated” and the faster player sees the other player as quasi-static and hence,
both the learners might converge (to a Nash equilibrium). This is a reasonable model when
the competing sellers differ in their technologies and information acquisition capabilities. We
provide experimental results on convergence in a dynamic pricing game. Though no claims can
be made on convergence of the algorithm in general, this work can be treated as a first step in
that direction.

In the next section we introduce the dynamic pricing model in service markets. In Section
3 we model the dynamic pricing game and present our multi-time scale actor-critic algorithm.

Section 4 gives results of our experimentation.

2 Description of the Model

We consider a simple model of a service market with two service providers. A Poisson stream
of buyers with rate A approaches the market with i.i.d service time requirements sampled from
exponential distribution having mean Il;(z\ < p). Buyers are classified into two categories: A
Type 1 buyer randomly chooses a service provider and receives a quote on price to render
requested service and the expected delay to be incurred to initiate processing his request. In
contrast, Type 2 buyers use a shopbot, to learn posted price quote and also the posted ezpected

delay at each individual service provider. In both the cases, a seller is assumed to act truthfully



in revealing information regarding delay quotes and with n requests queued up, will quote a
delay of ¥. Though it is interesting to analyze the game where tlhe above assumption is relaxed,
we do not take up that part in this paper.

Each seller can process only one request at a time and seller {, ! = 1,2, has a finite buffer
to allow at most m; requests at any time. Further, a seller uses his own automated price-
setting agent, a pricebot, to price the requested service dynamically based on competitive factors,
current queuelength and also, based on relative proportion of the informed buyers (Type 2 above)
approaching the market.

Now, consider a customer of type m, m = 1,2 arriving at time #. Let X;(¢) be the number of
requests in queue at server I, { = 1,2 and Wi{t)(= X—ﬁﬂ) be the corresponding expected delay.
Let X(¢) = [Xi(t), X2(¢)] be the queuelength vector. X({t—) (W(t—)) will denote the queue
vector (expected delay vector) ‘just before . The wutility for the customer of price and delay
quotes received at seller { is given by vi(p;, Wi(t—), m) for some map ;. Further, a customer of
type 1 selects seller ! with probability a; and joins the queue for service if 1(.) is positive or else
leaves the market. But a customer of type 2 joins the k-th seller, if k maximizes +;(p;, Wi(t—},2)

1 =1,2 and #;(.) is positive.

2.1 The Semi-Markovian Game

We assume that each seller can have knowledge of changes in the queuelengths at the other
seller. It is not a restrictive assumption since sellers always can approach shopbots for this
information. However, it is interesting to note that shopbots will not have any incentive to

reveal price information to sellers since a portion of shopbot’s revenue comes from purchase



deals that materialize through it and no such deal is possible if the query on. price comes from
a seller. Since this is an assumption on observability of only the changes in the competitor’s
queuelengths, information with regard to lost arrivals and type of customers is not explicitly
available to any seller.

Now we are ready to formulate a simultaneous move dynamic game between the two sellers.
In the following, we use Player 1 and seller synonymously and refer to his/her opponent as
competitor or Player 2.

Define § = {0,1,2,...,m} x {0,1,2,...,my} where m; and ms are the buffer sizes at the
seller and the competitor respectively. Let its elements be enumerated as 1,2,..., M.

Consider the process {X(t)} = [X,(t), X2(t)],t > 0 of queuelength vectors controlled by the
pricing strategies of the two players as follows:

At time 0, the process is observed and classified into one of the states in S. After identification
of t.he; state, the players choose pricing actions from a finite set of pricing actions which for
notational convenience is assumed to be common for the two players and is denoted by A. If
the process is in state ¢ and Players 1 and Player 2 choose a; and a2 respectively, where a; € A,

then

(i} the process transitions into state j € § with probability Pij([a1, a2)}

(i} and further, conditional on the event that the next state is j, the time until transition is

a random variable with probability distribution Fii (a1, a2]).

After the transition occurs, pricing actions are chosen again by the players and (i) and (ii)

are repeated.



Further, in state 4, the actions chosen by players 1 and 2 are a; and e respectively, and the
process moves to state j, the resulting rewards are given as follows:

Let i := [71,%0) and j = {z,/, z2].

rl(i,j:a) = O0ifzy=zorz =2~ 1
f‘l(i,j; a) = agif o/ =o+1
d@) = day (1)

Following along the lines of semi-Markov decision processes, we call the above controlied game
process a semi-Markov game. From standard semi-Markov decision theoretic arguments it fol-
‘Jows that we may consider the embedded discrete time Markov game X(r,) controlled by the
two players at the transition epochs 7,. At every such 7,, if the action profile, the ordered pair
of pricing strategies by Player 1 and Player 2, is a” = [a},a}] with o} € A, then there is a
potential departure from the queue of seller {, with probability Y—;’-JT;- With probability ﬁ%,
there is an arrival of type 2, who joins the queue of seller k if &£ maximizes ¥ (X{m—). a7, 2}, if
¥x is positive and if k-th buffer is not. full or leaves the system. Similarly, with probability 5336,
the arrival of type 1 joins the queue of seller { again only when ¥ (X;(m,—),a', 1) is positive.
Let {Tﬂ}nzo denote the sequence of successive transition epochs. We use X; to denote
X(m) and a; to denote a,,. Given at a decision epoch 7, the state of the game and the

strategy profile a,, the joint distribution, Q;;(2,a), of the transition interval and the next state,



is by time homogeneity:

Qij(t, &) = P{Tﬂ+l —Tn &1, Xk+l =J|Xk = is ak}

= Fj(a)F;(tia). (2)

Now consider the control processes { Z}} of the sellers at decision epoch 7, taking values in the
pricing action space A. Let Z, = [Z}, Z2] € A be the joint process. Then, transitions of the
game occur as specified in (i) and (ii) above. Player ! seeks to maximize her total expected

discounted reward over the infinite horizon of the game:

n=og

ELY. e (t{(X (tn_), Zu, X (1))

n=0
/Tn
T

HX(mmo1)e Pldt)| X, =i Vi€ 8)

B € (0,1) abovelia a discount factor that discounts all future rewards to the initial decision
epochs.

A policy « for player I, I = 1,2 is a sequence [n},7},...] where 7}, specifies the action to
be chosen at the n-th decision epoch, which in general can be dependent on the entire history
up to T,. A policy for pl'ayer I, 7! is called stationary if there is a map f': S — P(A) where
P(A) is the class of probability distributions over the space of pricing actions .A. Because such
a policy is time and history independent, can simply be denoted by =‘. Further, a stationary
policy profile , is the ordered pair [7!, %] of stationary policies =!,I = 1,2 and = € P(A)*M.

In order to help write a recursive scheme to evaluate total expected reward for a given 7 and

thus to motivate our learning scheme to be described later, we define the following single stage



terms:

mj(m) = 3 f e~ PTaL (4, 01 )72 (i, az)dQi; (2, 8)

i, 7) Z Z P,J(a)r (4, 7, a)7 (3, a1 }n2(s, an)
j=101,02
Glin) =d(i) 3 Z f dQ,J(t a)

a1,82 3=1

Note that transitions to states and transition intervals are governed by both the players and
depend on the randomized actions 7'(.,.} taken by both the players and also on buyer’s utilities.
m;j(7) above is the expected discount factor if the state of the game next transitions to j when
in state i players follow 7. (i, x) and ai(i, ) are the expected reward and the expected costs
for a single transition if the game starts in state  and the pricing action selected by the players is
according to 7. When  is a profile of pure (deterministic) strategies with unit mass on {a;, as],
we denote my;(7) by my;({a1,a2]) and 5‘(%‘, .) above by G!(i, [a;, a2]).

For a stationary policy profile 7, define the constant policy evaluation function” Tf_:, for player

i by

Vi(i) = E[SX0e ™1 (F (X (10.), Zn, X (ra))

— [ A Xn)e Pt dt)i Xy = ilVie S (3)

™m-1

where {Z,} are chosen according to the stationary (randomized) policy . Following standard

semi-Markov decision theoretic arguments it is easy to show that Vf,(.),l = 1,2 is the unique
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solution to the fixed point equation:

Vo)) =F6m -Gl + X my(nViGvie S (4)
7

We call the policy profile (.,.) a Nash equilibrium if for every I, Vi(i}) < VI(i) Vi whenever,
7k (.,.) = 7*(.,.), for k#L

Such a Nash equilibrium can be shown to exist following the arguments in Federgruen (1978)
for discrete games. Moreover, if we freeze policies for one agent, it becomes a semi-Markov
Decision Process for the other agent whence it follows that V% (i) satisfies the following dynamie

programming equation: Vz € S,

V(i) = min 3 72(5, a2)(P; (e, a2))r* (3, [a, a2}, 5)

~G(i,[a,02]) + 3_ myj(fa, az)) Tz (5)] (5)
JES

Similar relation holds for V2(.). In particular, it also follows that (I) ' itself is supported on
the argmin of the r.h.s above and (II) Player { cannot do any better by using any other general

nen-anticipative policy.

3 An Actor-Critic Type of Algorithm for the Pricing Game

From the remarks below equation (5), it is enough for the players to concentrate on stationary
policies to play the game. Now assume that a player, say Player 2, follows a fixed stationary

policy and farther that, the policy is known to Player 1. For the sake of argument, let us also
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assume that buyers’ behavior and their utilities are also common knowledge. In other words, all
the parameters of the game are known. Then, Player 1 has to solve {(5) to find his best response
to Payer 2's strategy.
Consider the celebrated policy iteration scheme for solution of (5} which is detailed below:
Player 1 starts with a guess for optimal stationary deterministic policy #%{.) and at iteration

n > 0 does the following:

(a) Find V2 : § = A by solving

Voe(8) = > 72 (4, a2) [Py {[7°(5), a2])r' 3, [«°(3), @2, 7)

oz

_G(ia [TrIIJ (‘)a 02]) + Z mqg ([ﬂo (t)s 02] )7:2 (J)]
JES

(b) Set #"*1(i} as an element in

Argmin(y_ 7(3,a2)[Pj{[., a2))r (4, [, a2], 5)

az

—G(i, [+ a2]) + Y mij ([, a2))V 2 (5))
Jjes
Now let us relax the earlier assumption on common knowledge about buyers’ behavior. In this
case, the transition structure above is not known and one has to use adaptive mechanisms based
on reinforcement learning. We develop an actor-critic type of reinforcement learning for the
above game similar in spirit to the one in Konda and Borkar (1998). To motivate the algorithm.,
replace the step (a) above, by the following iterative scheme to solve the underlying linear system

of equations.
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(a”) V?n-{-l (5) =

> 7%(5,82) [Py ([7°(4), az])r (4, [n°(5), aa], 5)

—G(, [7°(i),82)) + 3 ma([7°(3), a2) )V (5)] (6)
j€s

Note that this can be considered as a subroutine to perform the task of step (a). If the transition
structure is not known, then the conditional averaging in (6) cannot be performed. One might
then consider replacing the conditional average in (6) by an actual evaluation at states and

transition intervals obtained from online learning. In other words,

V() = Vip (8} + b'(v(i,m))l{xm =£}[(’J(£:Zm)_

1-— 3'87 . —fr1n n ;
Tc(t, Zpn) + e VR (Xma1) — Vi1 (3)]

Now consider (b), the policy improvement step, of the policy iteration, which entails solving
an optimization problem for each iteration n. In order to do so, it needs to wait for the policy
evaluation step to converge and then reevaluate the new policy again following the above learning
procedure. To obviate this difficulty, one may try to execute both the steps together for online
learning and update policies and values in a coupled fashion : the policy is updated using an
approximate gradient scheme (to be detailed shortly). The gradient estimate is derived from the
available estimates of the value function obtained from the above learning step. But importantly,
to underscore the fact that policy update should wait till convergence of step (a’), ﬁhe policy
update is run at a slower time scale than the value update, that is, step (a’) to get the same

effect albeit asymptotically. This notion is formalized later.
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Now the above argument assumes that Player 2 is follows a fixed stationary strategy. How-
ever, if Player 2 were also to learn his best strategy, and hence both hope to head to Nash
equilibrium, then simultaneous adaptation of both the players creates convergence problem. In
this case, where both the agents try to learn their Nash equilibrium strategies following best
response dynamics, it can be hoped that both will converge to an equilibrium (more so, if 1t 18
unique) if Player 1 sees Player 2 as quasi-static and Player 2 sees Player 1 as playing equilibrium
strategy in their pursuit for mutual best responses. With this intuition, we devise two similar
actor-critic learners that operate on different time scales for updates. This notion will be made
precise shortly.

As it is known that existence of equilibrium for the above dynamic pricing game can be
ascertained only in the randomized policies (perhaps not in pure strategies), let us extend the
domain of optimization in (b} to the space of probability measures on action space. Advanta-
geously, this space is convex a.nﬂ hence one can use gradient based numerical schemes to solve
the underlying optimization problem at each step of learning. Approximate gradient estimaie
is provided through step {a’). Whenever this updated policy falls out of the bound’&'ry' of the
convex policy space, it is projected back to the convex domain. This procedure is formalized
below.

Consider the simplex of probability vectors over the action space 4, P{A). Any stationary
randomized policy for Player ! is a map n* : S — P(4). Fori € S, n'(i) is an |A]- vector whose
components are denoted by 7‘(i,a),a € A. We search for optimal [7'(3, a)jics.cca in (P{A4))*.

The actor-critic algorithm for player, [, { = 1,2, is defined as follows. Equations {4) and (5)

suggest the following update procedures for the critic (policy evaluator) and the actor (policy)
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Y

- _ E?ﬂ e

o,

T

respectively.
For any ¢ € §,
Vi) = V6 + b‘(v(a',n))r{xﬁ,.}[(r‘(i, Z)—
1-¢efm . )
3l Za) + €IV X1) - V) ™)

.‘#1 o e
. ; L
- v

P(ﬁ{:(is ) + Z a'(v(z’, a, n))I{ani,Z§,=a} (’J(‘.a Zn)
a;éao
1= ol

8

elt, Zn) + e VI X ps1) — VEE))ew) (8)

where e, is the unit vector with value 1 in the a — th position,{a'(n)} and {#(n)} are
the step size parameter sequences satisfying the standard stochastic approximation conditions
and v(i,a,n) is the number of times (i, a) is encountered in the chain {{Xn; Zs)} and and
v(i,n) is the number of times state i is visited by time n. T(.} is the projection on to the
probability simplex Py(4) := {z : zﬁ_:::,- = 1,2; 2 0,Vi}. Finally, let ¢ € (0,1) be a small
positive number. Then, player ! picks zt according to the distribution ?l’,tlE(Xn, .) defined for
any ¢ € (P(ANM, by ¢°(i,.) :=ec + (1 — €)¢(i,.) where < is the u;1iform distribution over A

to ensure sufficient exploration. T above is an appropriately averaged sample transition time.

In addition to the standard conditions on {a'(n}} and {¥ (n)} for stochastic approximation
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schemes, we also require that the sequences {a‘(n)} and {¥(n)} satisfy:
d(n) =oB(n),i=12 and a'(n) = ola’(n)) ©)

If one interprets {a'(n)} and {b'(n)} as time scales, then (9) defines three time scales for
operation of the two actor-critics; while the two actors operate on different time scales, their

respective critics operate on the same time scale faster than their respective actors.

3.1 Computing Projection

In this section, we provide a simple algorithm to compute the above projection under LZ-norm
to the probability simplex.
Given any vector a = [a1, a2, ... ,an}, finding its projection on the probability simplex, P(A)

under the L? norm amounts to solving

min 30, (2 — a;)?
st Vi zi=1

z; >0 Vi (10)

Without loss of generality, wet may assume that a; > a2 > ... 2> a,.Let z* denote the optimal
solution to the above problem. Then

Lemma 1 There ezists an index k such that 2§ > 0, for 1 <i < k and 27 =0, for i > m.

Proof: Suppose that z* is such that ¥ = 0 and ¥, ; > 0 for some i and let d{z* be its distance

16



from the P(A). Then consider a solution Z, obtained from z* such by switching the §** and the
i + 1-th components. The distance of #, d(%) from P(4) is
d(.’i’ = d(It) + 2((1;‘.{,1 - a,‘)a:,-+1

Since, ¢; > a1, ¥ cannot be the projection. A
Lemma 2 All positive components of z* are of the form x} = a; + ¢ for some constant c.

Proof: The lemma is trivial if there is only one component that is positive. Hence, assume
that there are two positive elements, say z; and :a:;-, in z*. Define a new feasible solution, I, as
follows.

Zi = z; — € and &; =2} +¢, and &; = z} for | # 4, for some ¢ > 0.

The distance of Z to P(A) is

d(Z) = d(z) + 26 + 2¢(z} — 2} — a; + a;)

For ¢ sufficiently small, Z is a feasible solution and further, if (27 — z} — a; + ai) #
0, then % has lesser distance than z* from the simplex, contradicting the optimality of z*.
A

In view of the characterizations for z* in the above lemmata, the optimization problem

reduces to a problem in single variable:

) 2
min % (1 - Ele a;) + Etﬂékﬂ “12
a.t Zf;l(a; —ap) €1

kel,2,...,m

Now, consider the sequence, S; = ):L](a; —ax) with §; = 0. It is easy to see that {S;} is

17



non-decreasing. The objective function can be rewritten in a recursive form as follows; f(k) =
flk=1) = sdegsL - Si]? with f(1) =1 — 203 + T, af. It can be easily verified thatf(k) is
TON-1NCTERSiNg.

In the light of these facts, the problem reduces to determining k*, the largest & such that
8 < 1. Such a &* exists since 5; = 0.

1—-8p»

The optimal value, ¢*, in terms of k* is ¢* = — ax- and the projection is given by

gi+c¢ fori=12,..,k
I; =

0 i> k"
4 Simulation Study

In this section, we provide some sample experimental results on convergence behavior of the
algorithm. We consider two cases: in the first case, each seller is simulated with finite processing
capacity and finite buffer, and in the other case, the processing capacity of each seller is assumed
to be infinite.

Each buyer has his own upper-limits, pj,ws, on price and waiting time respectively and
are assumed to be i{.i.d and uniformly distributed over the intervals (0,pmqz] and (0, wmaz]
respectively for known prer and wmee. A typical buyer’s utility is assumed to be of the following

form:

Us(p, w) = [a{ps — p) + (1 — o) (ws — w)]O(py — p)O(wp — w) (11)

where ©(z) = 1 if z > 0 and 8(z) = 0 otherwise, for any quoted price p and waiting time w

and0<a<l,
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4.1 Sellers with Finite Capacity

In this case, with a view to get immediate insights that help analyze the convergence behavior,
the dynamic pricing game has been simulated in a completely symmetric setting wherein the
sellers are assumed to have identical buffer capacity of 4 and identical holding cost of 1 and choose
their pricing actions from the set {1,2,3,4,5,6}. The game has been simulated in two different
aoqnarios: one with & mix of informed and uninformed buyers and the other with only informed
buyers. In the latter case, buyers’ price barriers and waiting time barriers are set at 6 and 5
respectively and a buyer’s priority (a) to surplus extracted from price is sampled from a uniform
distribution over (0, 1). In the former scenario, the price and waiting time barriers are sampléd
from uniforms distributions over (0,6] and [0, 5] respectively keeping the value of a fixed at 3
The learning rate parameters are of the following form: a!(n) = L.a%(n) = o bl(n) = s
and b%(n) = n_ﬂiToo The system has been simulated for 5 million iterations. The convergence
is slow which is typical of reinforcement learning algorithms. The plots shown below are the
values in any given state against the number of updates in the last 15000 iterations.

Plots on convergence of value functions when system starts from the idle state in the above
scenarios have been presented in Figure 1 and Figure 2 respectively. Observe that the rewards
obtained in the presence of only informed buyers are lower compared to the situation where a
mix of consumers is present. The convergence in Figure 2 is not as smooth as that in Figure
1. However, it has been observed that values differ in their fourth decimal and show slight
perturbations around 0.018. For purposes of visual clarity, we have not provided convergence
graphs of mixed strategies in each state. In the second scenario, for state (0,0), the policies

of the two players converge approximately to the mixed strategy (0.013, 0.012, 0.230, 0.235,

hY
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0.240, 0.270]. The congestion factor provides enough incentive for the sellers to randomize on
prices above the minimal level. Contrast this with a commodity market (with no constraints on
supply) where informed buyers drive the prices down to the lowest possible price {(or marginal
cost), the popular Bertrand eguilibrium.

Figure 3 deﬁpicts value function convergence starting from (0,1).

For state (3,1), (no plots are provided here in this case) strategies for Seller 1 and Seller
2 converge to [0.07, 0.08, 0.11, 0.13, 0.27, 0.33], [ 0.040, 0.044, 0.099, 0.200, 0.297, 0.320].
it is interesting to note that in this state both the sellers randomize their prices in high price
domains. This phenomenon can be explained as follows: while Seller 1 tries to reduce congestion
by discouraging price sensitive customers with high price quotes, the competitor tries to derive

advantage out of the situation: the congestion sensitive consumers select him out of priority and

price sensitive consumers out of better service offer at similar price quotes.

4.2 Sellers with Infinite Capacity

We also simulated the case where both the sellers can process requests at an infinite rate. In
other words, each seller can be treated as an infinite server Markovian queue. This models a
situation when servers have enough resources to meet the demand. The mixed strategy obtained
after convergence for the above price grid is [0.5,0.0,0.0,0.0,0.0,0.5} for Player 1 and [0.0, 0.0,
0.55, 0.45, 0.0, 0.0] for Player 2. Figure 4 is a combined plot for both the players: Action 6 for
Player 1 and Action 3 for Player 2.

In another experiment, we selected only two prices and the convergence in policy is depicted

in Pigure 5.
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In the third experiment, we assumed that all customers are informed and no customer balks.
That is, a customer joins the queue that offers maximal utility even if the utility is negative.
Hence in this case, the game is a zero sum Markovian game and the game reduces to a linear
dynamical system. Again the policies converge to a mixed strategy as in the finite capacity case:
congestion factor counters the effect of competition and prevents the optimal price from going
down to marginal cost. The plot shows convergence graph of probability of selecting price 2.

The policies again turned out to be symmetric in this case,

5 Conclusions

In this paper, we developed a multi-time scale algorithm and provided empirical resuits on
convergence in a truly dynamic game. Qur studies indicate that multi-time scale algorithms

offer some promise in multi-agent learning in games.
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Figure 2: V(0,0) with only Informed Buyers
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Figure 4: Policy Plot in the Infinite Capacity Game
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Figure 5: Convergence in the Two- Action Game
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