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ABSTRACT

The endogenous dynamics of a closed constant retums multi-market economy are examined in which
agents face downward sloping demand. The trigger for growth in this model is a technological change
that warrants costly adjustment in input quantities by agents. in the resulting dynamic game, relative
prices within markets remain constant. Consequently, all own price elasticities are constant. In
markets characterized by lower cost of capital the unique outcome is collusion in which agents do not
incur adjustment cost and there is no adoption of new technology. But in other markets a unique non-
cooperative equilibrium exists in which agents do incur the cost of adopting the new technology. Only
three specifications of adjustment cost are feasible. Output increases along an S-shaped time path with
or without a non-explosive cyclical component.
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1 Introduction

In an earlier article in this journal (Sinha, 1997), I had shown how investment in productivity by
firms in an economy in which products were weak gross substitutes could lead to S-shaped time
paths of output in the case of quadratic adjustment cost and had pointed out that other
specifications of adjustment cost could result in cyclical time paths (p. 8). This paper extends that
model in three ways. One, | relax the assumption of weak gross substitutability. Two, [ explicitly
model cost of capital to highlight the role it plays in the adoption of new technology. And three,
show that only three specifications of adjustment cost are feasible and that the shortest time path
between two levels of output has an S-shape with a cyclical component.

My model is one of endogenous growth cycles. The time paths of output may be cyclical, but
there are no recessions in this model of a closed economy with the dollar gross national product (GNP)
held constant. Endogenous growth is the result of conscious economic choices made by agents. It
occurs due to technological progress involving a shift of the isoquant map such that less input is needed
for any output. Samuelson (1965) had shown that the competitive solution of directing technological
progress to reducing unit cost was not optimal. Early models, therefore, analysed either a planned, ora
competitive economy at the aggregate level, relying on externalities due to investment in education,
rescarch, knowledge, and the like to drive growth (Nordhaus, 1967; Uzawa, 1965; Phelps, 1966).
Following Romer (1986}, recent models exploit Dixit and Stiglitz's (1977) framework of monopolistic
competition in which own price elasticities of firms are identical and constant. These models rely on
either increasing returns disguised in the form of learning-by-doing 4 la Arrow (1962), specialization, or
such other, or an externality due to either education or research to generate growth. Aghion and
Howitt (1998) provide a recent review of this work. '

My model differs from the above in five ways. One, I model a multimarket economy with
asymmetric, monopelistically competitive agents (niompolists for short). Own price elasticities do turn
out to be constant but because of a constraint in equilibrium. Two, I explicitly assume constant retums.
-Three, 1 model the cost of capital and show that growth results from non-cooperation among
monopolists with high cost of capital. Four, I allow agents to enhance productivity in a manner they
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choose—by investing in quality control, value engineering, business process re-engineering, and the
like. And five, I permit households to invest part of their savings into the development of new markets.
Agents in these markets can exist only by helping buyers reduce cost of their current output or utility.

The trigger for growth is a productivity enhancing change in technology that, if adopted, will
result in a different optimal input mix for agents. Adoption is not costless and gives rise to the problem
of inter-temporal substitution. In the resulting dynamic equilibrium, agents in markets with lower cost
of capital collude and do not incur adjustment cost, but agents in other markets do. The resulting
growth is endogenous and is the outcome of competition among monopolistic agents.

Before I describe the general model let me provide a sketch. Consider a closed constant
returns economy with dollar GNP m comprising n identical single product firms facing constant
elasticity demand, each with price p and marginal cost [c =] z, z and gare quantity and price indexes
ofinputs. At ¢ =T amore productive technology becomes feasible. It will reducezto z andpto p,
but is costly to adopt. In the non-cooperative equilibrium firms do reduce zto z by r=7r. Let
@=—3/z[>0]. It turns out that (¢*)" is constant. Thus, z has multipk: roots. Three values of 4
are feasible. For A =2, z has two real roots and for A=4 and 4=4/3, two real and two
complex roots with no real parts. The latter case yields the following time path for p:

_{prexp( = At = TY) + pyrexp{A(t — T)) + pysin(S; + A(t -T)) fort < 7,
p= p otherwise. M

In(1), Ais constant. The resulting time path of output, gf= mt/ p], exhibits the well known S-
shape with a cyclical component superimposed over it.

Economics has a rich tradition of use of discrete-time models that yield complex dynamics
more easily. But, following Flaschel, Franke and Semmler (1994, p. 10), I work in continuous time. it
facilitates mathematical analysis, yiekls new insight into what Frisch (1933) called the “impulse” and
“propagation mechanism” of cycles, and allows me to go beyond his essentially static concept of
equilibrium (steady state or damped oscillation of a pendulum). The S-shaped time path of output is
due to the first two roots and cycles are due to the oscillating roots in (1), each linked to distinct input
bundles. In the next two sections I analyse a particular episode of technological change. Insection4 I
discuss the case when a series of such episodes leads to sustained growth.
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2 DYNAMIC RESTRICTIONS ON PRICES

I consider monopolistically competitive agents—firms and households—in a closed economy
comprising N markets indexed by j(=1,:--,¥) that include service and manufacturing industries
in the service, consumption and capital goods sectors, occupations, and the security markets. |
treat firms and houscholds nearly alike and will point out the differences as and when they arise.

2.1 Market Clearing

At every ¢ there exists a known unique market clearing price vector p = [{p,,"-,p},--, i’}
eR}; n=Xn;]. In addition to the standard assumptions in monopoly theory relating to the
existence of inverse demand (Mas-Collel, Whinston and Grecn, 1995, p. 385), I assume that:
(al) the capital market is perfect, financial markets are complete and there is no arbitrage,

(a2) preferences are homothetic and separable so that preference rankings of goods and services
within market j are independent of the level of goods and services consumed in other markets,
(a3) technology exhibits constant returns, and

- (a4). all agents in a market have access to identical technology.

The first assumption requires (1) divisibility of assets, (2) absence of transaction costs,
taxes and restrictions on borrowings at the constant riskfree rate r, (> 0), and (3) a belief by
investors that they cannot influence the probability distribution of returns on securities.

From (a2), income elasticities are unitary and I can do all analysis with the doliar GNP, m,
held constant. There are n; firms indexed by u(=1,---,n,) in industry j. Firm u sells one
product or service at pf, employs labour and other inputs, pays all profit as dividend which, for
modelling convenience, I assume is in the form of share buybacks, and maximizes present value
using a convex production or service technology. Its marginal cost at ¢ is ¢} and quantity
demanded q;(p,#). Incase u uses part of output as input, ¢(p,f) is the net quantity demanded.

Household » in occupation j supplies one type of labour at p’, consumes goods and
services, receives dividends and maximizes wealth that equals discounted present value of savings
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and investments using convex consumption and investment technologies. Its marginal
consumption expenditure at £ is ¢}, quantity of labour demanded 7(5,7) and wealth £27(5,f).
There are S security markets indexed by i(=1,---,5). In security market / there are n,
securities indexed by v(=1,---,n,). As1 will show shortly, for security v in security market i—
which is the common stock of firm u in industry j—gq, (,¢) is the price at ¢, p; the rate of
return—a random variable, and ¢; the marginal cost that equals 7,. I denote the expected value
of p} by r/[= E{p]}]; r/ is the instantaneous percentage change in the stock price of » and is
assumed to be constant. In a stochastic model, with security prices following a process described
by the geometric Brownian motion as in Merton (1971), r;' would be the constant drift term.
Investors buy securities of old and new firms. Investment in new firms results in entry in new and
established industries. 1 assume that investment in new industries is positive, so that N > 0.
Together with (a3), (a2) allows two-stage budgeting. Firms and houselolds allocate
budget to markets, then buy on price. The GNP share of marketj is b, which may vary over time
due to changes in tastes and technology, formation of new markets, and the like; Bj 1b,=~p5,.
The b, s add up to unity if summed over either the goods and services markets or factor markets.
Entry, changing tastes and technology, and formation of new ixlustries influence the quantity
demanded of firm u over time. Entry in occupation, emergence of new occupations, changing
technology, and the like may influence the quantity of labour demanded of household  over time.
Thus, a¢}(p,1)/0¢=—p;. Own and cross price elasticities of demand of » are &;(p)[=
7} 14BN (B,1)/30) >1) and &l (P)=~(p] /4(POXO](B.1)/op])). Although
cross price clasticities across markets are zero, | will write g} and £} as 47(5,7) and &(p).
For single output agents, (a3) implies lincarly homogeneous technology allowing me to
- wiite ¢jf = zjg ;] as the product of quantity index, z} , and price index, ¢, , ofinputs; zj[= zj(x],
e+, X},e+-x] )] is a function of quantities and ¢ [(=¢,(p,, -, p»**, py)] of prices; x| is the
average quantity of input per unit of output used by agents in market j from market i and p, the
price inmarket i; ¢, /¢, = —¢,. From(a4), ¢; is same across agents in market ;. It is also beyond
their control. In the security market i, ¢, =7,, which is same for all securities. But, I allow
productivity differentials in other markets, that is, z} = z;z} is the reciprocal of productivity. A
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mechanism to account for this is as follows. When u enters market j, it incurs an entry cost equal
to the expected present value of profits (savings for households) for its chosen levels of non-price
parameters such as scale of entry, image, and the like, and draws a productivity parameter ¢
from a lottery with known distribution. Ifluck favours u in the draw, ¢* will be greater than the
mean for the market. Ifnot, #'s unit cost will be above average. The market value of # will adjust
immediately after the draw to reflect its actual relative cost position in market ;.

At t<T the closed, convex, and non-empty production set of firm u is given by
L {(xt X, -2 LY g —i:(x;,---,x;,---,xf)s 0 and (x},---,x), -, xV) 2 0},
where )_‘j =4/ ; (x}-, xf )] is #'s production function and f ; that of an average competitor,
Y/ satisfies the property of free disposal. At ¢ < T, u faces no intertemporal tradeoff and solves:
Maximise .., .., {7} (4;)4;(P.7) ~ Cj(g})}. - 2)
C} is total variable cost; 8C} / 8q} [= c|] is marginal cost. For household u, ¥ is consumption
set; 1 ; and f , are consumption functions for u and its average competitor. Househoid u solves:

Maximise ..., .« _ BV} (@))4] (B~ Ci@))+ Zny s T, PLO] 2D} (3)

The nature of Uj(-) will depend on the risk prcﬁercnoc of u;w;" is the fraction of u's wealth
invested in security v in security market i; ¥, 2.,., ., @, =1. Inthis paper [ do not analyse
the case where p} would be a random variable in a market other than the security markets.
‘ Maximisation of (2)-(3) with respect to ¢ yields the familiar equality of price-cost margin
and the reciprocal of own price elasticity of demand, so that,
(pj —¢;)/ pj=116;(p); (4)
{pja; * (2,0 Cj(g;*) = pjq; * (B, 1)/ &;(D) . )
At ¢, to buy one unit of security v in security market i—which is the share of firm « in
industry j, investors borrow ¢;(5,f) at ¢/[=r,]. They expect it to be worth (1+ p;)q, (5.f) at
the end of the period from which they must return (1+ ¢ )g;(2,¢) to creditors. Their problem is:
Maximise,., E{p](9))g; (1)~ C/q/ (B0} ©
A comparison of (6) and (2)-(3) makes it clear that the price of security v in security market i
traded at 7 plays the role of ¢(p,1),and r{ and r, play the roles of respectively Ef p;" } and ¢
Here 7] is the total expected return comprising dividends in the form of share buybacks as well as

increases or decreases in #'s vaiue due to price and non-price factors. Maximisation yields
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£ (B)=1r}ry —r;)=€5(P). ™
With r/ and r, constant, investors' own price elasticity, ¢;(p) , isconstant. Since oe}(5)/ o/ [=
—r, Kr} -r,)*] <0, a smaller €}(5) in (7) indicates a larger 7. From homogeneity of demand,
@D oW 0 0 0 = 0 g
U I S S S B [

0 0 e () =1) e gr: - 0 - 0 l

: . : . : . : . . . : =11 (8
0 0 g:jl (g;':-_l) = 0 = 0 1

0 0 0 0 @) ey |

0 aea 0 [ 0 . 0 e 8;-&'; _aw (8;:‘{_1)— -1- .

The existence of a (locally) unique market clearing price vector implies that the rank of the
Jacobian of demand in market /, that is, the rank ofthe #, x n; block corresponding to marketjin
the nxn matrix of terms on the left hand side of (8), is (n, — 1) (Dierker, 1972).

2.2 Investment in Productivity

At ¢=T firms in industry j become aware of a new productivity enhancing technology. If fully
adopted, it will reduce «'s input quantity index zj{=Z; at < T] to z,{< Z;] and bring down unit
cost in which case the new production set for ¥ =1,---,n, would be:

¥/ ={(=x},smxfeee,=xt gl g = ) (%)X x) ) S 0 and (x), -, x), o , xY) 20}
where E'(x},...,x;,,...,xf)=¢;]} (x},---,x},---,xf) and, for all (x},---,xj,---,xf)>0,
}‘:.(xj,---, ;,---,xf)>j_'j (x’-,---,x},---,xf).

Adoption i3 costly. The advent of new technology, thereforz, may result in a one-time
drop in the value of firms in industryj at 1 = T . Define & (p)= -3 and ¢’ =£/z". During dt
at t, ucan change zj by -z} ifit spends a fraction £ (P} (p)-1)&/ (£ / z;) of gross profiton
productivity; ] =0 if £; =0 and 6] >0 otherwise, so that £ >0. Else rivals would gain
market share without incurring any cost. The term &;(p)(¢;(p)—1) will simplify algebra. In
general, £;(p) need not be constant. It may change due to changes in buyers' tastes or if »
repositions itself in the market. The latter exercise nearly amounts to new entry and may be about
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as expensive. In this paper I do not consider these cases. But I do allow the possibility of the
new technology influencing &;(p) through its impact on relative costs and prices in market /.

The state variable is p}; §7(p) is control. For u, £/(p)e 5} is a pure closed loop
strategy; E7, its strategy space, is Lipschitz continuous, that is, =} = {£ PIVE (D) eR;
6;(P) is continuous in p and |£(P)-Li(W)Is Al| p-|| for some 4>0, for all pye
Rx--xR}. @] 20, 80; /9] >0 and the Legendre condition requires that 86 /9£)> > 0.

Like u, v can also change z;. Since £);(p)=0 if i # j, I limit nry analysis to industry /.
Firm u takes as given &*v=L--,n, v£u and J;, the rate at which investors discount a
constant cash flow with risk characteristics similar to those of u~&; is a component of s total
cost of capital, 7/'. It chooses ¢}(p,#) and £; () to maximize present value of profits. Ignoring
fixed cost and depreciation, ¥/(p,?), the twice continuously differentiable optimal value of u's
objective functional at /[> T'] is given by:

Vi€ = Max  [lexp{-6](s-0}{p] ()} (Bo1)
-C@)HI-& (BXEB) -DO}(E I Z)ds  (9)

subject to p = ¥} (5,£}) and pi(T') = ply.
The argument of V;'(5,¢) in (9) indicates that it is to be maximized with respect to £/, although it
- depends on & and the strategy n,-tuple (£,(p), -, &' () over Rx---xR of competitors.

2.3 The Nature of Adjustment Costs

A trivial solution of (9) with £ =0 forall u, j, is possible. It represents the unique equilibrium
in cases of perfect competition and collusion. Perfect competitors have no resources to invest in
productivity and firms maximizing joint profit no incentive. Nontrivial solutions may exist in the
case of non-cooperation. In repeated price games non-cooperation is known to be optimal for
large discount rates (Friedman, 1971). Thus, " may determine @, in equilibrium. Ifu investstoo
little in productivity, investors will increase the discount rate. The fall in value will signal  that it
must increase investment in productivity. Since I seek a non-trivial solution, I assume that

& #0. During dr at t, uinvests [jd{=(p}q; *(B,1)/ £ )&’ (s ~DE(@! (*))dk 0] in productivity.
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Firm % can either borrow, or use own funds, or raise new equity. The mode of financing
will not affect its value (Modigliani and Miller, 1958). Suppose it uses own funds. Dividends will
go down by I'd. But shareholders do not care since they can sell that amount of 's shares.

Now consider the owners of #'s shares trading as security v in security market i. They
take as given (&%, £"*) and sell 's shares valued at [jdt for a rate of return of p; E{p}=r].
As in (4), their problem is:

Maximise,,,, E{L7(@ * (7} X! ~1,)db}.
At the optimal,
&L=~} 1 X0 1 ) =016 1600} 1) =1} I ). (10)

Equation (10) represents the productivity implication of equilibrium in the capital markets.
For given (r/*,+--r""*), a Nash equilibrium of (9) is a strategy n,-tuple (5*,---,&"*) such that,
for u=1,---, n,,

i. &res;, and

R U E AR Y Nl B )
Proposition I: In the unique Nash equilibrium of the game in (9), for 12T and for all u, v, j,
@(& /2") takes the form of [07 (£} /z)" =16 (¢})" where §[>0} and A;[> 1] are constant;
(@) =Max{Q,(4; ~€} (X -D)L +¢)s](] ~ D63 (11
PP =p/p; & =0;and the time path of 2 €Y/, u=1,---, n,, is given by
£12][= £12]]= ~g,* = ~g}* = —9}* = Min{ - ¢},--,—p}",0}.. (12)
Proof. See Appendix.

Thus, even monopolists cannot change prices at will. If competitors of u reduce price and
it fails to reduce p at the same rate, it loses market share and its value goes down. The rate of

change of prices plays the same role for monopolists that price does for perfect competitors.
3 NON-EXPLOSIVE DYNAMICS

Proposition 1 does not rule out the trivial solution. I now derive the conditions under which a

unique non-cooperation equilibrium exists and agents invest in productivity.
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3.1 Cost of Capital and the Adoption of New Technology

The production set requiring (~x;,-+,~x,,¢;) € ¥;" imposes restrictions on the values of 4’ .
Proposition 2: In (11), A; equals either 4/3, or 2, or 4.
Proof: See Appendix.

Several studies in the past have relied on a quadratic specification of adjustment costs
(Hamermesh and Pfann, 1996). The specification resulting from Proposition 2 is more general
and has two implications. One, the larger u's gross profit, the more it must spend for any
percentage reduction in z;. And two, to double the rate of growth of productivity # must more
than double the investment in productivity.

From (12) A/ =247 =4, since @] =g;. Since, d¢ /84, <0, smaller values of A, are
associated with higher rates of growth in productivity. This is intuitive since a higher A, implies a
higher adjustment cost for the same value of @]. Thus, among the feasible values of A, the
smallest one will yield the shortest time path of Z} between 2 and z; and will prevail.
Corollary I: Let all values of A, be available. Firms in industry j will not adopt the new

 technology if r}' < (4/3)r, forallu. If r/ > (4/3)r; forsomeu, r; > (4/3)r, forallu, 2, =4/3,
* and adjustment cost's share of gross profit [= £}(&! — )0} (p,*)"] never exceeds 3/7.

The collusive outcome prevails if the cost of capital of every firm in the industry is less
than (4/3)r,. In such an industry entry by a firm with r; > (4/3)r, may facilitate adoption of
new technology. The following results apply if the value of A, in the industry is constrained.
Corollary 2: Let 4, be either 2 or 4. Firms in industry j do not adopt new technology if T <2r,
for all u. If r} >2r, forsome u, r >2r, forallu, 4, =2, and £}(} ~ DB (p,*)" <1/3.
Corollary 3. Let A; =4. Firms in industry do not adopt the new technology if r; < 4r, forall

u. If rj >4r, forsomeu, r/ >4r, forallu, and £}(¢) —1)9}‘(%‘)’1‘ <1/5,
3.2 Feasible Time Paths

Let A, be areal positive root of {(2, —€/ (4, ~D)/(4, +€))&; (£, ~1)8 )" . For A, = 4/3, one could
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look at A, as a real positive root of {[(4, —€} (4, ~D)/(4, +€))& (¢} DG T}, For 4, =2:

= 1T A =D)+ Zexpl At =T)) for 1< 77, (13)
7|2} otherwise.

For A,=4/3 and 4, =4, Zj has two real and two complex roots with no real part and
S Zrexp( — A, (¢ —T)) + 25, explA,( =T + zj5'si( S r + A, (1 =T for t <7,
7 |z} otherwise.

(L)
Boundary conditions and the requirement in (11) that the time path of Z; be the shortest
between 2 and Z; for given parameters provide the values of the constants zj,, and zj,; in(13)
and zjyy, Ziy, 2}y ' and 8 in(14). Inbothcases, 7, =T + (1/24,)In(z},, / 2},;) . For 2, =2,
Znr ={2f +[(2};)" ~(z/)’]"}/2, and
o = {2y ~1(2) = (2)'17}/2.
For 4, =4/3 and 4, =4, it can be shown that &, =x/2;
Dy ={[Z)y + £ LAV 2+ (2 + £ KAV 14=(2] + (2 -2 (A))/2)'17%}/2,
2oy = {2 + 3 KAV 2= {(2y + E5 KAV 14— (2] + (25 = 25 {A,))/ 2)'17}/2,, and
2y = {2y =55 (A Y}2.

Figure 1(a) shows the piots of each component of 2 along with the time path of their sum
for 2, =2. The time paths extend beyond ¢=1,. The horizortal line at Z; in the figure
represents the transformation frontier. The time path of the sum of the components declines,
touches the transformation frontier tangentially at ¢ =r . and then turns upward.

Insert Figure 1{a) about here

I can write zj;;'sin(6,; + A(t-T)) in (14) as {z);; (At - T)+ 2}, r cos(A(r-T))} for
A;=4/3 and A, =4. Figure 1(b) shows plots of the four components of z; and their sum.
Again the time path of the sum declines, touches the transformation frontier tangentially and tumns
upward. This will not happen for any value of A, other than the three in Proposition 2.

Insert Figure 1(b) about here
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3.3 Stability

The process leading to equilibrium in Proposition 1 also guarantees its local asymptotic stability.
Proposition 3. The trajectory of the system P;/p] =@} u=1,-,n;j=1,--,N,convergesto
P*s{p*,....p% P %}

Proof: See Appendix.

4 DISCUSSION AND IMPLICATIONS
The previous two sections investigated one episode of technological change. In this section I
consider an economy undergoing a series of such changes. I describe time paths of variables,
discuss their correspondence with stylized facts, provide an interpretation of the mechanism of
growth and list factors that help the economy sustain growth in the long run.

4.1 Time Paths of Prices, Wages and Output

Let a, bethcshareofhlputsﬁ'ommarkctihlﬂmprioeofagentshnmkctj; a,=0 and
2, a; <1. Matrix [a] below is nonsingular and D,'s, ¢,'sand p,'s arc given by:

R L N I I Tl
G G e A | @ i=14, 1= Dm0
By oo aNJ wee Ay ¢)~ L¢N ¢j“¢N*

A price change in market j does not directly influence the demand facing agents in market i but
may affect their cost and, therefore, price and quantity demanded since [&] = [ —a]'[p*].
Figure 2(a) shows time paths of P', P, and P for A, =2. P[=p] is price index and
P/[=p;/p} and P[= p,/p] are prices relative to P; P/P = ~P{=-2b,0,, the sum being
taken over the goods and the services markets alone]. The figure also shows time paths of W,
#,, and W for a full employment economy undergoing sustained growth in per capita output with
wage share of GNP constant which requires that P/P <0 and W/W >0, Wi =w/P],
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W[=w,/F), and W[=w/P] are wages relative to P; W) is the wage level of household u in
occupation j, w, is that in occupation j and w is the wage index. Let the Greek letter v("nu"
denote growth rate of population; v > 0. Output, m/P, growsat —P/P. Inan economy with
growing per capita output —P/ P —v >0 . If the wage share of GNP is constant, employment will
grow at —w/w. If it is also a full employment economy then -w/w=v. Therefore,
W |W[=vw/w—P/P=-v-P/P]>0 asshown in Figure 2. Figure 2(b) shows these time paths
for A, =4/3 and A, = 4. The model, however, is capable of generating more complex dynamics
than the nearly synchronous time paths shown in these figures.

Insert Figure 2(a) about here

Insert Figure 2(b) about here

Figure 3(a) shows time paths of ¢}, ¢}, ¢;, ¢, and g for A, =2. Outputs of firms and
industries exhibit periods of growth, maturity and decline characteristic of the product life cycle
(PLC-) stages; ¢;/q) =—5+@, and §,/q,=—f,+@,. Both §; and f, are positive in the
figure which they will be in the long term since the output of a firm or an industry can never be
bigger than that of the economy. The time path of ¢ is non-decreasing since ¢/4[=®}20. For
A;=4/3 and A, = 4, the time paths in Figure 3(b) have an additional cyclical component. |

Since prices and output incorporate influences of productivity growth in several markets,
the time paths in Figure 2 and Figure 3 will exhibit cycles so long as 4, # 2 in some markets.

Insert Figure 3(a) about here

Insert Figure 3(b) about here
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4.2 Stylised Facts and the Evolution of Prices, Wages, Productivity and Output

Kydland and Prescott (1990) show that, in the U.S. during 1954-89, the price level has displayed
& counter-cyclical pattern. Fiorito and Kollintzas (1994) report similar findings for the G7
countries during 1960-1989. Labour productivity is widely believed to be pro-cyclical. But
Fiorito and Kollintzas find real wages procyclical in some countries and countercyclical in others,

Since there is no recession in our model, the pro- or counter- cyclicality of variables must
be judged in relation to the rate of growth of output. Real prices in Figure 2(b) are
countercyclical since ¢/¢ =—P/P[= ®]. Labour productivity is procyclical since & is a linear
increasing combination of the rates of growth of productivity in different markets. In Figure 2(b)
realwagesareprocyciicalforthesimplcreasonthattheﬁgurehasbeendrawnforacbsedﬁ:]l
employment economy undergoing sustained growth in per capita output with wage share of GNP
constant,

A number of firm and industry level studies have documented S-shaped time paths of
output under the name of "diffusion-" or the "PLC-" curve (Gort and Klepber, 1982),
explanations for which often rely on an exogenous limit to the size of the market coupled with
.either heterogeneity across adopters, or strategic interaction among them giving rise to
heterogencity of the adoption decision over time. Support for the s-dmwd time path for
economies comes from Cho (1994) who reports a "humped" pattern of growth of output in Japan,
UK., and U.S. over the past 100 years. He attributes it to the convergence hypothesis of
Baumol, Blackman, and Wolff (1991).

Most economists studying aggregate level variables have generally focused their attention
en the cyclicality and co-movement of price, wages, employment, productivity and output,
explanations for which usually rely on either exogenous monetary shocks or random productivity
shocks on competitive allocation often under rational expectations (Lucas, 1975; Long and
Plosser, 1983), although there has been a renewed interest in the role of nominal rigidities due to
menu costs, coordination failures, long term contracts, and the like {Mankiw, 1985; Blanchard and
Kiyotaki, 1987).
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4.3 The Mechanism of Growth

The mechanism of growth here is different. The Legendre cordition for maximum results
in multiple roots to «'s solution to its optimisation problem. The requirement that the time paths
lie within the production set for all ¢ limits the number of roots to either two or four. Two roots
result in S-shaped time paths, to which four roots add two complex roots with no real parts.

Consider an example for 4, =2 . The production technology of uis g = x,"x,"™ . Prices
of x, and x, are respectively p,[=$200} and p,[=$50). The marginal cost of « is [¢ =]
(p/ & (p, (1-a))™®. At t<T, a=0.7,s0 that c = $243.06 . Super- and sub- scripts here do
not indicate agents or markets. Table | provides these numbers at a glance and Figure 4(a), which
is not to scale, shows 's budgeting problem in the x-plane. Till £ < T, its optimal allocation is
given by point 1 on isoquant I, for which ¢ =1;x,,, =0.851, and x, ., =1.458.

Insert Table 1 about here

Insert Figure 4(a) about here

Insert Figure 4(b) about here

At =T, anew technology becomes available for which & = 0.6. If fully adopted, it will
reduce u's marginal cost to about $225.16. This technology is represented by isoquant If which is
tangent to the budget line at point 2 for which x, ,, =0.68 and x, ,, =1.801. Thus v would like
to reduce x, and increase x, until it reaches 2. If changing input levels is costless, u will adjust
them instantaneously. Adjustment cost limits the rate of substitution. Technological progress
here results from substitution opportunities and its rate is determined by adjustment costs relating

to the substitution of one set of inputs by another.
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‘The model transforms the problem from x-plane to z-plane. In the case of (N —1) inputs,
the transformation will be from (N —1)-dimensional x-space to two-dimensional z-plane in the
case of two roots and to four-dimensional z-space in the case of four roots. In Figure 4(b) the
transformation is such that the new technology is given by g = Kz,"*z,"? where z, and z, are
input bundles with identical prices. Points 1 and 2 in Figure 4(a) correspond to points | and 2 in
Figure 4(b). In the z-plane # moves along 1-2, at every point of which z, and z, represent a
partition of #’s inputs such that u can reduce z, by some amount, increase z, by a smaller mount,
and produce the same output. In equilibrium, z, goes up and z, down at the same rate until they
are equal. Asaresult, z[= z, + z,] monotonically goes down to reach z[= 2z,/’z,'*] at = ,at
which point substitution stops. Although the values of x,,, and x,,, are different,
Z 46 = Z306 = 2/2 . To obtain numerical values I normalize prices of z, and z, to $243.06 so that
=20, +2,5,]=1, and 2[=2z ., +2,,,]=225.16/243.06=0.926. Then, z,,, = 0.688[=
(Z+(E@2-2)2)12), 2,0, = 0312[= (Z~(F7 ~ 2)"*)/2), 2,46 = 2,45 = 0463 ,and K =2.159.

In a physical explanation of Figure 4(a) and Figure 4(b) x, and x, may be two types of
labour—the former trained in manufacturing and the latter in quality control (QC). QC
technology is underdeveloped at £ < T, but an advanced version becomes available at £=T .
- Then, z, and z, are quantities of identically priced labour composites, the former comprising
more manufacturing and the latter more QC labour; g = Kz"?z,"*. If u increases z, , there will be
fewer goods returned and less reworking needed, so that, less of z, will be required. But that
requires expenditure on hiring and firing, training and equipment. Additional units of " z,
progressively save less of z,. The optimal strategy for u is to move from 1 in Figure 4(b) along
the isoquant to 2 where 2z, =z,. For 4, =4/3 and A, =4, the oscillating roots may be input
bundles agents use to periodically accelerate the declining rate of growth of préductiviiy. For
instance, project teams made of manufacturing and QC workers may identify and implement
projects to accomplish targeted substitution cfinputs. The rate of growth of productivity will rise
as new projects begin and fall as they near completion. Then another project will be taken up,
thus propagating the cycle. After reaching the final target members of the project team revert
back to regular assignments. |
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4.4 Sustained Growsth

Ever since Solow (1957), we have known that increases in labour and capital were insufficient to
explain the.obéeﬁed sustained rates of growth of output in the long run in many economies. In
hismbde.l, in the long run or the steady state, per capita output and capital stock grew at a
uniform rate equal to an exogenous rate of growth of total factor productivity. In recent years
economists have analysed mechanisms that generate such growth endogenously. This happensin
Romer (1986), for instance, because of increasing returns to specialization.

- Two factors guarantee sustained growth in our model: one, ¢,*20 for all j in the
presence of rivals; and two, since N >0, @,*>0 for some j for all 7 due to non-cooperation.
Growth in Romer (1986) is aiso driven by an increase in the number of intermediate goods. But
he refies on a production function with increasing returns to number of inputs, so that a new
intermediate good always mcreasw economy's output. In our model part of economy’s savings is
invested in projects that attempt to form new markets. Only a few will succeed. These will be
ones that help non-cooperative buyers in other markets reduce cost. Thus are born new markets
and new technologies that propel output upward. The adoption of a new technology will end in
finite time. But newer technologies will then be developed and the process will be repeated.

The QC interpretation of the process of adoption described earlier is not the only one
possible. Emergence of new media such as internet may offer firms opportunity for increasing
advertising and promotion expenditure to build brand and image and lower unit distribution cost
since retailers are willing to stock better known brands for a lower commission. Availability of
more productive but expensive machinery similarly reduces unit cost. Substitution opportunities
across inputs that reduce unit cost but are costly to implement are the essence of increased output
in this model. A continuous flow of such opportunities allows an economy to sustain growth.

Policies to encourage investment in the formation of new markets may help growth, but
incentives to agents for accelerating productivity growth may have an unintended effect. Potential
output of u is determined by z; and ¢} influences speed of adoption of new technology; both are
beyond control. Governments often use & as lever by subsidising investment in productivity.
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Large firms also encourage cost reduction by suppliers. Such policies may help marginal firms
survive technological change, but may be dysfunctional if used for accelerating growth. There are
diminishing returns to investment in productivity. For A, equalto 4,2, and 4/3, u must increase
investment in productivity respectively (2 =] 16, 4, and (approximately) 2.52 times to double
the rate of growth. But that may reduce funds for the formation of new markets.

5 CONCLUSION

This paper has reported five new results. One, & closed constant returns economy with
monopolistic agents exhibits endogenous dynamics. Two, the role price plays in competitive
equilibrium is played by the rate of movement of prices in monopolistic equilibrium. Ifrivals ofan
agent cut price, and it fails to reduce price at the same rate, it loses market share and value.
Three, growth results from competition among monopolists with high cost of capital who alone
have the resources and the incentive to incur adjustment cost. Neither perfect competition nor
collusion results in growth. Four, adjustment costs take one of three forms. The resulting time
path of output has an S-shape with or without a cyclical component. And five, if all adjustment
technologies are feasible, the shortest time path between two levels of output is cyclical. It results
in the highest rate of growth of productivity and the quickest adoption of new technology.
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Appendix
Proof of Proposition 1

The n, Hamilton-Jacobi-Beliman equations satisfied by Vi(p:t),u=1,-,n, are:
&V (B.0-V (Dt) = ﬁ%ig ﬂ{(P;q; (B.0)—C; (@)1 ~£;(B)e; (P)-NE[ (& / 2)))
| WA BOFPEN+ S VBB EDIIE) (A
subject to 7} =¥ (p,£}) and p}(T) = Pjr»
where V' =8V} /&, V, =8V} lop;, V, =0V} /dp;; v # u,and I is the multiplier associated with
the constraint &7 2 0. Competitors respond to changes in prices, not quantities. Maximisation of
(A1) with respect to gj , therefore, involves no intertemporal tradeoff, yielding (5)-(6) as before.
Since pl =g 256} (P) &) (P)—1), the state equation becomes p; = p;(7;(P)-9,—&;(P)! z}),
where 77} (p)=d(&}(p)/ &/ (p)~1)/dt . Substituting into (Al):
SV ()= (1) = Max{(pig] * ()& X1-£5(5] =16
VBN, &L 1 2P+ S VBN, ~ =& )P+ TIEY  (A2)

subject to p} (T) = p};.

In{A2) I have ignored the argume;lts for #{(P), €;(P) and &;(&] / z}) to avoid clutter.
Maximising it I get:
-piq; *(P.1Xe; 106 189]) ! z; -V, ' p; / z; =0; (A3)
{£;20;and
rié&=0.
Writing @' for 06} /0¢], the solution for (A3) for u=1,.--,n, is:
V(B0 =6 pig; *(B.OA-y) )ty pig; (B &1y s (Ad)
where y7 =1 if £ =0 and 7} =0 otherwise; y; takes care of the value of V' (5,f) at £ =0. I
seek solutions with &} #0. Define @] =—-p;/p). From(Ad), V'(p,)=-FV/(p,f) and
V(B0 0] + 2.V, (BB = {(g] - DD] + X, 6,;PIW/(B.1) (A3)
Let {(¢] -D)P} + X, £;P]} = p; . Substituting into (A2), and after some algebra I get:
(8] + B} — p})Piq; *(B,0)6] ' = piq; *(B.1){1 - £ (&, -DO} &}, (A6)
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In(A6) (87 + B/ ~ p]) equals ' *, the total (expected) rate of return to investors due to
cash flow and capital loss or gain due to changes in non-price influences on demand and price
changes by u and competitors;  takes r;'* as given. Thus, I can rewrite (A6) as
e ={1-gl (i -} £ (A7)
Differentiating (A7) with respect to ' * and writing ;" for 66} '/op] 1 get
G '+r/ >0 (0] &) =—(s] -1)O (B} /0r)),
which, after some algebra, yields:

~r/*0160))op; I or! =6/ O {((e; -1}/ r;*)+O] O] ). (A8B)
In capital market equilibrium, the left side of (A8) equals e;. From (10), (A7) and (A8):
e; =(0]10)){6] & (e] -1) /(1 - Oc (s, -1))+O;" &'} (A9)

This is an ordinary differential equation. To solve it I substitute &, = 9}'({0}')"" where
6/1>0] and A][>1] are constant. After some algebra, I get equation (11) of the text:
@) = {4 (4 - +eDes s -8, (A10)

Differentiating (A10) I get 0] /Ge; < 0; and since de! /0rf <0, have dp;/or' >0.
Suppose @, * = Max(@}, --,;’) and consider 4 such that @} > g, *. Ifinvestors increase v
will go down, forcing u to increase @). If /' goes down, V' will go up since, from (A6),
W) 1ar =~pigs (BN~ 5 (s} ~DB) I Ve +(65 ~1)8; (@ 18 /1! 1 <0,
and « has no reason to change @;. If ¢,* = Max(p;,---,@,") and ¢} <@, *, V" will decline as
investors sell, r} will increase and ¢ willgo upto @, *. Thus, ¢)*=}* = Max(¢!,--,07).
Since ¢, is same for all firms in industry j, relative costs do not change, so that, s;' =g/ =0,
@/ =@/ =@,,and p} =0 foralt u=1,---,n,, or, in the matrix form, with [S] as null vector,
[e-1][@]=(2]. (ALI)

The set of soiutions to (A1) is the null space of [£ —I] which, from (5) comprises the unit
vector and any of its multiples. Thus, with @, as a number, the complete set of solutions for

(All)is
1

[@}=2,1]. | [
1
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Proof of Proposition 2

For any integer A, (A10) has A roots given by

P = A/ {cos(2kr / A]) +isin(2kz | A])},

where k =0,---,(1’ ~1); and A} is a real root of {4} —€/(A' ~D}/{( +€)e' (&' -1} . Let
v("upsilon™) = {cos(2kn/A’)+isin(ka/A})}[=1"4] for k=1. The A" values of 1"¥[=1,
v,0%,++, 0" '] form the vertices of a regular polygon of A" sides inscribed in a unit circle with
one vertex at 1 (Figure 5). Each vertex ofa polygonis a 4; throot ofunity. For A = 2,1 have
two vertices with values 1 and -1 and no complex roots. For A} =4, | have four vertices with
values 1,i,—1 and -/ ; real parts of both complex roots are zero. For no integer value of A; other
than 2 and 4 will the real parts of complex roots of (A10) be non-negative. Extension of the
argument to rational values yields one more feasible value of A/[= 4/3] in which case there are
four roots—two real and two complex with real parts of the complex roots zero. The proofcan

be extended to irrational values of A; by approximating them by rational values and taking limit.

Insert Figure 5 about here

Proof of Proposition 3

The question of stability trivially does not arise if ¢/ (r/)[= &(P)/ 2;]=0 forallu,j. Iassume
that @} #0 for some u, j, and define L(p)= X, X (@] ~@)*)’/2; L(p)>0 if p# p* and
L(p)=0 ifand only if p= p*. Differentiating at p+ p*:

(5=, T.(@! -0} 00} 1 ar}).

From Proposition 1, @)*=Max(g},::-,¢;’) and V;(@))<V;(]*). If ¢ #¢!* then
@, <@} *, in which case investors will sell #'s shares, its value will fall and 7; will go up so that
7/ >0. Since g} /ar’ >0, L(p)<0. |
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Figure 2(a): Time paths of real prices and wages for A =2
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Figure 2(b): Time paths of real prices and wages for A =4 and A=4/3



Figure 3(a): Time paths of output for 4 =2



Figure 3(b): Time paths of output for A =4 and 1 =4/3
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Figure 5: Roots of unity




0ld technology, New technology,
a=07 a=056
t<T t=T I=r
x-plane
p, =$200; p, =$50
gl=x"x,""] 1.000 1.000
c[=(p,/a)*(p, (1 -a)) "] $243.060 $225.160
x; 0.851 0.680
X, 1.458 1.801
Z-plane
Price of z, =price of z, = $243.06
K =2.159; 7 =1; z[=225.16/243.06] = 0.926
gl= Kz'*z,"?] 1.000 1.000
z[=z, +2z,] 1.000 0.926
‘z[=(z+(z* - 2))"")12] 0.688 0.463
z,[=(z— (2" - 28)"*)/2] 0.312 0.463

Table 1: A numerical illustration of technological change with 4 =2 shown in Figure 4




