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~ Abstract

In this paper we introduce a concept of skowness and suggest its measure
among & class of unimodal distributions. The measure is built on the lack of
symmetry of the density function around the the mode of the distribution. It is
shown to satisfy all standard propertics expected from a measure of skewncss,
including location and scale invariance. The extreme valucs of the mcasure are
characterized. Although the measure is defined for a relatively narrow class
of distributions, its utility is established by showing that it is applicable for
most popularly used continuous distribution familics. The introduced measure
is compared with the other established mcasures like Pearson’s skewness and
standardized third moment and it is shown to be more strict. Two alternative
ways of partial ordering among the distributions based on this skewness are
also described. The utility of the proposed measure is cxamined in other cascs
including discrete distributions.

Keywords: Beta distribution, Bowley’s measure of skeumess, Gamma distri-
bution, location and scale invariance, Pearson’s mode skeuness, Poisson distri-
bulion, skewness function, standardized third moment, unimodal distribution.



On a New Measure of Skewness for
Unimodal Distributions

Shubhabrata Das Diptesh Ghosh

1 Background and Introduction

For any symmetric distribution, the three most popular measures of central tendency,
viz., the Mean u, the Median m, and the Mode M coincide. The lack of symmetry
for other distributions is expressed through measures of skewness. Although skewness
has been studied extensively in the past hundred years, the job of deciding on a single
measure is far from obvious, not only because of typical tradcoff between efficiency
and robustness, but also since the concept of skewness is not universally understood
or accepted. Skewness, by convention, may be dcfined as the lack of symmetry of
the density function around of its measure of central tendency. However they may
be classified according to the difference choices of central tendency as most measures
are defined in terms of the relative values of the mean, median, mode and various
percentiles and moments of the random variable. Possibly the earliest measure of
skewness can be attributed to Pearson [14] who advocated 1’%’“, & measure which is
typically referred to as the Pearson’s measure of skewness. Pearson also proposed
a second measure in terms of the relative values of the mean and median which
i8 related to the earlier measure by the empirical mean-median-mode relationship.
Although Galton proposed a measure in terms of symmetry of 80th percentile and
20th percentile around the median in 1896, a more popular measure of this type was
proposed by Bowley [3] in the early 1900’s. This measure %ﬂ '
became known as Bowley’s measure of skewness. Around the same time a moment
based measure £} is reported in Yule [16]; this is usually referred to as the siandardized
third moment and is the most commonly used skewness measure till date. In later
years, several modifications of these classical measures were studied. For example, a
messure which modifies the Pearson’s measure through replacing the denrominator by
E[X—M] was suggested in MacGillivray [11], and modifications of Bowley’s measure in
which the quartiles were replaced by other percentiles were studied (David [6]). Ben-
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jamini and Kricger {2], Doksum [7], among others, unified some of these approaches
in a common framework. Recently, research has also focused on measures of skewness
that are robust (sce, e.g., Aucremanne et al. 1], and Brys ct al. [4, 5]).

Irrespective of the choice of measures, it is gencrally agreed (viz. Benjamini [2]),
that any measurc of skewness shouid

e lie between —1 and 1 for any distribution;
e be 0 for any symmetric distribution; and

e be location and scale free.

Curiously, the literature on skewness mcasures for unimodal distributions docs
not contain a measurc based on the asymmetry of the density function about the
mode, although measurces based on the asymmetry of the density function about
the median have been reported. In this paper, we propose a measure based on the
asymmetry of the density function about the mode. In the next section, we formally
define this measure and present its properties. We also describe two alternative ways
of paftial ordering among the distributions based on this skewness, In Section 3 we
show that several commonly occurting continuous unimodal asymmetric distributions
are homogenecously skewed as per our skewness measure. In Section 4 we compare our
skewness measure with the more established skewness measureslike Pearson’s measure
of skewness and standardized third moment. Sccion 5 deals with the extension of our
skewness measure for distributions with flat modal regions (Section 5.1), for discrete
distributions (Section 5.2}, especially the Poisson distribution, and for continuous
distributions with a unique antimode (Section 5.3). The last section summarizes the
contributions of the paper, and proposes directions for future rescarch.

2 Homogeneous Skewness

2.1 Proposed Measure

Our treatment of homogencous skewness is restricted to unimodal distribations, i.c.
distributions with densities having unique local maxima. Without any loss of gen-
crality, we will include all distributions with non-increasing/non-decreasing densities
in this class. Wc primarily deal with unimodal continuous distributions, although
extended coverage is discussed in Section 5.
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For the purposc of the present work, & unimodal distribution may be defined as
follows: A distribution with density function f(x} is called unimodal if there exists
a uniquc M such that f{x} is non-dccreasing on {—o0, M}, and non-increasing on
(M, 0a). The valuc M is called the mode of the distribution. The mode can be either
the left or right end point of the support of the distribution, as would be the case
with distributions with increasing or decreasing density functions. The support of
the distributions may or may not be finite.

Having defined unimodal distributions, we now introduce the class of homoge-
neously skewed distributions and a partial ordering of skewness within that class.

Definition 1 Homogeneously right skewed distribution: A Unimodal distri-
bution {cquivalently, the random variable having e unimodel distribution) with Mode
M end density function f(-) is said to be homogeneously right-skewed, or equivalently
homogeneously skewed to the right if

fix+M) > f(x—M), ¥x>0. 1)

It ig said to be homogeneously right skewed in the strict sense provided the strict
inequality holds in (1} with positive measure, in addition. As usual, we may replace
Vx by a.e. x (almost everywhere in z) in (1).

Homogencously left-skewed distributions are defined analogously, i.e. with the in-
equality sign in (1) reversed. A unimodal distribution is said to be homogeneously
skewed provided it is either homogeneously right-skewed or homogeneously left-skewed.

Let us denote the class of homogeneously skewed distributions by F. It is conve-
nient to formally define the skewncss function and a measure of skewness for distri-
butions in F.

Definition 2 The skewness function: The skewness funclion of a distribution in
F (with Mode M and p.d.f. f(-)) is defined as

Yi(x) =f(M+x)-f(M-x), x>0 (2)

Definition 3 The measure of homogeneous skewness: The measure of homo-
geneous skewness of a disiribution in F (with Mode M and p.d.f. f(-}) is defined



2 = j: yelx)dx = J:{f(M +x) — f(M — x))dx. (3)

2.2 Properties of the Measure

It is casy to sce that for any distribution belonging to £, its measure of homogeneous
skewness is positive (negative) if and only if the distribution is homogencously skewed
to the right (left).

The following theorem establishes the bound for the skewness measure and char-
acterizes the extreme values and central value of the measure.

Theorem 1 For any distribution F € F with density f, its measure of homogeneous
skewness Ty

1. is equal to 0 if and only the distribution is symmetric;

2. lies between 1 and 1;

3. is equal to ~1 if and only if the density is nondecreasing on its support; and
4. is equal to 1 if and only if the densily is non-tncreasing on s support.

Proof: The first statement follows from the fact that y¢(x) is of the same sign Vx,
and consequently 1y = 0 if and only if y¢(x) = 0, Vx, which is the case only for
symmetric distributions. The key observation in proving the other parts is:

—f(M ~x) < yx) < f(M+x), ¥x, (4)

integrating which lcads to Statement 2. Statement 3 also follows by noting that
the first incquality in (4) would hold for all x, if and only if f{M + x} = 0, Vx,
i.c. F{M) = 1, equivalently for f{-} nondecreasing on its entire support. The last
statement follows from the parallel argument. [

It is worthwhile to mention that there exist asymmetric distributions outside the
class £, which arc positively skewed according to other popular definitions of skewness
and yet for which the integral in (3) is ncgative.



Theorem 2 Suppose X is a random vari le with distribution in F. Then for any
consianis a and b, the mensur?l‘?é:mus skeuness forY =aX + b and X are
the same. In other words, the neasure of homogeneous skewness T 18 free of location
and scale. '

Proof: Ti¢ modes and densities of Y and X must be related by

e y _ b
a

1
My=aMx+b; and fyly)= Efx( ). (5)

Hence the measure of homogeneous skewness for Y is

Ty = L My + 1) ~ (M, - y)}dy

- L” -l-{fx[Mx-!-%)—fx(Mx—%)}dv by (5)

]

r {£.{Mx + x) — fx(My —x)}dx (substituting -3- =%x) =Tx
0

O

Theorems 1 and 2 ensure that the standard properties expected of & measure
of skewness are satisfied by our proposed measure. In addition, the first theorem
" provides a nice characterization of the extreme values of the measure.

2.3 Ordering of Distributions in terms of Homogeneous Skew-
ness

All the standard measures assume or impose an ordering of distributions with re-
gard to their skewness. This has been elaborately explored in [11], {13], and [1§]
among others. With reference to our notion of homogeneous skewness, we have two
alternative ways of ordering.

We advocate ordering the distributions in £ according to their homogeneous skew-
ness function.

Definition 4 A distribution with densitly function f1(-}) in F is said to be at least
as skewed as another distribution with density function fif-) in F if

h’ﬂ {xll 2 |Yfz (X]I vx- (6)
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The above definition implies that if one distribution in £ is more homogencously
skewed than another distribution in £, then the y of the former is also higher. How-
ever, this defines only a partial ordering of dictributions in the sense that for two
distributions in F ncither may dominatc the other, slthough clearly one may have
higher measure of homogeneous skewness).

Another disadvantage of comparing through the skewness funcsion is that its do-
main may change from a distribution to another. Alternatively one may define a total
ordering of distributions in £ through the measurc of homogencous skewness, i.c.

Fi<aF &1 <14,

3 Homogeneous Skewness of Different Distribu-

tions

In Section 2.1, we have introduced & new measure of skewness for distributions in £.
Here we show that it is not overtly restrictive since many commonly used distributions
belong to F. We also make a comparison with other standard measures of skewness
for these distributions. Note that for proving homegencous skewness for distributions
supported on [a, b, it is sufficient to show that y(x) does not change sign for 0 <
X £ min(M — a,b— M). In view of Theorem 2, it is sufficient to work with the
standardized members from these distribution families rather than the general form.

3.1 Triangular distribution

In view of the discussion above, we consider a standardized form of the triangular
distribution, i.e. one supported on [0, 1]. The density function of this distribution is

v % for0<x<M
fix)=¢ A4 forM<x<1
0 otherwise,

It is casy to see that, for y > 0,

-k

Z|=
T

V() = {F(M) = F(M — y)} — (M) — F(M + y)} = 29



f(x) {

0 M T x
Figure 1: Density function for a triangular distribution

thus, the distribution is homogeneously skewed (i.e. € F) and is homogeneously right-
skewed if and only if M < 0.5. It can be also shown that under identical condition,
all other standard measures of skewness are nonnegative.

3.2 Gamma Distribution

The standard gamma distribution has a density function of the form:

0 forx <0
fx) = gﬁ[—_‘) forx > 0.

The mode of this distribution is at M = (& — 1}, provided & > 1. We would ignore
the case of & < 1, since this leads to a decreasing density function in the entire range
and consequently is trivially covered. The gamma distribution is a positively skewed
distribution according to all traditional measures of skewness. In the following, we
show that it is homogeneously skewed to the right.

Let us define: -
_fiM+y)

= e 7
f(M —y)} @
for 0 < y < M. Then its derivative is given by

h(y)

W(y) =2y* (M + )™M (M — y)y ™M) exp(—2y) (8)

Thig implies h(y) > h{0) =1, V0 < y < M, since for y > M, f(M —y) =0, i.e. the
distribution is homogeneously skewed to the right.



3.3 Beta Distribution

The standard beta distribution is defined on a support of [0, 1]. It has two parameters
o and B, and its density function is given by:

x%=1(1-x)B-1
f(x)={w fOIOSXS]

0 otherwise.

The mode of this distribution is at M = -“-:E—lz, provided & > 1, > 1; this is
the scenario assumed in the remainder. For ¢ < 1,8 > 1 and x > 1,8 < 1, the
density functions are respectively decreasing and increasing and hence homogeneously
skewed.

According to the cxisting measures, the distribution is positively (negatively)
skewed for § > (<) «. In the following, we show that the distribution is homo-
gencously skewed to the right(left) under the same condition.

Now for convenience, let p = a— 1 and q = B — 1 and let h{.} be as in (7). The
derivative of h(-) in this case can be reduced to

Wiy) =2 B - )M —y) P M+ylP (1 =M -y) (1 =M +y)*, (9)

which is positive or negative for 0 <y < min(M, 1 — M) depending on whether £ is
larger (smaller) than «. This proves homogeneous skewness for the beta distribution
by noting that M is less (greater) than 1 — M under this condition.

3.4 Lognormal distribution
The standard Lognormal distribution is defined using two parameters p and ¢. Its

density function is given by:

exp(-Ltetzizet? )
fl)={ ~ Em  orx20
0 otherwise.

The mode of this distribution is at M = exp{p — 62). Skewness computations using
this distribution arc tedious, but the distribution can be shown to be homogeneocusly
right-skewed. A typical plot of the skewness function for this distribution is shown in
Figure 2.
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Figure 2: The skewness function y¢(y) for the lognormal distribution

3.5 Weibull Distribution

The standard Weibull distribution is defined using a single parameter ¢. Its density
function is given by:

. c—1 v =
flx) = { exexp{—x®) for x _.0
0 otherwise.

The mode of this distribution is at M = (%‘)% This distribution is not homoge-
neously skewed as per our definition. Figure 3 shows the skewness function for the
Weibull distribution when ¢ varies between 3 and 4. Empirically, we have observed
that the distribution is homogeneously skewed to the right for ¢ < 3.

.4 Comparison with Other Measures of Skewness

In the previous section we have shown that many commonly occurring asymmet-
ric distributions are homogeneously skewed. We also observed that the the proposed
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Figure 3: The skewness function y¢(y) for the Weibull aistribution

measure is in harmony with other measures (in terms of sign, although not necessarily
in terms of its value) for these distribution families. Therefore, it is of natural inter-
est to examine the relationship between this notion of skewness and other common
definitions of skewness in the general framework.

4.1 Comparison with Pearson's Measure of Skewness

To start with, we compare the proposed measure with Pearson’s measure of skewness;
this i3 the only natural compariscn since among ali the popular measures, Pearson's
measure is the only ane which is based on mode of the distribution. Theorem 3 and
the subsequent discussion will establish that the proposed measure is more stringent.

Theorem 38 If a random variable or its disiribution is homogeneously skewed to the
right (left), then its Pearson’s measure of skeumess is necessarily posstive (negative).

Proof:
H—M = r (x — M)f(x)dx (10)
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M 00
- [ x= M)f(x]dx+J (x — M)f(x}dx
M

J—o0

= —ryf(M-—-y}dy +J yf(M +yldx
0 o

=, yye(y)dy. (11}

Now for distributions homogencously skewed to the right (left), v¢(x) > (<) 0, V¥x,
and consequently p 2 (<)M, implying that the distribution is positively (negatively)
skewed as per Pearson's definition. O

It is easy to visualize asymmetric distributions (having positive/negative skew-
ness as per Pearson’s measure} which are not homogeneously skewed. Consider, for
example, a distribution with the density function f(x) baving the quadrangular shapc
as given in Figure 4. The mode of this distribution isat x =M; M —-p =qg-—M
and f{p} > f{q). This distribution is positively skewed as per Pearson's notion of

f(x) ]

PM4q b'4
Figure 4: A positively skewed distribution according to Pearson’s skewness measure

skewness. However, y¢{x) is negative in the range (0, q), but positive for x > q, and
consequently the distribution is not homogeneously skewed.

The example above in conjunction with Theorem 3, shows that the concept of
homogeneous skewness is stronger than that of the Pearson’s skewness.

4.2 Comparison with Other Measures of Skewness

It is not possibie to draw a direct comparison with other measures of skewness, which
are typically based on asymmetry around mean or median. In order to draw a general
comparison we need to consider suitable modifications of the standard measures. We
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therefore modify the standardized third central moment by considering the the third
moment argund the mode.

Theorem 4 For distributions homogeneously skewed to the right (ieft), the skewness
measure based on third moment around mode is also positive (negative).

Proof: Following steps similar to (10) — (11), onc can show that
Ex - M) = | vivduay;

this proves the theorem on similar lines to Theorem 3. D

In other words, the notion of homogencous skewness is more stringent in this
comparison also. The counter-cxample, as outlined in the previous subscction may
also work here to show that there exists distributions having the third moment basced
skewness positive or negative which are not homogencously skewed.

Although our measurc appears to be more stringent than Bowley’s measure in
spirit, a dircct comparison is not possible, cven if one were to consider modified
versions of Bowley's measure by replacing the median by mode in these measures. It
may be tempting to redefine our measure in terms of symmetry around median, i.c.
takc o0

W= J vy x)dx = Jj{f(m +x) -~ f{m — x)}dx.
o

to facilitate such comparison. However, it is easy to see that y*(-) so defined, must
change sign at least once for any distribution, making such a modification not worth
considering. In passing it is worthwhile to recall that the condition that y*{(-} changes
sign exactly once is known to be sufficient condition for the mean, median, mode
inequality /ordering (as proposed by Pearson) to hold good and hence relevant to a
study of skewness (see, c.g., [12]). '

5 Discussion

In this scction, we investigate the applicability of the concept of homogeneous skew-
ness proposed here to distribution functions other than continuous unimodal distri-
butions. In Section 5.1 we consider distributions with a flat modal region and sce
that a minor adjustment in the skewness function (2) is enough to deal with them. In
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Section 5.2 we touch upon discrete distributions to observe that while there is only a
minor challenge from theoretical angle, the conoept of homogeneous skewness is much
less applicable in terms of standard discrete distributions. In this regard, special at-
tention is devoted to the Poisson distribution. Section 5.3 deals with distributions
having a unique antimode,

5.1 Distributions with Flat Modal Regions

f(x)

M, Mz X

Figure 5: Density function of a distribution with flat modal region

It is easy to extend our definition to distributions with a flat modal region instead
of a unique mode (see Figure 5). For these distributions, the density function f{-) is
nbndecreesing on (—00, M), non-increasing on (M;,00) and constant on (M, M}
with f(x) < F(M), ¥x ¢ (M), M;). Then the skewness function (2) may be modified
to:

Ye(x} = (M2 + x) ~ f(M; —x),

and subsequently the measure of homogeneous skewness may be defined as before.

5.2 Discrete Distributions

The concept of homogeneously skewed distributions introduced in this article carries
over mmrally to discrete distributions per se, whose density function with respect to
sa appropriate counting measure, f(-}, also known as the probability mass function,
is assumed to have a peak at M. For such distributions, the skewness function ¥(-}
and the measure T remains unaltered. The only measure difference is in terms of
interpreting the values since, the extreme values =1 are no longer feasible. It is
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possible to take carc of this aspcct by defining the measure for discrete unimodal
distributions as follows:

Definition 5 For a discrete distribution in £ with unique mode M and mass function
(-}, the measure of homogeneous skeuness may be defined as

Te= 3 (M +x) ~ f(M—x)} + (M) x Sign( 3_({M+x) - (M -x)}). (12)
x>0 x>0

Note that the second term in {12) has no impact on the sign of the skewness
measure and is brought in only to ensure that the skewness of a decreasing/increasing
density is 1 or -i. However, the measure will satisfy the other properties proved in
Section 2.2 with or without this additional term.

The other cause of concern is from the point of view of scope since, unlike the
continuous case, the standard discrete distributions are not necessarily homogeneously
skewed.

Consider, for example, the case of a Poisson distribution which is positively skewed
as per most standard measures (although the Pearson’s measure of skewness would
be zero if the mean is integral). However, for s Poisson distribution with mean 1.25
{which bas mode at 1}, f(2) — f(0} < 0, and thus this is not homogeneously skewed
as per our measure. In fact the following theorem characterizes the homogeneous
skewness for the Poisson distribution.

Theorem 5 Consider a Poisson distribution with mean g = |uj+8 with0 <0 < 1.
ﬂenﬂwmedabamwﬁﬁso.chhML&ePoiumdisﬁibuﬁoniahomogmlp
skewed to the right if and only if 0 > £. & is o function of |u|. Also, £ T 0.5 as
[K] T oo.

Proof: The density function of a Poisson distribution with mean p (and mode
M = |u]} is given by

Pepl-p)
f(x) = = X 0,1.,2,...
0 otherwise,

Clearly, to prove homogeneous skewness or otherwise, we only need to prove that
f({lu] +y) — (1] —y) > 0 when y < |n|. In the remainder of the proof, let us
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assume therefore that y € |uj. Then

f(M+y)-f(M-~-vy)
pl*¥ oxp(—p) _ plHY exp(—p)

(] +u ((w =W (13)
(b} =y (luJ Y+ ). (1] + )

_ ulﬂj—gmcp l-'-] (L”J"*‘e}z _

(el - (H(LuJ—k+1)(LuJ+k) 1) (14)

— 2 (T —1) ooy
k=1

Differentiating expression (13) w.r.t. u keeping || and y constant, we sce that f{(M+
y) — f{M —~ y} increases with @ for a fixed {i1]. We also sce that Z{} 1}, y) is always
positive. When 0.5 <8< 1,and 0 <k < |

ulse) = 3 (1) +3)?
L = eI DI +0 2 (¥ I = B+ T B = &

The last two obsecrvations implies that when 0.5 € 8 < 1, expression (14) is always
.non-negative and the Poisson distribution is homogeneously right-skewed, This im-
plication taken together with the first observation impiies that a cutoff & < 0.5 exists
for each value of [y1], above which the Poisson distribution is homogeneously right
skewed, thus proving the first part of the theorem.

In order to prove the second part of the theorem, notice that {n{p) is decreasing
in k for a fixed y. It follows from expression (14} that f(M +y) < f(M —y), for
some integral y in (0, M] if and only if P31 (n) < 1 which is equivalent to f(|p) + 1)
being less than f{{u} —1). Now observe that when 8 = 0.5, s{n) | 1 as {uj = oo;
indeed with any fixed 9 € (0,0.5), W1(u) is a decreasing sequence in [j1] at lesst as
long a8 WP{y) > 1. This concludes the proof of the theorem. a

Since a Binomial distribution with large n and small p can be well approximated
by a Poisson distribution, it is easy to find similar examples of either kind in the case
of Binomial distribution. However, a complete characterization, similar to Theorem 5
seems elusive.
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5.3 Distributions with Unique Antimodes

A distribution with p.d.f. f(-) is said to have a unique antimode M if () is decreasing
(non-increasing) on (a, M) and increasing (non-decreasing) on (M, b} (sce Figure 6).

f(x}

Figure 6: A distribution with a unique a.ntmmdc

Such distributions scldom arise in practice; and the concept of skewness for these
distributions is not clear. However the following modification of the skewness func-
tion (2) is intuitive:

velx} = F(M—x)—f(M+x}, x>0 (15)

With this modification, T may be defined through (-} as before. A possible dis-
tribution family in standardized form is depicted in Figure 7. This family may be
referred to as inverted Triangular distributions, parameterized by slopes S; and S
and the antimode M. In Figure 7a we have a homogeneously skewed distribution to
the right and in Figure\'?b we have a homogencously skewed distribution to the left,
For §; > 52,M < 0.5, or $; < S3,M > 0.5, the distribution is not homogencously
skewed.

The Beta distribution with & and B both less than 1 is one well known distribution
family with unique antimode. It turns out not to be homogeneously skewed although,
the skewness function does not change sign in (0, min{M, 1 —M)). Indecd this aspect
of change of sign of the skewness function at the critical point of support of the
distribution, may require further cxploration, as do a more complete treatment of
skewness of distributions with unique antimode.
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Figure 7: Inverted triangular distributions

6 Summary and Directions for Future Research

In this paper, we proposed a new measurc of skewness for unimodal distributions
based on the asymmetry of the density function around the mode. In the first sce-
tion, we bricfly reviewed the liteyaturc on measurcs of skewness, and prosented some
propertics of such measures. In the sccond section, we formally presented our skew-
ness function (equation (2)) and measure of skewness (equation (3)), and derived
the propertics of this measure. Through Theorem 1, we showed that our measure
lies between —1 and +1 for continuous unimodal distributions, with boundary values
being achicved for increasing and decreasing densities and the measure equals 0 for
symmetric distributions. The measure is shown to be location and scale invariant
in Theorem 2. Based on our skewness function, we have also proposed partial/total
ordering of homogeneously skewed distributions in this section. In Section 3 we show
that our notion of homogeneous skewness covers the Triangular, Beta, Gamma, and
Lognormal distributions, but the Weibull distribution is not always homogeneously
skewed. In Section 4, our measure is compared with other standard measures of
skewness like the Pearson’s skewness measure (Theorem 3) and the third standard-
ized moment about the mode (Theorem 4}, and is found to be stricter than both. In
the previous section, we explored few extensions and modifications to broaden the
applicability of the proposed measurc. However, many standard discrete distributions
do not appear to be homogencously skewed — Theorem 5 shows for example, that
the Poisson distribution is homogencously skewed roughly half the time.

The characterization of homogeneous skewness or lack of it for other asymmetric
distributions, both discretc and continuous, is a direction in which this study can be
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carried forward. Among thc ones we touched upon, this is specially the case with
Binomial and Weibull distributions.

Some common distributions viz. Gamma distributions, Beta distributions, cxhibit
a stronger form of skewncss than homogeneous skewness. This is in the sense that
the skewness functions is not only of the same sign but also increasing (in absolute
value) as shown through (8) and {9). This may be termed as homogencous skewness
of second degrec/order and explored further.
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