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Abstract

A simple model of dynamic brand choice that takes into account the uncertainty
faced by the consumer and the consequent informstion value associated with choice
is developed in this paper. The model is developed using the Neumann-Morgenstern
expected utility framework. The consumer, on each occasion, chooses from the brands
available so as to maximize his expected utility over a finite horizon based on prefer-
ences that are dynamically updated with consumption experience. The dependence of
current choice on past choices is hypothesized as being due to learning effects. Brands
are allowed to vary in their ability to influence long term preferences with consumption
experience. The dynamic model is estimated on scanner panel data using the condi-
tional choice probability (CCP) estimation procedure, proposed by Hotz and Miller
{1993], that is computationally simple compared to the extant methods of estimating
dynamic models. Results support the hypothesis that the consumer is not perfectly
informed and is forward looking. Models that explicitly take such effects into account
fit the data better than reduced form approaches.

KEY WORDS: Dynamic Choice; Quality Perceptions; CCP Estimator; Consumer
Learning; Ezpected Utility; Risk-Aversion; Valuation Function



1 INTRODUCTION

Choice models in the marketing literature have mostly been based on the assumption that
consumers are perfectly informed about the attributes of the brands in the product category
{Guadagni and Little [1983]; Kamakura and Russell [1989]; Gonul and Srinivasan [1995]).
The consumer’s intrinsic preferences for the alternatives in the choice set are assumed to be
static and the choice on each occasion is made based on these preferences and the state of
the marketing mix variables. Utility specifications follow the compensatory multi-attribute
" model where the intrinsic utility that can be derived from each brand and the marketing mix
variables such as price, display etc. are additively represented for a representative consumer

up to a vector of unknown parameters that are to be estimated.

Apart from brand specific intrinsic preferences and marketing mix variables, researchers
typically include a loyalty term (Guadagni and Little [1983]) in the consumer’s utility func-
tion and thus incorporate dynamics in the choice process. The Guadagni and Little [1983] loy-
alty measure is constructed from the consumer’s choice history using an exponential weight-
ing scheme with choices in the recent past being given more importance relative to those
in the distant past. Loyalty variables are known to have significant coefficients and provide
stability to the model. It is therefore not surprising that loyalty is always included in brand
choice models and researchers have been motivated to develop other operationalizations of
loyalty. Krishnamurthi and Raj {1988}, for example, operationalize loyalty as simply the
share of past purchases for each alternative. The above measures explain variation in choice
behavior by capturing both household heterogeneity and purchase to purchase preference
updations. Fader and Lattin [1993] develop a measure that disentangles the two effects of
heterogeneity and non-stationarity. Their loyalty measure is derived from a non-stationary

Dirichlet multinomial choice model.



These measures are constructed such that the consumer’s intrinsic preference for a brand
increases each time the brand is chosen. Usnally, these measures are not brand specific. The
updating of preferences implied by these loyalty measures is simplistic. First, patterns of
evolution of preferences are assumed that may not hold in all markets for all consumers.
In markets for frequently bought consumer goods that are characterized by frequent new
product introductions and re-positioning, strong learning effects driven by uncertain quality
perceptions could exist and these effects could vary across brands. Hence, choice behavior
could radically change with consumption experiences of alternatives that the consumer is
not fully informed about. Such effects could be particularly significant for experiential goods
whose attributes become clear upon consumption. Second and more importantly, preference
updation implies that the consumer is not sure about his evaluation of the alternatives before
the congsumption experience and is making his choice in an uncertain environment. Choice,
made in an uncertain environment, typically leads to rewards in the form of information
that would be useful in future periods over and above the utility derived from immediate
consumption. The consumer would have to be myopic if he were to make his choice to
maximize the current period utility while operating in an uncertain environment,. Consumers,
in uninformed states, have an extra incentive (over and above immediate inducements such
as price promotions ) to switch in the form of better information for future choice situations;
and not incorporating this information factor would lead to biased estimates of marketing
mix variables. In uncertain environments, it would be more appropriate to assume that
consumers with imperfect information would make choices on each occasion to maximize an

objective function that comprises of current utility and the utility that would be derived in

the future.

In this paper, a structural choice model] that would be applicable for low involvement

products is derived from a learning framework . The objectives of this study are two fold;



first, to build a structural model of consumer choice that takes into account the implications
of imperfect information; and second, to formulate the model such that it is easily estimable

without compromising these implications.

The basic premise here is that consumers are operating with imperfect information. We
assume that oonsurﬁers are rigk averse and that they are partially informed about each
alternative. The consumer’s evaluation of each brand is based on his information state
which includes the number of past consumption experiences with each of the alternatives.
Each time he samples, the consumer gains information. In such a situation, the consumer
can be expected to take into account the future value of current choices. Sampling of an
alternative that the consumer is not perfectly informed about entails a cost of experimenting
which reduces current expected utility but leads to a reward in the form of resolution of
uncertainty thereby increasing future expected utility from this alternative. Hence. the
consurner is assumed to maximize a value function which has two components; utility in the
current period and the utility expected in the future. Consequent to the gain in information
from each consumption experience the consumer has an updated intrinsic preference and a
reduced cost of experimenting. The first objective of building a model of consumer choice
that takes into account the implications of imperfect information is thus addressed by 1)
modeling the consumer as an expected utility maximizer and 2) incorporating the forward
looking nature of consumers in such situations into the model by allowing the objective

function to have current and future utility components.

- The traditional approach to modeling choice under uncertainty is to specify prior dis-
tributions that get modified with consumption experiences into posteriors. The consumer's
choice would be such that he maximizes utility given his expectation of the attributes and
the risk associated with the variance of the attributes. In such a formulation, the consumer’s

perceptions are serially correlated and unobserved. These have to be integrated out to ar-



rive at choice probabilities and the order of integration can be high; significantly increasing
computational costs. A structural model that allows for learning using Bayesian updating
schemes and is characterized by such computational complexity has been proposed by Er-
dem and Keane {1996]. Their estimation methodology is based on approximations to solve
the dynamic discrete choice problem using simulation and interpolation following Keane and
Wolpin [1994]. Overcoming this problem of computational complexity is the second objective
in this paper. This is achieved by considering the implications of imperfect information; the
cost of experimenting that is incurred in the current period and the reward that is realized
in the future consequent to current sampling. Thus, we avoid constructing choice proba-
bilities in terms of unobserved variables that have to be integrated out. Another element
of dynamic discrete choice problems that contribute to computational costs is the lack of a
closed form solution to the value function that is being maximized. The standard approach
is to exploit Bellman’s condition and use backward induction methods to compute the value
function for a given set of parameter values. In this paper a methodology that is based on
an alternative representation of the value functions (due to Hotz and Miller [1993}) is used
to solve the consumer’s dynamic problem. This methodology considerably reduces the com-
putational cost associated with the maximmra likelihood estimation of dynamic structural
models. Here, conditional (on the state) choice probabilities (CCP) are used to compute
the value functions and the choice probabilities implied by these value functions are used
to derive estimators for the underlying structural parameters. A large class of stochastic

dynamic models can be estimated with relative computational ease using this approach.

It is assumed that consumers derive utility from quality based on an elementary utility
function characterized by constant risk-aversion. Quality perceptions are uncertain and
described by distinct normal distributions foe each alternative. Scanner data is used to

calibrate the model and the implications of such a model for choice behavior are examined.



The hypothesis that consumers are not perfectly informed about the alternatives in the
choice set is supported by the empirical results. Consumers appear to be forward looking;
they take into account the impact of current choice on the future. Static models, based on
current utility maximization, that do not take the effects of uncertainty and learning with

experience could generate biased marketing mix parameters.

The paper is organized as follows : a general model of consumer behavior in an uncertain
environment is formulated in Section 2. In Section 3, a general dynamic discrete choice model
is described and estimation issues are discussed. A simple model of experimenting with choice
under uncertainty, assuming complete learning with one experience and a value function
with a two period horizon, is then formulated. Identification issues are then considered and
reformulations of the learning models are proposed accordingly. In Section 4, the deta used
to calibrate the model is described and preliminary statistics are reported. The results are
then presented and the implications are discussed. In conclusion, the contributions of this
paper are summarized and directions for future research are outlined. The CCP methodology
(Hotz and Miller [1993]) that we use in this paper is outlined in an appendix along with
an illustration of the methodology using a simple model of choice with a two period value

function.



2 A MODEL OF CONSUMER BEHAVIOR

In this section, consumer behavior in an uncertain environment is examined; assumptions
are described, and a model of sequential consumer decision making is proposed. Consider a
consumer making choices in an uncertain environment. Specifically, the uncertainty is with
respect to the quality that the consumer would derive from consuming each of the available
alternatives. This uncertainty could be driven by the consumer having not tried alternatives
in the recent past (leading to some decay in information possessed by the consumer) or

claims from the marketers about new or improved attributes in the alternatives.

Let q-,v represent the consumer’s uncertain quality perceptions about brand j, E(q}-)- = pj
and Va.r(q}) = o%. In dealing with choices made in uncertain environments, it is important
to distinguish between consequences and actions. In this context,consequences are guality
realizations arising out of the actions of brand choice. Accordingly, v{g) is the preference
scaling function defined over consequences and U(z) is the utility ordering function defined
over the alternative actions of brand choice U(z) is constructed using the expected utility
rule proposed by Neumann and Morgenstern. In dealing with certainty choices, utility is
treated as ordinal but cardinal utilities are required to ensure that the expected utility rule
determines preferences over actions. Such a preference scaling functior can be constructed
using reference lotteries (see Keenev and Raiffa (1976} and Hirschleifer and Riley (1992) for

an elaborate treatment of decision making under uncertainty).

Consumer attitude to risk is critical in determining behavior when faced with uncertainty.
We assume that the consumer is risk-averse and not perfectly informed about the available
alternatives. While exceptions have been reported, risk-averse behavior can be considered
to be the normal case for it is observed that individuals typically hold diversified portfolios

and do not invest in a single asset that offers the highest expected value (Hirschleifer and



Riley, 1992) In the context of brand choice, risk-aversion is reported by Erdem and Keane
(1996). Risk-aversion and learning consequent to sampling offers a alternative explanation
to loyalty, for the observed dependence of current choice on past choices. A consumer is
said to be risk-averse if he prefers the expected value of a lottery for certain to the lottery.
For a risk-averse consumer, Ev(g) < v[E(g)], and this inequality holds only if v"(g) < 0
i.e., the preference scaling function is concave implying diminishing marginal utilitv. Since
the expected utility is computed as the mathematical expectation of the utilities associated
with possible consequences, concavity is necessary to ensure that the value associated with
a certain consequence is higher than the value associated with an uncertain consequence
whose expectation is equal to the certain consequence. A concave preference scaling function
represents an interaction of diminishing marginal utility and risk-aversion. The ratio of

”

the second and first derivatives, -%'f(g)l’ is used a measure of local absolute risk aversion
and preference functions that have equal absclute risk-aversion can be considered to be

strategically equivalent.

Following Hirschleifer and Riley (1992}, v(f;') can be expanded in a Taylor’s series about
its expected value p

0(@) = v(k) + ZL2a —p) + LG ) + LG )+

and the expected value is

U = Eu(@) = o) + Sf#o? + SWE(Q— )+ ........

The curvature of the preference-scaling function and the properties of the probability
distribution associated with the action will determine the expected utility. Simplification of
the expected utility can be achieved by assumptions regarding the nature of the preference
scaling function or the probability distribution of f} For instance, if v is quadratic. third and

higher order derivatives are zero and the expected utility simplifies to a function of the mean

and variance associated with ¢. (However, a quadratic specification would be appropriate in



a range since the marginal utility is negative for large values of ¢. Also, the absolute risk
aversion for a quadratic specification is increasing in g). For a normal distribution all higher
odd moments are zero and even moments are functions of the mean and standard deviation.

Hence the Taylor’s series expansion simplifies to two terms.

We assume that the first derivative of v(g) is positive (more is better) and that its
second derivative is regative {diminishing marginal utility). Further, we assume that the
absolute risk-aversion is constant with respect to quality levels. A specification that is
consistent with these assumptions is v(g) = —e~%9¢, where K = —-3':;—((5]1 is & local measure
the degree of absolute risk-aversion. This specification has been adopted by Roberts and
Urban (1988) for modeling risk and belief dynamics in durable brand choice. We also assume
that the consumer’s quality perceptions are normally distributed; & “N(g,0?). Under these
assumptions,

Eula) = ] X1k expl{— (152)" )y = e

1t follows tl;:z preference,when absolute rigk-aversion is constant and beliefs are normally

distributed, can be represented by the indirect ui:ility function
U(lu’! O') =p-= %Kog

The consumer’s valuation of an alternative is at the mean quality perception offset by the
effect of uncertainty. The valuation is decreasing in the variance associated with the quality
perception and K is a factor that scales the effect of uncertain perceptions. In a sequential
decision making context, each consumption experience would provide information leading to
updations to the mean and variance. A forward looking consumer would associate a future
reward with every choice over and above the immediate consumption utility and choose to
maximize utility expected over a horizon. Valuations for periods ahead of the current would

be characterized by a reduction in the offsetting due to uncertainty in the perception.
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Indexing brands with j € (1,2, ..., J}, the consumer’s expected utilities for the alternatives

_are

1 .
Ui(ts, 03) = p; — EKU}’,(J €(1,2,..,J) (1)
We index time periods using t € (1,2, ...,T) and define a state variable 83 with s;; = n if
brand j has been sampled n times by time period ¢, so that the vector s, = (5125 8245 +eey 84¢)
characterizes the consumers information set with regard to J brands at time period {.The
expected utilities in these states for each brand are

. L .
uj (i) = tzo,, — 5 K03, (2)

and a forward looking consumer’s future evaluation of the alternative J after it has been

sampled n times is described by

. nfl
UJ; (Sjt,t -+ ‘n.) = #js,-, - gJ (aKaf-_,ﬂ) (3)

where g; € (0,1) for all 7. The future evaluation takes into account the effect of learning from
consumption experience with g; capturing the reduction, due to sampling the alternative,
in the offsetting (from the mean perception) due to the uncertainty in quality perception.
This expected reduction is the information value associated with current choice. In equation
2.3, u] (sjt,t + n) represents the future expected utility associated with alternative j after
it has been sampled n times. This is the consumer’s evaluation of utility to be derived in
the future conditional on information now (s;) and n samplings; the evaluation takes into
account the information value of sampling. The consumer expects the effect of uncertainty

to reduce by a multiplicative factor g; with every consumption experience.

We adopt an additive multiattribute specification (Lancaster, 1966) of net utility with a

state specific Neumann-Morgenstern expected utility and price as the two attributes. Incor-
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porating a stochastic component e;,,

uje = U5 (856, 1) + BpPye + €54 (4)

The stochastic component represents what is unknown to the econometrician and is assumed
to be independent and identically distributed across brands and occasions. Since it is not
associated with the evolving consumer quality perceptions, the issue of serial correlation does
not arise With this preference structure, the consumer chooses among the alternatives in
each period to maximize the expected value over a horizon of an objective function of the

form

(Z Z djtﬁt [u; (856, 8) + Bp Py + Ejz])

t=0 j=1
where § is a discount factor; § € (0,1). There are no a priori considerations that would
determine the appropriate horizon over which the objective function is computed. In this
model, this would depend on the parameters 9;, since this determines the future vajue of
current choice. The data could provide an answer to the question of an appropriate horizon.
This is a stochastic dynamic programming problem that is typically solved using backward
recursion. In the next section, an overview of the dynamic discrete choice framework is

provided and estimation issues associated with this model are discussed.

3 ESTIMATION OF DYNAMIC DISCRETE CHOICE
MODELS

The dynamic programming framework has been extensively used in the engineering. math-
ematics (stochastic control problems), economics fields and is now gaining ground in the

marketing literature. This extensive use stems from the fact the framework is rich enough
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to model a variety of situations involving choices made over time and in uncertain environ-
ments. Recent applications in marketing where the dynamic programming framework has
been used include Erdem and Kesne {1995) and Gonul and Srinivasan (1996). In the former
study, the authors hypothesize that consumers learn with choices made in each period since
the decisions are made under uncertainty and model choice probabilities as functions of past
choices in & Bayesian learning framework. Gonul and Srinivasan (1996) hypothesize that
consumers form expectations about the availability of coupons in future periods and their
decisions to buy or not to buy in the current period are influenced by these expectations. In
these and other similar situations, the dynamic programming framework can provide a good
empirical model of how decision makers in the real world actually behave, in additional to

providing a normative theory of rational behavior. The dynamic programming framework is

detailed in this sectiomn.

3.1 The ¥Framework

Consider a typical dynamic discrete choice model which characterizes a consumer making
choices over vime in an uncertain environment. We assume that the consumer chooses one of
J alternatives in each peﬁod with the objective of maécimizing the expected value of a sum
of period specific utilities over a horizon of T periods. Let dy; = 1 if alternative j is chosen

in period t and d,; = 0 if any other alternative is chosen.
J
d;€(01)forallt.jeT xJandy dy=1forallteT
i=1

The choice made in period t affects the outcome which arrives at the end of the period
i.e., if H, is the history at the beginning of period ¢, H;,, is either fully determined by

the choice made in period ¢ or is determined according to some transition probabilities. In

13



this application,choice fully determines the outcome; H, is a vector whose elements are the

number of observed consumption experiences for each of the J alternatives i.e.,

H, = {Hlt: HZh caey HJ’t}

and if alternative j is chosen,

Hj¢+1 = Hjt +1 and Hit+1 = H,tg forali i € J,i ?EJ

In other applications, outcomes are associated with choices in terms of vectors of transition
probabilities F; (H,) that define the chances of the different outcomes being realized when

alternative j is chosen. In such cases, Hj..; evolves stochastically from H,.

Let u}, be the expected utility to be obtained in period ¢ if alternative 7 is chosen. This
expected utility depends on the history H, and is usually specified in terms of a vector of
structural parameters ¢ . Adding a stochastic component to this expected utility we have,

uje = ujy (Hp) + €5 (

o

where ¢;; follows a well defined joint probability distribution function G (€ss €2, ..., €2¢) .

In this setting, the consumer sequentially chooses d; to maximize expected utility over a

horizon viz.,

T J
Eo (szjtat [ﬂ;g (H:) + f-jt]) (6)

t=0 j=1
where Eq is the expectation, conditional on information at ¢ = 0, with respect to the con-
trolled stochastic process induced by the decision rule. Let the conditional valuation function

associated with choosing alternative 3 in period t be defined as

14



T J
Uiy = Uj (Ht) =F ( Z Zd?,é‘ [u;, + Eﬁ] |djg = 1) ' (7)
a=t+1 =1

where d7, denotes the consumer’s optimal choice in period s.

Optimal decision making implies that d¢, = 1 if and only if

k= a.rgr%ajx [‘U.;t + €5¢ + th] (8)

If we assume that ¢; is an IID extreme value process, we obtain a dynamic version of the

multinomial logit model.

o exp(up + )
Pr{dp = 1) = E;Ll (exp (U;t + th)) ’

The only way in which the above is different from the static logit model is that here we
have the sum of a one period utility u; and the expected discounted utility in all future
periods over the horizon being considered v;, while in the static logit model only the current
utility uy is considered. It is this difference that makes dynamic discrete decision precesses
computationally complex. The functional form of the conditional value function is generally
not known and its values must be computed numerically for any particular value of the pa-
rameter vector . Hence, algorithms that are used to find maximum likelihood estimates of
the vector of structural parameters ¢ in such dynamic discrete choice models are constructed
in two levels. An outer numerical search algorithm is used to search over the parameter space
for values that maximize the likelihood function, and an inner algorithm solves the dynamic
programming problem and computes choice probabilities for the current set of parameter
values. The dynamic programming problem is usually solved using recursive backward in-

duction methods in finite horizon cases. This recursive computation of the value function has

15



to be repeated every time the parameter values are changed in the outer search algorithm.
Clearly, this is a computationally expensive methodology that leads to researchers going to
great lengths to simplify the problem and the state space.

The Conditional Choice Probability (CCP) methodology developed by Hotz and Miller
(1993) is one way of simplifying the estimation problem. The main advantage of the CCP
methodology is that it leads to a significant reduction in the computational cost associ-
ated with the estimation of dynamic discrete choice problems. A nested numerical solution
method using the Bellman equation is avoided. The CCP methodology is detailed in an ap-
pendix and illustrated in an application of the methodology in estimating a dynamic brand
choice model incorporating learning. The methodology involves the inversion of conditional
(on state) choice probability estimates to arrive at estimates of normalized value functions.
The CCPs are also used as weights for different states in computing the expected utility over

a horizon.

3.2 Models

Different versions of the model of consumer behavior described in the second section, based
on the number of updations to the mean, variance and the horizon over which the cbjective
function is computed are considered for estimation. In the first version a two period horizon
is assumed and a single updation to the mean and variance of the quality perception are

considered. In terms of the notation adopted earlier in this section

. 1
) (0,8) = pjo — §Ka§n (10)
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and

. 1
w5 (0,8 +1) = pyo — g5 Koy (11)

Sampling of an alternative leads to updation of the mean and the variance. Therefore, when

. 1
uj (L,8) = gy — 'Q'*Kafl (12)

and

. 1
U; (1 t+ l) = [t — ngKO'?] {13

In the proposed model, the consumer makes his choice on each occasion to maximize
a value function comprising of the utility in the current period and expected utility in the
future. The value function for each alternative is assumed to be the sum of current utiliry

for the alternative and the expected utility in the next period.
Vg = Ujt +F [u;;lfd_,-; = 1] (14}

Next, a three period horizon is considered with a single updation to the mean and variance.
The specifications of the expected utility in the current period and next period conditional

on sampling remain as above. The expected utility after two periods is

1

u§(0.t+2)=uju—gf-2KUfn (15!
and _
» l

The consumer chooses to maximize an objective function with a three period horizon. The

17



conditional valuation functions for each alternative are of the form

2
vjie =1z + E (Z [ut+e/dse = 1]) (17)

g=1

The purpose of considering both these versions is to obtain an empirical answer to the
question of how far ahead the consumer looks. In this application, there is no a priori basis
for fixing the horizon over which the consumer computes his value function. This would
depend on the future rewards that the consumer expects from current choice and these
rewards are tied to g;. However, if g; — 0 for all j ; there is little difference between the
expected utility in the next period and subsequent periods. In such a situation, a two period
horizon for the value function would seem to be appropriate. These two models are referred

to as single updation models in later sections.

Next, a model with an enlarged state space is considered. Learning effects for each of
three consecutive consumption experiences are considered; i.e., yt,; and afj are allowed to
vary for 8; =0,1,2, and 3. Thus,

8j

Moy = Y (ujs) for s;=0,1,2 and 3
i=0

and

1 1 >
§Kcrf} =K (or?n - Za?,-) for s; =1,2 and 3
=1

In later sections, this is referred to as the multiple updation model. The three versions of

the learning model that are described above are estimated.

18



3.3 Identification Issues

The forward looking learning models proposed earlier are now reformulated in terms of
parameters that are identified. In our model, expected utility is expressed in terms of
the mean quality peception p;, the effect of risk-aversion %K arf-, and the factor ¢; which
captmée the consumer’s evaluation of future benefits from current choice in terms of expected
reduction in variance. In discrete choice models, choice probabilities are constructed from
differences in the utitlities associated with the alternatives. Since psand $Ko? are both
associated with current choice, to enable identification, we consider the expected utility in
the current period and the expected reduction in the effect of risk-aversion in the future

periods as a result of sampling. Let the utility in the current period for alternative J bey;,
1. 2

The consumer expects sampling to lead to more information and evaluates the future effect
of uncertain perceptions conditional on sampling at g;3Kc?. Let the increase in utility that

the consumer expects to gain in the next period from sampling alternative 7 now be ¢;,
1. 2
c; = (1‘*91) EKO'J- (19)

Incorporating definitions 18 and 19 in 10 , 11, 12 and 13; we can express current and fuoture

expected utilities for alternative j in states s;, = 0 and s;, = 1 as
uj (0,2) = 70, (20)

‘b‘.; (0, t+ 1) = Yo + Cio (21)

19



and

u; (1,8) =0+ (22)
u (Lit+1) =p0+ 11+ cpo—Cn (23)

where v;; and ¢;; are updations to the expected utility and the effect of risk-aversion after
one consumption experience. Thus, the expected utility (v;0) and the expected reduction in
the effect of risk-aversion due to sampling once (c;p) are estimated along with updations to
these initial values after one consumption (v;; and ¢;;} for the single updation model with
the value function computed over a two period horizon. In this reformulation in terms of
expected utility and expected reduction in the effect of risk-aversion, the reduction factor g;

is not estimated.

In the single updation model with the value function being computed over three periods,
the reduction factor g; is estimated along with the expected current utilities and expected
future reward from sampling. In equation 19, the expected reward in the next period of
sampling alternative j now is defined as ¢; = (1 —g;) 3K of. Continuing in this vein, it
can be seen that the expected reward to the consumer two periods ahead from sampling

alternative § now and in the next period is (1 — g}) 1Ko?. Now,
- ike?= (1
( _gj)§ Uj—( + g;) ¢

so that the consumer's expected utility from sampling alternative j twice in each of the two

states is

H} (0, t+ 2) = Y0 + Cjo + GiC;0 (24)

and

u; (1,8 + 2} = 70 + 71 + Cio — ¢ + 95C0 — G5€i (25)

20



respectively. Thus, in the single updation model with a horizon of three periods (including
the current period) the expected reward from sampling an alternative twice is modeled as in
24 and 25. Again, initial expected utilities ;o and expected future rewards from sampling ¢;o

for each alternative and updations to these initial values after one sampling are estimated.

Finally, in the multiple updation model with value functions computed over two periods,
updations to expected utilities and the expected reduction in the effect of risk-aversion for

each of the first three experiences are estimated i.e.,

53
="+ (%) fors;=1,2and 3

i=]
and

8y
Cj = Cjo — Z(Cji) for S5 = 1,2 and 3

i=1

In this model. we have assumed that initial conditions are unknown to the econometrician.
Initialization of initial conditions is not appropriate if there is information decay and frequent
repositioning. Structural parameters of interest (mean quality perception {; and the effect
of risk-aversion c;) are not seperately identified. However, the preference structure of the
representative consumer changes with changes in learning states. This enables identification
of updations to structural parameters. Inclusion of future expected urility in the value
function enables a close look at the influence of risk-aversion. Identification of the expected
reduction in the effect of risk-aversion is facilitated by including future expected utility in
the consumer’s value function. Since reduction in the effect of risk-aversion is modeled
multiplicatively, the reduction factor is identified in the two-period ahead expected utility
component of the value function. If the value function is computed over three periods, the

reduction in cost of experimenting is identified.
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4 DATA, RESULTS AND DISCUSSION

The forward looking models proposed in this study and myopic models (included for com-
parison) are calibrated using scanner panel data on purchases of ketchup and tuna. The
analysis is restricted to households that have purchased one out of the top four (in terms
of market share) brand size combinations so as to keep the state space small. In addition,
households that have less than five observations are eliminated to enable capture of dynamics
in choice behavior. In this study, marketing mix variables other than price are not included.
Price is incorporated as an additive component in the utility function and not as a state
variable. We assume that the consumer evaluates future choices on the basis of current
prices. This is done to simplify the state space and facilitate focus on learning effects. We
are interested in examining if incorporation of learning effects leads to a change in the price
coefficeint. Low correlations between price and the omitted marketing mix variables (display
and feature} in these data sets suggest that such interpretations are not confounded by this

omission. Descriptive statistics for the ketchup and tuna datasets are reported in tables 1

and 2 respectively.

First. a baseline static logit model ( Model 1) with brand specific intercepts and a price

parameter that is common across alternatives is estimated. Here, the utility specification is
U = f1j + Bp Pyt + €5¢

Next, a model {Model 2) that includes the loyalty measure introduced by Guadagni and
Little {1983} apart from brand specific intercepts and a price parameter that is common
across alternatives is estimated. The loyalty measure is included in the utility specification
thereby increasing the probability of an alternative b;eing chosen in the future with each

consumption. It has been observed by researchers that this reduced form specification does
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very well in terms of fit and prediction and is therefore included in studies as a benchmark

model. Here, the utility specification is
Uje = pj + BpPie + Bily + €5

The Guadagni and Little {1983] loyalty measure implies a rigid updation pattern that is
common across alternatives with recent past choices being weighted more than those in the
distant past. In Model 3, free updations to the intercepts upon consumption experience are
estimated for each alternative . Starting with an initial intrinsic preference tijo for alternative

J three consumption experiences are each allowed to add to this initial preference, so that

L
i = fhio + Z(M_ﬁ) for 8; = 1,2and 3

i=1

In this model, consumers are assumed to be myopic and do not. consider the future value of
current choice. Consumers choose on every occasion to maximize current utility. This model
18 included for purposes of comparison since in the forward looking model that is proposed

as many updations are allowed for as in this model.

Model 4 is the single updation model, introduced in earlier. This is a forward looking
model incorporating the future value of current choice with the consumer making choices to
maximize a value function over a horizon of two periods. In ths model, the expected utility
in the current period {7;) and the expected reduction in the effect of risk-aversion as a
result of sampling (c;) are estimated. Updations to these parameters from one consumption

experience {y;; and ¢;;) are also estimated.

The next model (Model 5) is the single updation forward looking model with the ob jective
function being computed over a three period horizon. In this model, the parameters o, c;p,

Y51 i1 and the reduction factor g; are estimated for each alternative 5. As mentioned earlier,
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the reduction factor g; is identified only in a model where the value function is computed

over & three period horizon.

Mean Price (std dev)

Brand Market Share
Heinz (HE) 0.44 1.17 (0.13)
Hunt (HU) 0.24 1.15 (0.16)
Del Monte (DM) 0.17 1.06 (0.19)
Generic (GE) 0.16 0.77 (0.04)

Table 1: Descriptive Statistics - Ketchup

Brand Market Share | Mean Price (std dev)
Star Kist Water (SKW) 0.40 0.672 (0.095)
Star Kist Oil (SKO) 0.13 0.673 (0.096)
Ckn of Sea Water (CSW) 0.37 0.665 (0.110)
Ckn of Sea Oil (CSO) 0.10 0.666 (0.110)

Table 2: Descriptive Statistics - Tuna

Finally. the muliiple updation model with a two period horizon for the value function is
estimated (Model 6). In this model, initial expected utilities and expected reduction in risk-

aversion along with updations after each of three consumption experiences are estimated.

The value functions in the forward looking models are represented as weighted sums
of period specific utilities with the conditional choice probabilities being used as weights.
Hence, all choice probabilities take the simple muitinomial logit forms and maximnm_likeli—
hood estimation is undertaken to obtain parameter estimates. Sample frequencies are used
as estimates of the conditional choice probabilities used in computing the value functions
in models 4 and 5. The state space is larger in model 6 where each of four consumption
experiences are considered for updating consumer beliefs for each of the four alternatives.

Kernel estimates of the conditional choice probabilities are computed using sample frequen-
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Variable Model 1 Model 2 Model 3
HE-I 2.97 (30.0) | 2.59 (28.8) 344 (27.9)
HU-I 1.65 (23.6) | 1.46 (20.9) 0.37 (3.7
DM-I 1.31 (18.7) | 1.26 (18.9) 0.46 (3.7)
GE-1 0 0 0
Price -5.03 (-27.9) | -4.82 (-25.4) -5.23 (-26.8)
Loyalty 3.33 (14.5)
HEU 1, 2, 3 0.45 (3.7), 1.91(18.8), 0.83 (7.5)
HU-U 1,2, 3 0.25 (1.8), 0.55 (3.9), 1.68 (15.8)
DM-U1,3,3 0.87 (7.1), 6.44 (2.5), 0.56 (3.2)
GE-UT,2, 3 1.19 (9.4), 0.99 (5.5), 1.04 (5.6)
Log Likelihood | -4565.85 -4043.63 -3987.93

Table 3: Myopic models - Ketchup (t stats in parantheses)

cies for each state and these estimates are used to compute the value functions in model

6.The estimation procedure is detailed in the appendix.

The estimates for the six models outlined ahove for the ketchup and tuna data sets are
presented in Tables 1 to 6. Models 1, 2 and 3 are comparable (since consumers are represented
as being myopic) and are grouped together. Tables 3 and 4 contain the estimates for these
myopic models 1, 2 and 3 for the ketchup and tuna data Seté respectively. Abbreviations are
used to represent parameters in the tables: HE (Heinz), HU (Hunt), DM (Del Monte) and
GE (Generic) are the ketchup brands; SKW (Star Kist Water), SKO (Star Kist Qil), C8W
(Chicken of Sea Water) and CSO (Chicken of Sea Oil) are the tuna brands. EU, FR and
RF denote expected utility, future reward and reduction factor respectively: I and U denote
initial values and updations. For example, DM-EU 3 denotes the third updation in expected

utility for the Del Monte brand.

The addition of a loyalty variable improves the log-likelihood significantly in both data
sets. For ketchup, the price parameter decreases with the inclusion of loyalty but increases in

the case of tuna. All the updations in model 3 are significant and the log-likelihood improves
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Variable Model1 | Model 2 Model 3
SKW-I 1.54 (38.5) | 0.90 (22.5) 1.28 {14.4)
SKO-T 0.43 (10.8) [ 0.39 (5.8) 1.05 (10.7)
CSW-I 1.34 (43.5) | 0.76 (19.0) 0.64 (5.7)
CSO-T 0 0 0
Price -12.6 (-7.0) | -15.4 (-4.9) -14.2 (-26.8)
Loyalty 4.27 (475)
SKW-UT, 2, 3 0.95 (10.7), 0.56 (6.1), 1.12 (10.7)
SKO-U 1,23 0.60 (4.4), 1.18(10.0), 0.93 (10.9)
CSW-UT, 2, 3 1.43 (15.5), 0.42 (4.0), 1.16 (13.7)
CsO-UT, 2,3 1.52 (12.6), 0.53 (3.5), 1.39 (10.6)
Log Likelihood | -12441.5 | -8869.0 -9096.0

Table 4: Myopic models - Tuna (t stats in parantheses)

for both data sets. Model 3 performs better than Model 2 for ketchup, indicating that free
updations capture better the change in intrinsic preferences than the exponential weighting
scheme used in creating the loyalty term. In the case of tuna, however, Mode! 2 has a better
log-likelihood than Model 3. This could be because the average number of observations per
household is higher for tuna (25) than for ketchup (10).

The estimates for models 4, 5 and 6 for the two data sets in tables 5 and 6. These
models represent the consumer as being forward looking. On each purchase occasion, the
consumer chooses among the alternatives to maximize an objective function that includes
current utility and expected utility in future pericds. In model 5 the horizon is two periods
into the future; models 4 and 6 are based on a one period ahead value function. Model 6 is
comparable to the myopic model 3 in terms of the number of updations that are estimated.
The intertemporal discount factor was set at 0.9 for all the forward looking models. The
expected utility (-y) and the future reward ( c) are set to 0 and e respectively, for the generic
and Ckn of Sea Water brands while estimating the forward looking models using the ketchup

and tuna data. The forward looking models fit the data better than the myopic models in
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Model 4 Model 5 Model 6
HE-EU I (7) 0.19 (-0.5) | -0.61 {-1.1) -0.51 (-1.7)
HE-EU U 1,2, 3 0.64 (1.7) | 0.58 (1.1) 0.14 (0.7), 0.01 (0.1), -0.36 (-2.7)
HU-EU I () 0.23 (-1.0) | -0.35 {-0.8) -0.62 (-1.0)
HU-EUU1,2 3 0.58 (2.8) | 0.63 (1.6) 0.58 (0.5), -0.07 (-0.2), 0.17 (1.1)
DM-EU I () -0.65 (-3.1) | -0.66 (-2.0) -0.65 (-0.5)
DM-EU U1, 2, 3 0.86 (3.6) | 098 (27) | 041 (0.1), -0.24 (-0.7), 0.07 (-0.1)
GE-EUI () 0.00 0.00 0.00
GEEUU1,2 3 0.73 (7.9) | 047 (1.3) 0.53 (4.6), 0.21 (1.3}, 0.01 (0.1}
HE-FR I ¢;(c; = exp(c;)) 2.01 (15.6) | 1.81 (9.1) 2.08 (23.9)
HEFRU 1,2, 3 0.96 (2.4) | 0.46 (0.8) | -0.01 (-0.1}, -0.42 (0.4), -2.10 (-2.4)
HU-FR I (c;) 1.92 (24) | 1.65(6.1) 2.07 (7.1)
HU-FRU 1,2, 3 -0.43 (-0.4) | -0.47 (-0.3) | -0.55 (-0.1). -0.64 (-0.3), -1.10 (-2.8)
DM-FR 1 (c;) 2.40 (27.9) | 1.99 (11.1) 2.34 (3.2)
DM-FRU 1,2, 3 1.42 (5.5) | 1.04(3.0) | 0.09 (0.1). -0.01 (-0.1), -0.16 (0.1}
GEFRI (c;) 1.00 1.00 1.00
GEFRU1,23 -4.32 (-26.5) | -4.30 (-0.1) | -4.22 (-36.7). -2.51 (-14.2). -1.74 (-5.8)
HE-RF g (g = exp(g )/1 + exp(g)) -4.56 (-0.1)
HU-RF -4.71 (-0.1)
DM-RF -4.64 (-0.1)
GE-RF -4.69 (0.1}
Price -1.85 (-8.3) | -1.81 (-7.9) -1.49 (-5.3)
Log-likelihood -3680.6 -3688.1 -3668.3

Table 5: Forward Looking Models:Ketchup (i stats in parantheses)

both data sets. In the single updation model {4), most of the expected utility parameters

(7) and the future rewards ( ¢) parameters are significant in both data sets. However. in the

three updation model ( 6), the initial expected utilities and future rewards are significant

but many of the updations to these initial values are insignificant in the ketchup estimares.

The tuna data set with longer purchase histories yields better estimates.

The magnitude of the initial parameters and the changes after a few experiences in the

forward looking models suggest that consumers have differing perceptions across alternatives.
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Model 4 Model 5 Model 6
SKW-EU I (7) 047 (2.6) }0.44(21) |[0.59 (3.3)
SKW-EUU1,2,3|1.14(63) |1L11(50) |[0.74 (3.0), 0.29 (0.9), 0.74 (2.6)
SKO-EU I (v) 015(1.2) [018(1.4) [0.08 (0.7
SKO-EUU1,2,3 051 (41) [050(36) [053(3.1),0.20 (0.9), 0.70 (3.1)
CSW-EU I (v) 0.26 (L5) |[0.28(1.4) | 0.50 (2.9)
CSW-EUU1,2,3|073(41) {0.72(3.4) [0.88(3.9),-0.14 (-0.4), 0.58 (2.0)
CSO-EU 1 () 0.00 0.00 0.00
CSW-EUU1,2,3|137(11.2) [1.19(7.1) 1.06 (5.6), 0.12 (0.4), 0.68 (2.3)
SKW-FR I ¢; 1.30 (10.9) | 1.16 (7.1) 1.19 (8.9)
SKW-FR U 1. 2,3 | -047 (-0.7) |-046 (-0.8) |-1.28 (-0.6), -0.40 (-0.4), 0.27 (0.4)
SKO-FR I (c;) 1.73 (15.7) | 1.48(13.3) | 1.78 (16.4)
SKO-FR U 1.2,3 |-1.37 (-0.6) |-1.36 (-0.8) [-1.64 (-0.4), -0.08 (-0.1), -0.03 (-0.1)
CSW-FRI (c;) 1.40 (12.1) | 1.18 (7.9) 1.14 (7.5)
CSW-FRU 1,2, 3 | -2.84 (-04) |-2.84 (-0.5) [-2.33 (-0.4), -3.36 (-0.2), -4.89 (-0.1)
CSO-FRI (c;) 1.00 1.00 1.00
CSO-FRU1.2,3 [93(-01) |-53(0.1) [-7.58 (-0.1), -4.97 (-0.1), -3.32 (-0.2)
SKW-RF ¢ -2.99 (-0.6)
SKO-RF -2.80 (-0.8)
CSW-RF -2.88 (-0.7)
CSO-RF -2.97 (-0.5)
Price -8.77 (-27.9) | -8.77 (-26.8) | -10.06 (-28.5)
Log-likelihood -8831.6 -8792.8 -8723.2

Table 6: Forward Looking Models: Tuna (t stats in parantheses)

28

Model 5 estimates enable a close look at the uncertainty around quality perceptions for each
of the alternatives. If the parameter g is close to zero, the consumer expects to totally
resolve the uncertainty around quality perceptions and the information value of sampling
{the future reward c} is close to the offsetting due to risk-aversion in the current period.
The estimates of the reduction factors (g) are close to zero and insignificant; consumers do
not seen: to look beyond the immediate future for these low value products. The expected
future reward can then be added back to the expected utility -y to arrive at the mean quality

perception g. The parameters estimated in Model 5 are used to arrive at descriptions of




the uncertainty associated with quality perceptions. Estimates of the mean and variance
of quality perceptions for the ketchup brands after updation are provided in Table 7. The
estimates have been computed assuming that the absolute risk aversion constant X is equal to
1. K scales the effect of uncertainty in the utility function and the model captures the product
of K and o®. Ascertaining the value of K would help in rescaling the variances appropriately
although the effect of risk-aversion would remain unchanged. The probability distributions
along with the preference scaling function are plotted in Figure 1. The preference scaling
function has been vertically shifted for ease of viewing. Heinz and the Generic brand have
the highest and lowest mean quality levels. These brands are also characterized by the lowest

and highest coefficients of variation respectively. Hunt and Del Monte are similar to each

other in this regard.

Utility

10

—-190

—15

Brand

Mean | Std Dev | Coeff of Var
Heinz 5.11 3.20 0.63
Hunt " 4.21 2.90 0.69
Del Monte | 4.15 3.00 0.72
Generic 1.72 1.85 1.08

Table 7: Quality Peroeptions - Ketchup

v(q) - Preference Scaling Function

Figure 1: "Quality Preference and Uncertain Perceptions - Ketchup”

Model 6 provides estimates of initial perceptions and three updations. Heinz, Hunt
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and Del Monte have mean perceptions snd expected future rewards that are similar in
magnitude to start with. Subsequent to three consumption experiences, future rewards
associated with Heinz, Hunt and Del Monte decrease while the generic brand remains a
costly experiment. However, in terms expected utility in the current period, the generit_:_
brands fare well subsequent to sampling. Among the tuna brands, the initial expected future
reward is highest for Star Kist OQil and lowest for Ckn of Sea Qil; the other two brands are
similar in this respect. The magnitude of reduction in the expected future reward after
sampling is high for the two Star Kist brands relative to the Ckn of Sea brands. Expected
utilities improve for all brands suggesting that experiences are positive and inducing trial
can lead to retention. As hvpothesized, the price parameter in the forward looking models is
significantly different from that in the myopic models. Even a two updation forward looking

model (4) performs better than all the myopic models.
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5 CONCLUSIONS

In this paper, a simple structural model of dynamic brand choice that takes into account the
uncertainty faced by the consumers and the consequent information value associated with
choice is proposed. The model is formulated with ease of estimation as an objective. The
consumer, while making brand choice, maximizes his expected utility over a finite horizon
based on uncertain preferences that are dynamically updated with consumption experience,
"The consurmer is assumed to be risk-averse with the degree of risk-aversion remaining constant
across quality levels. Uncertainty in quality perceptions is incorporated by assuming that
perceptions are normally distributed. Brands are allowed to vary in their ability to influence

long term preferences with consumption experience since quality means and variances are

assumed to be brand specific.

The model suggests that estimates of the impact of marketing-mix variables will be biased
if the information factor is not taken into account. The proposed dynamic, forward looking
model is estimated using the conditional choice probability (CCP) estimation procedure,
developed by Hotz and Miller [1993]. This methodology is characterized by considerably
lower computation costs compared to the extant methods of estimating dynamic models.
Results are consistent with the proposed model of consumer behavior. Models that rake
future value of current choice into account perform significantly better than myopic models.
The hypothesis that consumers associate significant costs of experimenting with alternatives

that have not been sampled in the recent past is supported.

Further research in this area is necessary to isolate the various elements that contribute
to the consumer’s perception of the cost of sampling. The quality signals that emanate from
prices need to be looked at. Rich structural models that incorporate price expectations,

stockpiling effects, etc along with learning effects are interesting options for further research.
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Incorporating consumer heterogeneity in such dynamic models is a challenging avenue for
further research. While the differing states that are the basis for the dynamics in the proposed
models are also likely to capture consumer heterogeneity, differing initial conditions are not
allowed for. Future research could attempt to develop models that capture the essence of

differences in initial conditions and disentangle these from choice dynamics.
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Appendix: The Conditional Choice Probability Methodology

The conditional choice probability (CCP) estimator, developed by Hotz and Miller [1993), adopts
an approach which reduces much of the computational burden associated with estimating dynamic
discrete choice models, In this approach, a nested numerical solution method using the Bellman
equation is avoided. Instead the value function is expressed in terms of the utilities, choice prob-
abilities and the tfansition probabilities of choices and outcomes that remain feasible in future
periods. The basic intuition underlying the CCP estimator is that the normalized value functions
(difference between an alternative’s value function and that of a base alternative) for each of the
J — 1 alternatives are related to the probabilities of the alternatives being optimal choices condi-
tional on the history. If the consumer were behaving optimally, his choice in each state would be
a function of the value functions, given the state, for each of the alternatives. In discrete choice
models, the probability of choice is defined in terms of inequalities; the probability of an alterna-
tive being chosen is the probability of the alternative’s value function being greater than the value
functions of all the other alternatives. Hence. the choice probability of an alternative in any state
would be & function of the differences (normalized value functions) between this alternative's value
function and the value functions of the other alternatives in this state. Given a set of normalized )
value functions, we can compute choice probabilities by specifying the distribution of the stochastic
components. In a similar vein, if the choice probabilities were invertible in the normalized value
functions, we could work backward to obtain the latter from the former, ! Thus, if we are able
to obtain consistent estimates of the CCPs, these could be inverted to arrive at estimates of the

normalized value functions which could be used estimate the structural parameters ¢,

From equation 8, it can be seen that the conditional probability of choosing alternative k in

‘For a formal proof that the conditional choice probabilities are indeed invertible in the normal-
ized value functions, see Hotz and Miller [1993].
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period ¢+ 1
Pre+1 = Pr{diyr = 1{H, ;)
J
=Pr{ () ejea1 < 6keat + Vrers — viear + Upgpt ™ Ujeqr | He (26)

i=1

equation 26 can be expressed as

o=

Ekt+1 T Uhppy — Uire1 F Ukt4d — Vet ooy €kt 10 -
Phty1 = Gk dfkt+1 (27)

o0 - €kt+1 + “;H.] - u}H.]_ + Vkt+1 — Vg1

{
where G, is the probability density function for €xt, given history H; when the kth choice is optimal

{Gx is the derivative of the joint probability distribution function G (€1¢,€2t, ... €¢) with respect to

€ht

For each k belonging to the choice set, the choice probability is a function of the differences.
between the kth alternative and the others, in current utilities and future utilities. Since equa-
tion 27 is indeed invertible in the normalized value functions; estimates of the conditional choice

probabilities can be used to arrive at estimates of the normalized value functions.

Further, this result allows us to find the expected values of the stochastic components ¢, drawn
from a sample that is subject to choice based censoring. Let wy be the expected value of ¢,

conditional on the kth alternative being the optimsl choice. In any period s,

Wy (pks) = E(fksldks = 1)
x

== / fk,Gk (Gk, + ui., — u‘l‘, + Vs — Vig, venny €hmy enny €y u,‘m -—_ uf}, + Uha — 'vJ,) dfks {28)

To compute the integral defined in equation 28, we need to know the differentials vy, — v, ... .
Let gxt — g1;.... be the estimates of the normalized value functions obtained by inverting 0.2, i.e.,

Qkt — qut = U, — uj, + vk — v1;. The expected value in equation 28 can now be computed by using
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—4

the estimates gz; — g1, obtained by inverting equation 27; ie.,

oo

W (Pks) = / €ksGi (Eks T ks — Glos ooy €kgy oo €ks + Gy — Que) degs (29)

i ]

Optimal behavior by the consumer would mean that the utility he expects to receive in any

period in the future in any given state is

J

> pi [u5 +w; (p5)] (30)

j=1

Here. p; is the conditional choice probability of alternative J being chosen; and w; is the expected
value of the stochastic component when alternative j is optimal. The conditional choice probabilities
are used as the weights to compute the expected utility in cach future period and w; corrects for

what is unobserved by the econometrician but known to the consumer.

Hence, an approximation of the valuation function can be obtained by summing the expected
utilities from equation 30 over future periods and states (if the evolution of states were stochastic).
This approximation can then be used to estimate the structural perameters at a relatively low
computational cost instead of solving the dynamic prograniming problem using recursion. Although
this representation reduces the cownputational burden relative to recursive solutions, it can be
cumbersome to implement in applications characterized by relatively large state spaces and long
horizons. However, in some special cases this alternate represeniation of the conditional valuation
functions can be used to further simplify the problem. These special cases include problems with
terminal actions, stationary markov problems and problems with finite dependence (Hotz and Miller

[1993], Aguirregabria (1994] and Altug and Miller {1995)).

Thus, the CCP methodology aliows for simplified representation of the conditional value func-

tions which usually do not have closed forms and need to be computed recursively for any set of
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parameter values. The simplification results from the fact that estimates of the normalized value
functions can be obtained by inverting estimates {using sample frequencies) of the conditional choice
probabilities. In certain situations, as described above, it is an easy matter to recover the value
functions for each alternative from the normalized value functions. In other situations, the value
functions will have to be computed by integrating over future paths and states using the conditional
choice probabilities as weights. The CCP methodology can again be used to develop a conditional
choice simulation technique (Hotz, Miller, Sanders and Smith [1994]) in which integrating over fu-
ture paths and states is avoided. The conditioral choice simulation (CCS) estimator uses estimates
of the conditional choice probabilities and the transition probabilities of outcomes resulting from
each of the choices to arrive at a simulated value function. The computational ease of the CCS
estimator follows from the fact that recursive computation of the value function and integration

over future paths are avoided.

In summary, the main idesas that constitute the CCP methodology are 1) estimates of conditional
choice probabilities can be inverted to obtain estimates of normalized value functions; 2) estimates of
the normatlized value functions can be used to estimate expected values of the stochastic components
in future periods; 3) the conditional choice probabilities can be used as weights to compute expected
utilities in future periods; and 4) estimates of the conditional choice probabilities and transition
probabilities relating outcomes to choices can be used to simulate choices and outcomes; and these

simulated sequences can be used to construct a simulation estimator of the structural parameters.
Application of the CCP methodology to a single updation model of learning

In this section, the single updation model with the assumption of complete lesrning from a single
consumption experience is described and the implied choice probabilities are derived. Consumers
are assumed to make choices that maximize utility in the current period and expected utility in

the next period. This model is used to illustrate the CCP estimation methodology.
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As before, brands are indexed using j € (1,2, ..., J) i and time periods as ¢t € (1,2,..,T) .
The consumers information with respect to the utility of each brand is characterized by the state
variable s;;; with s; = 1 if brand j has been sampled by time period ¢ and 85 = 0 otherwise,so

that the vector s; = (814,82, ..., 84¢) characterizes the consumers information set at t.

Let u; (85, ¢)represent the expected utility to the consumer from choosing brand j at time 2.
When the consumer is partially informed about a brand, he evaluates the brand on the basis of his
priors and takes into account the experimental cost associated with choosing the brand. Thus, we

assuie

u;- {0, t) = Hio — ¢ (31)

where 1o represents the expected value to the consumer of the intrinsic utility associated with

brand and c¢; is the cost associated with experimenting with brand j; and,
ui (0.t +1) = pjo (32

since the uncertainty with respect to the brand gets resolved once it is sampled and there is
no longer a cost associated with experimenting. This follows from our assumption of complete
learning with one experience. The above evaluations are made by the consumer when he has not
sampled alternative j i.e.,when 85 = 0. Given imperfect information, thé consumer associates an
experimental cost c; with current choice for this alternative leading to a net utility (net of the cost
of experimenting) of y1,0 -~ ¢; in the current period. The consumer also assumes that incurring this
experimental cost ¢; now leads to a better future in that this cost would no longer exist: hence the

evaluation of the utility to be derived in the next period of 0.

It is also assumed that the consumer updates his beliefs and his intrinsic preference for the

brand upon consuming it changes. Thus

uj {1,8) = pj (33)



for all t. Now, the consumer is in state 8;; = 1 and no longer has any uncertainty regarding the
utility to be derived from the brand since he has sampled it. Hence, there is no longer any cost of
experimenting associated with this alternative and this evaluation holds for the current and future

periods.

The consumer’s indirect utility for brand 7 in time period £, adjusted for price, is
uje = uy {850 1) + OpPje + €5 (34)

where Pj; is the price of brand j at time period ¢, 3, is the price coefficient and ¢; is a stochastic

term that is independent across alternatives and time periods.

The consuwmer is assumed to maximize a value function of the form
v = Uy + Ey (Uet1) (35)

where E,; is the expectation operator conditional on information available at f .

The conditional value function associated with each brand j can be written as
vje = wje + E[ues1/dje = 1] (36)

where d;; is an indicator variable that is equal to 1 if brand j is chosen at time period ¢ and is zero
otherwise. In equation 35, the first term is 4y, the utility to be derived from alternative j in the
current period: this is known upto a vector of parameters (other than the stochastic component
€;t). The second term is the conditional (on choosing alternative j) expectation of utility to be

derived in the next period. This term can be written as

Euyyifdy=1]=E Zdzm [ug (Sker t + 1) + BpPitsn + €xeya) |81, dje = 1] {37)
k=1
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Now, the expected value of alternative k being optimal in period ¢+ 1 conditional on s and dj; = 1
is the conditional choice probability Pry (s¢41), where ;4 is defined by s; and the alternative

chosen in period ¢. Hence, equation 35 can be expanded out as

J

vje = u (856, 8) + BpPje+ €50+ » Prisi+1) [ug (skr2 4+ 1) + BpPitst + E (€xesalss, diers = 1)] (38)
k=1

In the preceding section, the general solution to computing the expected values of the stochastic
components was outlined. The estimates of the normalized value functions arrived at by inverting
conditional choice probability estimates can be used to compute the expected value of the stochastic
component €x:+3when k is the optimal choice given the state. Thesé stochastic components are
drawn from a sample that is subject to choice based censcring. If €;; follows an 1ID extreme value

process, it follows that the expectation of ex 1, conditional on direrq = 1 has the following simple

form.

E(ext+1lse,dpeer = 1) =9 —In (f:cr (8t+1)) (39)

where n is Euler’s constant. It can be seen that the conditional expectation of €41 is declining
in the conditional choice probability Pry (8;41). The conditional choice probability Pry {(sy41) is
a function of the normalized value function visy) — v1¢41, if alternative 1 is treated as the base
alternative. As this difference vpy,y — vy increases, so does Pry (3141 ). and the threshold vailue of
the difference between the stochastic components €y, — €141 required to induce choice k becomes

lower.

Hence, equation 38 simplifies to
J
vje = uj (8j0,8) + BpPit + €50 + ) Pr(se+1) [Ufc (8¢ + 1) + BpPrey1 + 1 —In (Hl’ (31+1))} (40)

k=1

Let v}, = vjs — €5. The probability of choosing alternative & in period ¢ is
Pr (st) =Pr (k = arg max (‘ng))
k et
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and given the distributional assumptions, this probability tskes a simple form

exp (u}, + vf,)

P”cr (3¢) = -

(
SFICHEES) W

Implementation of the above representation of the conditional value functions requires consis-
tent estimates of the conditional choice probabilities which are necessary to arrive at the conditional
expectations of the stochastic components and the conditional value functions. One possibility is
.to use sample frequencies as estimates of the conditional choice probabilities. This would require
a require a reasonable number of observations in the data set for each of the elements in the state
space. If some of the elements in the state space have very few or no observations, sample frequen-
cies are non-operational as estimates of the conditional clioice probabilities . In such situations,
smoothing techniques can be used to arrive at estimates of the conditional choice probabilities for
each element in the state space. Specifically. non-parametric techniques using kernels can be used
to consistently estimate the conditional choice probabilities and thus overcome this problem which

is likely to occur in most applications with large state spaces.

Consider the general multiple updation model and the single updation models of learning for-
mulated in Section 3. For estimating the single updation model, sample frequencies were directly
used as estimates of the conditional choice probabilities for computing the value functions. Since
each of the four alternatives could be in one of two states ( sampled - 0 and unsampled - 1), the
state space had sixteen elements all of which were sufficiently visited in the data sets. In the case
of the mulitple updation model. each of the four alternatives is allowed to be in one of 5 states (0
to 4 consumption experiences). Here, not all of the states are sufficiently visited in the data sets.

Hence, non-parametric smoothing techniques are used to estimate conditional choice probabilities
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from the sample frequencies for these two models. The kernel function that was used was

4
K (s,8q) = H¢($)

=1

where ¢{.) is the standard normal density function, h is the bandwidth, s4 is the state pertaining

to the observation and s is the state that the kernel weight is being computed for. The subscript
1 refers to the element in the state; there are four elements in this application since there are
four alternatives in the choice set. Using these kernel weights, the conditional choice probability

estimates are computed for each of the possible states 8 in the state space as

N
Z-:l K (31 3d) dn

p(s) = =5
glK(s, 84)

The subscript n refers to the observation in the data set, p(s) is the vector of conditional choice
probabilities in state s and dy, is the vector of (0, 1) variables describing the observed choice in the

nth observation. We use a bandwidth of 1 in computing kernel estimates of the conditional choice

probabilities.

In the above representation of the state space, a variable that describes the number of times an
alternative has been sa;npled is included for each alternative. Choice probabilities will no doubt
also be a function of the price that the consumer is faced with on each occasion. The consumer’s
choice probabilities would also be impacted by other marketing mix variables such as display,
feature advertising etc. In reduced form approaches to modeling choice behavior, these variables
are usually included in the utility function and the same could be done here. However, in using
the CCP methodology for short horizons as described above, the state space representation is not
affected by inclusion of marketing mix variables in the utility function. If the horizon over which the

value function is computed is relatively long, implementation of the CCP methodology as described
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above would be cumbersome. In such situations, a more appropriate estimation methodology within
the CCP framework would be the CCS (conditional choice simulation) estimator. In the CCS
methodology, future choices and realizations of the marketing mix variables would be simulated
from appropriate distributions and these would be used to arrive at value functions as functions
of the paranfeters to be estimated. In this situation, all variables that impact on choice behavior

would have to be considered when defining the state space.

The reasoning behind conditional choice probabilities being estimated for each learning state
only and other variables such as price etc., not being included in the description of the state is as
follows. Sample frequencies (within each learning state) that are used to estimate the conditional
choice probabilities reflect variation in the environment and the implicit assumption in using these
sample frequencies is that the consumer anticipates the variation in the environment correctly.
The two options available to the econometrician are to make the above assumption {to use sample
frequencies in each learning state) or to simulate future realizations of price etc., and include these
variables in the state description while estimating conditional choice probabilities. Another issue
that arises is that if price promotions are usually conducted in tandem with displays and features,
there is the possibility that the learning effects being captured are actually due to these variables
not being included in the utility specifications. This possibility is checked for by looking at the
simple correlations between prices and the omitted marketing mix variables. Correlations between
price and other marketing mix variables, such as display and feature, are very low in these data
sets. Hence, it is unlikely that the learning effects that we are capturing are actually driven by

the marketing mix variables that have not been included in this study and hence the result of

mis-specification.



