W e

Working Paper 238

On Solving Some Stochastic Discrete Optimization
Problems Under General Regret Function

By

Shubhabrata Das
Diptesh Ghosh
Pranab K. Mandal

July 2005

Please address all correspondence to: -

Prof. Shubhabrata Das

QM&IS Area

Indian Institute of Management — Bangalore
Bannerghatta Road, Bangalore 560 076, India
Email: shubho@iimb.ernet.in

Phone: +91-80-6993150, Fax: +91-80-2658 4050

Prof. Diptesh Ghosh

P&QM Area,

Indian Institute of Management Ahmedabad
Vastrapur, Ahmedabad 380 015, India

Prof. Pranab K. Mandal

Dept. of Applied Mathematics, Faculty of EEMCS,
University of Twente, P.O. Box 217, 7500AE Enschede,
The Netherlands



On Solving Some Stochastic Discrete Optimization
Problems Under General Regret Function

Shubhabrata Das *
QM&IS Area, IIM Bangalore, Bannerghatta Road, Bangalore 560076, INDIA.

Diptesh Ghosh
P&QM Area, IIM Ahmedabad, Vastrapur, Ahmedabad 380015, INDIA.

Pranab K. Mandal
Dept. of Applied Mathematics, Faculty of EEMCS, University of Twente,
P.0.Box 217, 7500AE Enschede, The NETHERLANDS.

July 13, 2005

Abstract

In this paper we consider stochastic discrete optimization problems (DOP)
in which feasible solutions remain feasible irrespective of the randomness of
the problem parameters. We introduce the concept of the risk associated with
a solution and define optimal solution in terms of having least possible risk.
We show that a least risk solution can be obtained by solving a non-stochastic
discrete optimization problem similat to the stochastic problem in certain prob-
lems and present results regarding the generation of the non-stochastic problem
in terms of finding the parameter of the distribution which may act as surrogate
for the random element in its non-stochastic counterpart. While this surrogate
is the mean for a linear regret function, the situation is complex under general
regret. Our results show that the above result continues to hold (in general)
if the DOP has only one random element having symmetric distribution. We
obtain some bounds for this parameter for certain group of asymmetric dis-
tributions and study its limiting behaviour under two asymptotic setup. We
establish through various examples, that the results from the uni-dimensional
case cannot be extended to stochastic DOP with multiple random element with
any reasonable generality. However, we characterize a finite number of solutions
which will include the optimal solution in this case. An heuristic based on local
search type algorithm is also devised when the number of random elements is
too high, and we study the performance of this algorithm through simulation.

*Corresponding suthor



1 Introduction

In discrete optimization problems (DOPs}), some of the problem parameters are often
stochastic in nature. In these situations, the traditional notion of optimality (e.g.
least cost solutions for minimization problems) needs to be revised. In this article
we consider optimality in terms of regret function, leading to the notion of least
risk solutions (formally introduced in Section 2). We assume knowledge about the
stochasticity of the parameters (which is often the case in practice) and try to find
least risk solutions. The method we adopt is to formulate a non-stochastic DOP,
such that an optimal solution to the non-stochastic DOP is a least risk solution to
the stochastic DOP. The non-stochastic DOP is essentially the stochastic DOP with
the random parameters pegged at values based on our knowledge of their randomness
as well as other problem-specific parameters.

In stochastic DOPs, the notion of optimality is not unique. A well considered
criterion is to maximize the probability that the (random) objective function reaches
& prespecified threshold level (Frank (1969} (7] in the context of shortest path problem
and Henig (1990) [9], Carraway et al (1993) (2], in the context of stochastic knapsack
problem). Another closely related notion is to find the solution thats leads to the
optimal thershold value satisfying the constraint that the probability of the objective
function reaching the threshold value is at most a pre-specified value alpha. See, e.g.,
Henig 1990 [9] (knapsack problem), Ishii et al (1981) [12] (minimum spanning tree
problem).

The most prevalent in practice/literature, though, is the ezpected utility criterion
of Von Neumann and Morgenstern (see Fishburn (1968) [6]). With this criterion one
maximizes the decision maker’s expected utility. See, e.g., Murthy et al (1998) [16],
Loui (1983) (15} (shortest path problem); Dean et al (2004) [5] (knapsack problem)

On the other hand, behavioral notion of (posterior) regret (introduced by Savage
(1954) [18]) for not achieving what the decision maker could have achieved with
another choice, plays an important role in making a decision. See, for example,
Kaliszewski et al (1998) [13]. This motivates us to work with a notion of optimality
involving regret function. To the best of authors’ knowledge not much has been done
with this notion of optimality.

The remainder of this paper is organized as follows. Section 2 contains all the
notation and definitions to be used throughout the article along with the precise
description of the nature of the stochastic DOP we consider. Section 3 is focussed
on DOPs with one random element. In Section 3.1 we show that knowledge of the
mean of the distribution functions of the costs of the random elements is sufficient to
obtain an optimal solution for these problems provided the distribution of the random
element is symmetric irrespective of the choice of the regret function. The general
scenario with random elément having homogeneously skewed distribution is taken up
in Section 3.2. The case of multiple random element is discussed in Section 4, where
we identify the candidate list of optimal solutions. However, it is also shown that
unless the regret function is linear, it is not possible to extend the result of the earlier



gections, even if the symmetrically distributed random elements are independent. In
Section 5, we describe the algorithms that we have implemented to solve discrete
optimization problems with random variables, and réport our experiences with these
algorithms on instances of the binary knapsack problem with six to eight random
elements, whose joint distributions are discrete. Our results suggest that when the
number of random elements are in this range, tabu search is a more efficient choice
than complete enumeration for solving problems.

2 Notation and Definitions

In this section, we describe the notation that we use in this paper, and also provide
the relevant definitions.

Definition 1 A discrete optimization problem (DOP) is denoted by © = (G, S, z),
where ( is a finite ground set, with each element ¢ € G having an associated value ¢,
(often referred to as the cost of €). The set, S, of feasible solutions is a subset of the
power set of G and is usually described by a set of rules that each S € S must satisfy.
The function z : 8 — R is referred to as the objective function (or the cost function),
and the optimization problem is one of finding a member of argminges{2(S)}.

Definition 2 An element e € G in 7 = (G, S, 2} is called randomn (alternatively
fized) if ¢, is random valued (alternatively constant}.

Definition 3 A stochastic DOP (SDOP) is one in which the costs of some of the
elements in G are random.

Consider, for example, a symmetric traveling salesperson’s problem (TSP) where
one has to cover n cities, with many possible intercity routes to choose from. Suppose
the costs associated with some of the intercity routes are random. The goal is to
find an optimal route in terms of cost of travelling. Another example is the binary
knapsack problem where one is to select items (each having an pssociated weight w
and value ¢} maximizing the total value so that the total weight does not exceed a.
predetermined capacity ¢. If some of the values (v) are random then this problem
would turn into an SDOP.

In this work, we restrict ourselves to SDOPs where all feasible solutions remain
feagible, irrespective of the random parameter values. In the TSP setup described
above this is satisfied if we assume that all routes are (always) feasible. On the other
hand, in the knapsack problem, we need to have deterministic (nonrandom) weights.
H the budget or the weights are random, then the feasibility of a set of items depends
on the randomness and such a problem is beyond the scope of the current work; see
Das and Ghosh (2003) {4] for treatment of such problems.

Further, we shall consider min-sum objective functions, that is, 2(S) =}, sc..
Also, The probability distributions of the random elements are assumed to be known
and unimodal.



Definition 4 Given any fixed set of values for c.’s, the regret associated with a
solution S € S is defined by

regret(S) = r(z(S) ~ Z*),

where Z* is the minimum possible value of the objective function for given values of
¢.’s (and hence is a function of these c.’s) and #(-) is an increasing continuous function
on [0, co), such that r(0) = 0.

Obviously, with some of the ¢,’s being random, the regret associated with any
feasible solution S is also a random variable. In practice, it would not be desirable
to adopt a new course of action with every alteration of the c,’s, especially if we
deal with A"P-hard problems. So, we need to find a solution which would be “good”
regardless of the realization of the costs of the random elements. With this in mind,
we define the risk associated with a solution in the following manner:

Definition' 5 The risk associated with a solution S € 8 is given by
R(S) = E regret(S) = E r{2(8) — Z*),

where Z* is the cost of the least cost solution at specific values of the random elements,
and hence is random itself. The expectation is taken with respect to the costs of the
random elements. The 7(-) function is as in Definition 4.

Definition 6 For & DOP with random elements, an optimal solution (also referred
to as a least risk solution) is defined as a feasible solution with minimum risk among
all feasible solutions.

Notice that if all the elements of the instance are fixed, the mihimum risk solution
corresponds to the traditional concept of an optimal solution, i.e., aleast cost solution.
We will need the following notion in our later analysis.

Definition 7 The set of feasible solutions § in a (stochastic) DOP 7 = (G,8,2) is
said to be balanced (equivalently the DOP is called balanced) if

S(CG)€S,|18| =m = S €S for any § C G with |§} = m.

Recall that the probability distributions of the random costs under consideration
are assumed to be unimodal and thus they can be either symmetric or skewed. In part
of this work, particular attention is given to a specific class of skewed distributions
which we refer to as homogeneously skewed distributions.

Definition 8 Suppose a unimodal distribution with mode M has density A(-), that is,
h(-} is increasing in (—oo, M| and decreasing in [M, oo). It is said to be homogeneously
right-skewed if : '

h(M +z) > h(M —z) for almost all z > 0. (1)
It is called homogeneously left-skewed if
h{M +z) < h(M —z) for almost all £ > 0. (2)
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A unimodal distribution is said to be homogeneously skewed provided it is either
homogeneously right-skewed or homogeneously left-skewed. It is convenient to for-
mally define the skewness function and a measure of skewness for homogeneously
skewed distributions.

Definition 9 The skewness function of & homogeneously skewed distribution with
mode M and p.d.f. A{-) is defined as

wmx)=h(M+2z)—h{M—-2), >0 (3)

Definition 10 The measure of homogeneous skewness of a homogeneously skewed
distribution with mode M and p.d.f. A(-) is defined as

Th = f:o (z)dz = ﬁm{h(M +z) — h(M -- z)}dz. (4)

3 DOPs with one random element

As mentioned already, we confine ourselves to DOPs with min-sum objective func-
tions. Let # = (G,S,2) be a DOP. instance with a single random element ¢ € G.
First, we study the least cost objective function value (Z*) as a function of ¢,.

Let us denote the cost of the random element e by a random varigble X. Let X
have a (cumulative) distribution function H{.) with mean g, i.e. H{z) = P(X £ z),
and p = [ zdH(z).

We split the set of all feasible solutions S into S, and S*, respectively consisting
of all solutions containing e, and of all solutions not containing e. Let S5, be a least
cost solution in 8, and S° be a least cost solution in §°. We note that while S, and
S° need not be unique, they remain least cost solutions in their respective groups
regardless of the value of ¢,. This is because, a change in ¢, does not affect the cost
of any solution in 8¢, while it affects all solutions in S, by the same amount.

For extreme possible low values of ¢, typically, 2(S.} < z(S¢). (Otherwise, the
randomness or otherwise of ¢, is not an issue at all, since e would not be included in
the optimal solution in any case.) When ¢, increases, the cost of all solutions in S,
increase while the cost of all solution in $°* remain the same. So S, remains optimal
until ¢, increases to become larger than some threshold value, say w, when 2(S,)
becomes equal to 2(S¢). I ¢, increases further, z(S,) > 2(5¢), and 5¢ becomes a new
optimal solution. Clearly, no further increase in ¢, will meake S° suboptimal. We see
therefore, that Z*(c,) is & continuous function with a slope of 1 when ¢, < w and a
slope of 0 when ¢, > w (see Figure 1).

Note that

()=ct ¥ w 5)
S\ {e}
It follows from the discussion above that

w = z(8%) —~ Z Cer (6)

e'GS;\{e}
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Figure 1: 2(S.), 2(S°), and Z* as a function of ¢, (min-sum objective)

Further, since S, is optimal in the least cost sense if ¢, < w, in adopting S, as a
solution, one incurs a regret equal to r(z —w) if ¢.(= z) > w. Similarly, by taking 5S¢
as a solution, there is a regret of r{w — z) when z < w. Thus, the risk of these two
solutions are

R(S.) = /oo r(z —w)dH(z); R(S%) = /’U r{w — z)dH(z). (7)

Recall that our objective in this paper is to replace the cost of the random element
in the DOP with a fixed value, such that the least cost solution to the modified DOP
is the least risk solution to the original stochastic DOP. To that end, let us define the

function :

¥, x(t) = f Pz — t)dH(z) — f r(t — z)dH(z). ®)
¢ . —00

It is easy to see from (8) that W, x(-) is & decreasing function for any increasing r(-).

(See also Figure 2 below.) Naturally, ¥, x(-) depends on X through its distribution

function H(-). In the notation, either or both of the suffixes in ¥ may be suppressed,

if obvious from the context.

Now we state the main result of this section.

Theorem 1 A least risk solution to a SDOP with one random element can be ob-
tained by solving a non-stochastic DOP obtained by replacing the random cost by 6,
where 8 is the solution to

¥(t) =0, (9)
and U(t) is as defined in (8). '

Proof: 1t follows from (7) and (8) that ¥(w) = R(S.) — R(S®). Hence

R(S%) < R(S.)
< Y(w)>0=¥(@)

+ w<#f,  since ¥(-) is decreasing
& z2(S) <0+ Z Cet, by (6).
€S\{e}
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‘Figure 2: ¥(t) when ¢, ~ N(2,1) and regret function is either quadratic (solid line)
or cubic (dashed lines}.

But from (5), the RHS of the last inequality 8 + 3, S.\.{e} ¢o is equal to z(S,) when
¢e = §. Hence S° is a least risk solution if and only if $° is the least cost solution to
the {(nonstochastic) DOP when the random cost is replaced by 6. _ .

In the remainder of this section, we study the properties of the solution @ of (9).

3.1 Random Element with Symmetric Distribution

Suppose the random element has a symmetric distribution. Then, as proved in the
following theorem, the optimal solution to the one dimensional SDOP under a general
non-decreasing regret function r(-) may be obtained by replacing the random element
with its central value.

Theorem 2 Let w be a DOP with a single rendom element ¢ with cost ¢, = X having
a symmetric density function around its measure of location p, and m be the same
DOP but with ¢, fired at . Then a least cost solution to 7y iz a least risk solution to
7.

Proof: It is easy to observe that the ¥(-) function introduced in (8) may be
alternatively written as ' :

V() =E [r(X ~ )lxze)] — E [r(t — X)xen] - (10)
Now X being symmetric, X — u has the same distribution as 4 — X. Hence,
E ["(X = hx—z0] =E [r(p — X)ju-x209] 5
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and hence
(u) =0. (11)
The result then follows from Theorem 1. . (]

Theorem 2 implies that for DOPs with one random element, a knowledge of the
mean (median) of the distribution function of the cost of the random element is enough
to compute an optimal solution provided ¢, follows a distribution that is symmetric
in nature.

If the regret function is linear, then Wjpeq () = 0 for symmetric as well as
asymmetric distributions. This result holds for the case with an arbitrary number of
random elements as shown later through Thecrem 8.

In many situations, ¢, is restricted to have non-negative values. However, with
proper choice of parameters of the distribution one can achieve nonnegativity for all
practical purposes. Also, from Theorem 6 in Section 3.3, it is apparent that if the
distributional assumption is even approximately valid, then the result will continue
to hold with minor deviations in the critical value §. Therefore modeling c, using
distributions that allow negative values (say Gaussian) does not pose a big problem.

Consider for example, a case in which we model the randomness of ¢, using a
Gaussian distribution with mean mu and standard deviation 1; however, in reality
ce has a truncated Gaussian distribution supported on [0, 00). Obviously, the true
distribution is not symmetric and hence ¢ does not coincide with the modeled mean
. According to the discussion above, the error (f — u) is small, as shown in the
Figures 3 and 4.

0.7_' -
o.e—f
0.5
0.4
-1 ]
0.3
0.2

0.1

070608 1121416 '118 2 22242628 3

Figure 3; Plot of error vs. whe_n non-negative values are not allowed
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Figure 4: Plot of error vs. ff " @{(z)dz when nonnegative values are not allowed

3.2 Random Element with Skewed Distribution

In this section we deal with the case where the random element follows a skewed
distribution. Theorem 2 does not hold true in general without the assumption of
symmetry. For example, if ¢, has a Beta distribution with parameters 1 and 5, then
p = §, and with the squared error regret function (r(t) = £2), § turns out to be close
to 0.19.

Suppose the cost of the random element has continuous distribution with density
h(z), it is unimodal with mode M, and homogeneously right skewed as defined in
(1). We also assume that the density function has requisite finite moments so that
the optimal solutions have finite risk as per the choice of the regret function. Then
the following holds.

Theorem 3 Consider a stochastic DOP with a single random element which has a
homogeneously right-skewed cost distribution with mode M. Then @ > M.

Proof: Note that

(M) = / " r(z — M)h(z)dz — /_ " r(M — z)h(z)dz

M

= [T+ v+ [ rtnon - sy

=]

- / " )M + ) — (M~ g)ldy > 0, (by (1)).



The result follows from the fact that ¥(-) is a non-increasing function. =

Remark 1 The result holds even when the random element has a finite support
(say [Z,U]). The proof follows along similar lines by noting that U/ — M >M-~1Las
a consequence of (-} being homogeneously right-skewed.

In case the random element has a non-increasing density function, the result in
Theorem 3 is not useful. In such cases the following theorem provides an upper bound
to the value of 6.

Theorem 4 Consider a stochastic DOP with o single random element which has a
non-increasing density function h(-) supported on {L,U]. Then for any general non-
decreasing regret function r(-), 8 < &Y.

Proof: Using steps similar to those in the proof of Theorem 3 we obtain

L+U En L+U L+U
W(5) [ el ) a0
which is non-positive since A(-) is non-increasing. The result follows since ¥(-) is

non-increasing. ]

Remark 2 Natural analogues to Theorems 3 and 4 exist for situations in which
the distribution of ¢, is homogeneously left skewed (see Definition 8) or has a non-
decreasing density.

We now investigate the behavior of # under certain distributions for the random
element. In particular, two types of density functions,viz. Triangular and Beta have
been considered here. They are defined on a finite support, [0, 1] having the functional

form:
2*~1(1—z)8-1

Beta distribution: h(z) = B(a,8) for 0 S_ zsl
. 0 otherwise; and
& for0<z< M
Triangular distribution: h(z) = 11_;;) forM<z<1
0 otherwise.

Within this framework, the parameters have been varied to incorporate various de-
grees of skewness for the random element. The optimal solution is sought under the
regret funetions of the form r(¢) = (14 t)" — 1, for illustration. Note that this regret
is interesting as by increasing the value of n, we obtain a set of regret functions which
impose penalties of increasing strictness for the same amount of deviation. The asso-
ciated variations in the 4 are shown in Figures 5 through 7. In Figure 6, the 7 refers
to the measure of homogenous skewness as defined in Definition 4. The exact values
of § for Figures 5 through 7 are reported in Appendix Tables 6 through 8.
Key observations from these computational results are ob jectively reinforced through

the asymptotic results of the next subsection.
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Figure 6: Plot of & values against 7 and n when ¢, ~ Beta(2, 8) and r(t) = (1 +£)* -1

3.3 Asymptotic Results with Single Random Element

Recall that from our discussion in the beginning of this section that the value of ¢
(as defined through (9)) is critical in solving the stochastic DOP through a solution
of its non-stochastic counterpart. In this section, we study the limiting behaviour
of # under two asymptotic scenario. These results, proved under various regularity
conditions, show that the theorems of Sections 3.1and 3.2 would be (approximately)
valid if the requisite conditions on the probability distribution is more or less true.

Theorem 5 Consider a stochastic DOP with o single random element (X) sup-
ported on the intervel [L,U]. For a sequence of (strictly increasing) regret functions

11



100

Figure 7: Plot of ¢ values against M and n when the distribution of ¢, is triangular
with mode M and r(t) = (1+¢)" - 1

{ra(:), n 2> 1} satisfying:

. rn(tl)
|
v 7o (t2)

=00, Vt; > 13, (12)

define Wn(t) = ¥, x(t) as in (10) and let 8, be the solution of ¥,(t) = 0. Then

L+U
9,,—>T as n — 00,

so long as the the RHS of the limit makes sense, i.e. at least one of L and U is finite.

Remark 3 Condition (12} of the theorem above is satisfied by commonly used
regret functions such as r,(t) = " ra(t) = (1 +8)" ~ 1 and r,(t) = exp(Ant) —
1, where A, — 0.

Proof of Theorem 5 First let us consider both L and U to be finite. Note that for
any & > 0, [L,L + 8] and [U — 6, U), will have positive probabilities. It is enough to
show that, for any given € > 0,

L—:guesﬂnSL;U+e, C(3)

for ‘large’ n. To prove (13), it suffices (¥,,(-) being a decreasing function) to show

that L+U
\I',.(L-;U—-e)zﬁand'lf,.( ; +e)$0.

12



Suppose L < ¢ « L3 “‘U Denote &, := —t>0. Then
Uo(t) = Elra(X - lt)]I{tsx‘:u—a;}] +E [ra(X - -8 <x<uy)
| ~E [ra(t — X)izex<y)
E [7a(X — )jy-s<x<vy] — E [ra(t — X)zcx <y
2 rmU-6-tPU -6 <X<U)—r{t—-L) PL<X <)

v

= ra(B1) a1 —ra(m) - by, (14)

where
a1=lP(U——615X$U)>0; b1=P(LSXSt)>O,

61=U—61—t=y'§'&'>0', m=t—L>0
Since 8 — v = 6; > 0 we have lim,,_, ., % = oo. Purther, noting that a;,b, > 0,

nlT1

it follows from (14} that there exists N* > 0 such that
v, (_L ; v - e) Zra(B1)-ay — Ta(m1) -0y >0 for n> N

In a similar manner it can be shown that there exists N** > 0 such that
\I‘n(L;U+e)$O for n> N*,

This completes the proof of (13).

Now suppose U = oo and L is finite. Note that in this case P(X > £) > 0 for any
given £. Consider any fixed M > L. Choose £ > 2M — L. Then we have

Un(M) = E[ra(X — M)ixomy] — E [ralM — X)Lzex<m)
2 E[rn(X = M)Iixzg] —E [ra(M — X)(zcx<m]
2 ml§—MP(X 28 —ru(M~-L)-B(L< X< M)
Ta(Bs) a3 — ru(s) - bs, - (15)

where

a3=]P(X2£)>O; bs=P(L<X < M)>0;
Bs=€&~ M, =ML and ;> 7.

Therefore for any given M, ¥,(M ) > 0 for large n, nnplymg 6. > M. This proves
that &, — oo.

Similarly one can prove that 8, — —oo, if L = —o00 and U is finite. [

13



Theorem 6 Consider a sequence of stochastic DOPs m, with a single random el-
ement having cost X,,. Suppose X, converges to a X in some suitable sense to be
specified below. Define Un(t) = U, x, (t) and ¥(2) = Y, x(t) for any fized (increasing)
regret function r(-) . Let ¥,(0,) =0 and ¥(6) =0. Then

B, — 8 asn— oo (16)

under any of the following regularity conditions involving X,,, its convergence and/or
the regret function r(-).

(A) The random variables X,, n > 1 and X are discrete taking the identical set
of values with X,, converging to X weakly (in distribution). If the set of values
of the random variables is an infinite collection, then r(-) is required to be a
bounded function.

(B) The random variables X,, n > 1 and X are discrete taking the same (Enite)
number of distinct values with X, converging to X weakly (in distribution) and
r(-) is & continuous function.

(C) The random variables X,, n > 1 and X are continuous with the densities
hn(z) — h(z) for each z and r(-) is bounded.

(D) The random variables X,,, n > 1 and X are continuous with the densities h, s
and h having identical finite support [L,U), hn(z)} — h(z) for each z and r()
15 continuous.

(E) The random variables X,, n > 1 and X are continuous with the densities he(z)
converging to h(z) uniformly in z and r is integrable.

Remark 4 If the limiting random variable X is symmetric, then 6, converges to u,
the mean of the limiting distribution.

Remark 5 In the regularity conditions A and D, the ‘identical’ support constraint
may be relaxed to indicate that the supports of X and X,, (for large n) are contained
in a finite interval.

Proof of Theorem 6. For any given ¢ > 0, we shall show that
Vn(@0—~€)2>20 and ¥,(6+¢) <0, forall ‘large’ n,
implying that 8 — ¢ < 8, < # + ¢. Note that
Ua(t) = (&) + (E [r(Xn — ixaze] —E [F(X — )(x24])
+ (E[r(t - X)lixen] - E [t - Xa)Tixysa])
= V() +aa(t) +ba(t), say. : (17)

14



We will show below that, under any of the regularity conditions (A) - (E),
lim a,(t}) =0 and nlim bo{t} =0, Vi (18)

By definition of # and property of ¥, note that ¥ (6 —¢) = 6 > 0 And (@ +e) =
~—7 < 0. Then from (17) and (18) we have for large n,
Va(—€)=0+an(6—€)+ b0 —€) >0
and
_ Uo(04+€)=—v+an(0+€) +b.(0+¢) <0
completing the proof of the theorem. [ ]

The proof of (18) under the regularity conditions: We would provide the proof
for the {a,} sequence only, as the same for the {b,} would follow similarly.

(A) Let the distinct set of values of X,, and X be & = {s; < s, < 83 < ++-}. First
note that, weak convergence of X, to X implies:

P(Xoa=8)— P(X =8), P(X,>s)— P(X>s) Yk (19)
From (17), we have
o) = > r(s — H)[P(Xn = s) — P(X = 53)] (20)

and hence if S is finite, the result follows immediately by finite summmation of
limits. To prove the resuit when S is infinite, assume that the regret function
r(-) is bounded by B. Given any ¢ > 0, find K such that

P(X > sk) < (1)
this would also imply that _
P(X, > sx) < 2%, (22)
for large n. Now from (20),
an(t) = z r(sk — t)[P(Xn = s} — P(X = 5))
t<a <oy
+ ) (s = OP(Xn = sx) — P(X = s;)
k=K+1 .
< Y (s —t)[P(Xn =) = P(X = 5,)] + B x %,
tSor<op

for large n, by (21), (22) and boundedness of r(-). Since e is arbitrary it follows
from (19} that a,{t) — 0.
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(B) Suppose X,, takes K(< o0) values : s,; < --- < sux and the K values of X are
81 < -+ < sg. Then from the weak convergence of X, to X, it foliows that for
eachkt=12,.. K,

Sk — Sk and P(X, =sp) — P(X = 53) a8 71— 0o.

Then the continuity of r(-) results in

X .
lim E [T(Xn — t)]l{xngg}] = nllncloz:"(snk - t)P(Xn = snk)]I[t,oo)(Snk)
k=1

=00

K
2 lim [r(sae — )P(Xa = 5 )0y (504)]
k=1

K

= D s~ OP(X = slpap(s6) = E [r(X = Oxon),

k=1

completing the proof that a,(t) — 0.

In the continuous case note that
lan®)] = [ [r{Xa — )xaze] — B [F(X — ) ixag]|
_ ' /t "t = £) [bu(z) — h(z)) da:, . (23)
(C) Suppose r(-) is bounded by B. Then from (23) we have
Jim len()] < Blim [~ () - @)l dy = 0

The last equality follows from the fact that A,'s and & are density functions
and hence pointwise converges implies L! convergence (see, for example, [1]
Theorem 16.11).

(D) Let the (identical) finite support h,’s and & be (L, U]. Since r(-) is continuous,
it is bounded by B, say, on [L,U). Hence from (23) we have

tim w8l < Blim [ 1he) = bl dy = 0.
(E) In this case we have, from (23),
@)l < suplhate) k(@) [ r)ay — o
by uniform convergence of h, and integrability of r(-).
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The following conjecture is a possible result in the the same direction as in The-
orem 6, when the measure of homogenous skewness vanishes in the limit.

Conjecture 1 Consider a sequence of stochastic DOPs, each having a single random
element with cost X,,. Let the random element be homogeneously right-skewed with
the density function (h,(-)) and mode M, (converging to M) with decreasing onder of
skewness (partial order determined by the skewness function), i.e.

M(T) 2 Yonr{z), Vz,¥n, where 4,(z) = ho(M, +z) — ha(M, — ).

Then Vz, the sequence ya(x) has a (nonnegative) limit, say y(z), and if the limit of
the homogeneous skewness measure (which has to exist)

= lim['y,.(:c)dx = /'Y(I)d-'f

s 0, then 8,, satisfying ¥, x_(6,) = 0, must converge to M as n — oco. Recall that
by Theorem 3, 6, > M,.

4 DOPs with Multiple random elements

We now consider a DOP instance 7 with r (more than one) random elements. Ac-
cordingly, we partition G intec Ggr = {ej,...,e} of random elements, and Gp =
{€rs1s...,rys} of fixed elements. Let X;,..., X, be the random variables denoting
the values of c.,,...,c., and H(z),...,X,) denote Pr{X; < z,,..., X, < X:). We
represent the objective function value of any solution S as

() =F($+ > X (24)

i ESNGR
where F(8) = Z ce is the fixed component of the cost 2(S).
Let Kl,...fﬁgfge the 2" subsets of K = {1,...,7}. Fori=1,...,27, let
S:i={5:5€8; e€8 ViekK; e ¢S ViecK\K,} (25)

constitute a partition of 5. In certain problem situations, some of the §;’s may be
empty.

Lemma 1 If S', 5% € 8, for some i, then 2(S') — z(S?) is non-random.

Proof: By construction (25), S! and S? have the same set of random elements and
hence by (24), 2(S") — 2(5?) = F(S') — F(5?%) which is non-random. m
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Definition 11 For i = 1,...,2", denote the least cost (risk) solution within §; as
S, ie.,
#(S) = min 2{S).

Remark 6 While the S; in Definition 11 need not be unique, its existence (whenever
S; # @) is ensured by Lemma 1, since the least cost solution within §; can not change
with randomness of (X,..., X} ).

Definition 12 We now introduce the sets {R;;1 < i < 27} in the r-dimensional
Euclidean space (R") as follows. R; =@ if §; = @, otherwise

Ri = {(z1,...z,) : S; is & least cost solution at (z1,...z,)}. (26)
We define a partition of ®" through {F;;1 < i < 2"} where

P =Ry, and B=R:\(JP) i=2,...,2" 27

jei
Notice that for allé=1,...,2", P; C R..

We are now in a position to prove the main theorem for DOPs with more than
one random elements.

Theorem 7 Consider a DOP with r random elements e, es,...,e, having costs
X1,..., X which are random variables. Then the least risk solution (under gen-
eral loss function} of the DOP will be one of the S;’s, as introduced in Definition 11,
and their risks are given by

2r '
RS) =Y [ n(a() = =(S,)aH) (28)
where P;’s are as defined in (27).

Proof: We first show that,
R(S) =2 m;'n{R(S_f)} for any S € S. (29}

Consequently, at least one among ) through Syr, is an optimal solution in the mini-
mum risk sense. To prove (29), note that 3 j such that S € S;. Then

R(S) =Er(2(S) - 2°) = E r(2(S) — 2(8;) +2(S;) — Z") 2 B 1(2(S;) - 2*) = R(S;),

with the inequality following from the fact that r(-) is increasing and 2(S) — 2(S3;) is
non-random and nonnegative.

The expression (28) follows from the definition of risk and the fact that S; is the
least cost solution when the random cost is in F;. ]
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Remark 7 By (24),

(S)-=(S) = F(S)+ Y am—[F(S)+ Y om]

mEK; meK;

= [ X am- ¥ oz +FE)-FS). (30)

meKi\K; meK K

If 5; is a least cost solution at (z1,...X.,), then for this set of costs, 2(S;) <

2(5;), Vji=1,...,2". Hence, an alternative characterization of P, is
P = {(ml,...,X,.) D Emm ) e SES)-FS), j=1,..2} @)
mEK\K; mER\K;

Theorem 8 Consider a stochastic DOP with r random elements having costs X1, . . .,
Xe. If Xi’s are random variables having finite means p;, ¢ = 1,...,7 respectively,
then the least cost solution of the non-stochastic DOP corresponding to the costs of
Cerr -+ 1Ce, fized at iy, ..., p,, will be an optimal solution of the stochastic DOP in
the least risk sense for any linear regret function of the form

r(t} = a + ft, where 8 > 0.

Proof: Under the linear regret, minimizing R(S)} is equivalent to minimizing Ez(S)
which by (24) reduces to minimizing

F(8)+ Z Hi-

e, €5NG R

This is the same as finding the least cost feasible solution of the DOP with random
costs being replaced by their mean values. n

However, for non-linear regret function, it is not enough to replace the random
costs by their respective averages, as shown even in the single random case. It is nat-
ural to explore if Theorem 2 can be extended for symmetrically distributed multiple
random elements. In an attempt to provide reasonably complete answer to such a
passible extensions, we now explore & series of examples and associated results from
simulation exercises that lead to partial results and conjecture. In these examples,
the (r) random elements are assumed to have costs Xj,..., X, {(with X; having mean
1) as before, while the f fixed elements have costs ¢; < ... < ¢;. We also use the
notation 57”7 to denote the least cost (risk) solution among solutions containing
Xiy,y ..., X, but not containing any of the Xj,, ..., X;; the suffix or superfix in such
notation for a solution may be omitted, if it is obvious from the context,

In addition, in many of the examples, we consider a balanced DOP (refer to
Definition 7), where the minimum cardinality of a feasible solution is k. Note that
any optimal solution (in any sense) would have cardinality exactly k in that case.
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Example 1 Consider a balanced stochestic DOP with r = 2, f =1 = k. Suppose
now that X; has a V-shaped distribution, supported on (0,1) having density

f(x)={4|:c—0.5| if0<z<l,

0 otherwise , (32)

while X; = 1 — X;. Thus the two random costs are identically and symmetrically
distributed random variables, which are strongly dependent. The three candidates for
an optimal (least risk) solution Sy, S» and $12 have costs X;, X, and ¢; respectively.
For ¢; = 0.5, Z* = min(X;, X,). It is easy to check that, with the regret function
7(t) = %, the risks of the three solutions are as follows:

R(S) = R(5;}) =0.25, R(S") =10.125.

If ¢; is marginally higher, say equal to 0.501, the risk the random edge solutions stay
(almost) unchanged while the S'? now has a risk of 0.125668. Thus, the least cost
solution to the corresponding non-stochastic DOP (with the random edges replaced
by fixed edges with respective average costs) is no longer the least risk solution of
the stochastic DOP. Indeed, one would continue to observe this ‘counter-example’ for
¢ € (0.5,0.65).

The above illustration is possibly more pronounced because of somewhat unusual
feature of the V-distribution. However this is hardly specific to the distribution
considered. For example, if we consider a symmetric triangular distribution on (0,1),
i.e. having a density:

4x if0 <z <0.5,
flz)=< 41—-z) if05<z <], .(33)
0 otherwise ,

we observe the same phenomenon for ¢; € (0.5,0.6).

Example 2 Consider a balanced stochastic DOP with r = f = k = 2. The two ran-
dom elements are assumed to have costs that sre independently distributed, with X 1
following the V-distribution and X, following the Triangular distribution as specified
in (32) and (33), or both X, and X, following the Triangular distribution. Tables
9 through 10 report the risks of these four candidate solutions, for some randomly.
generated values of c;, ¢, for the regret function 7(f) = t2. ¢

These examples show that for SDOP’s with multiple random elements, extension
of Theorem 2 is, in general, not true, i.e., it is not enough to replace the random
costs by the respective average costs to arrive at the optimal solution irrespective of
whether the symmetrically distributed random elements are

» dependent or independent of each other,
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¢ identically distributed or otherwise.

The results from these simulation exercises, however, indicate possibility of a
partial result that can be considered as a weak extension of Theorem 2 in the mul-
tidimensional case. Towards that direction, we put forward the following theorem in
the two-dimensional case (2 random elements).

Theorem 9 Consider a 2-dimensional balanced stochastic DOP (r = 2). Suppose the
random costs X, and X, are independent and symmetrically distributed with mean
1 and jiy, respectively. Further assume that the regret function satisfies the following
growth condition

T+ B)—rb)>r(ea+a)—r@) for b>a>0andB>a>0. (34)

Then in each of the following situations
(@) f=1=k ) f=1,k=2 ) f=2=k
the following holds:

(1) If (1, p2) € RY2 then 82 is a least risk solution.

(15) If (g1, p2) € Ry then Sy 2 is a least risk solution.

Proof: The proof is given in the Appendix 5.4. [

Remark 8 The theorem is true in a more general setup, namely when U, := X; —
i, T = 1,2 satisfy

UL ) B (-0, Up) & (U, -Th) B (-0, -Uh) (35)

which is true when X, and X, are independent and symmetrically distributed with
mean j; and ps.

Remark 9 The growth condition (34) is satisfied by commonly used regret functions
such as r(t) =t* r(t) = (1 +t)" — 1 and r(t) = exp(At) — 1, where A > 0.

Remark 10 The reverse statement of the theorem is not true and consequently
(41, 2} € P} 5% is a least risk solution, and

(#1,p2) € P # S3 is a least risk solution.
These can be seen from the last instances in Tables 9 through 10.
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The conclusion of Theorem 9 does not hold true if the two random elements are
dependent on each other. This is evident from the simulation study reported in the
Appendix Table 11. This is in the framework of Example 2 with (X1, X3} following
Bivariate Normal distribution with identical mean 10 and standard deviation 2 having
& correlation of 0.5. At the same time, simulation result supports the validity of
the result when the variables are independent and normal as seen in the Appendix
Table 12. The theorem leads us to the following conjecture which is also supported
by additional computations via simulation, as detailed below. '

Conjecture 2 Consider a balanced stochastic DOP with r random elements, having
costs Xu,...,X, that are independent and symmetric random variables with finite
means i, ¢ = 1,...,7 respectively, and f fized elements with costscy < ¢, < ... < ¢y.
Then the least risk solution unll consist only of the

o fized elements (when feasible} i minjgic, i > cr,

¢ random elements (when feasible) if maxicic, i < cy.

Remark 11 Without the ‘balanced’ condition the conjecture need not be true. To
see this consider & DOP with 3 elements R, Fy, F», the first of them being random
while the other two are fixed; let their costs be X (random), ¢; and ¢, respectively,
such that o1 + & > u(= E(X)) > ¢ > ¢;. Suppose S = {{R},{F,R)}}. For
symmetric X the least risk solution is then {R} (see Theorem 1 in section 3) which
violates the conclusion of Conjecture 2. This stochastic DOP is not balanced.

Remark 12 Only the following cases are relevant for the conjecture :
(@r>f=k B)r=k>f and (c)r=f=k

To see this, first observe that we may assume, without loss of any generality, f < k.
Further, if r < k, then the optimal solution would necessarily contain at least (k—r1)
fixed elements with costs ¢, - -, ¢y, and consequently the problem can be redefined
in terms of a balanced DOP with r = £ > f. Finally, if r > k and f < k, then neither
S, nor SH2-7 g feasible.

Remark 13 In light of Remark 12, conjecture 2 reduces to Theorem 9 when r = 2.

The scope and validity of the conjecture has been examined on the basis of fairly
extensive simulation study. Appendix Table 13 reports the risks of the candidate
solutions in the balanced DOP with r = 2 = k, f = 1 with random elements having
independent Normal distribution, where as Table 14 and Table 16 respectively report
the same for r =3,f =2 =k and r =3 =k, f = 2. Appendix Table 15 considers
the r = f = k = 3 case with the three random elements having three different types
of symmetric distributions, but are independent on each other. Each of these tables
reports only selected cases of much larger (1000+) simulation runs.
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Another (partial) result is also obtained which has significance in the context of
a (symmetric} Traveling Salesperson Problem. Suppose The salesperson has to cover
n cities in a given order. From every city to the next in order there are two routes.
One route has known cost and the other random. An optimal route (in the sense of
minimum cost) for the salesperson has to be decided before the journey begins. The
following theorem says that if the random costs are independent of each other and
symmetrically distributed then the pairwise optimal choices (i.e., the optimal route
between the fixed cost one and the random cost one connecting every pair of cities)
constitute the optimal route for the whole journey of the salesperson.

Theorem 10 Consider a stochastic DOP with n random elements having costs X ’s
and n fized elements with costs ¢;’s, for i = 1,...,n. Suppose further that in this
DOP, a solution is feasible if and only if it contains one (and only one) from each of
the pairs (Xy,¢1),...,(Xa, ). If the X;’s are independent random variables having
symmeiric distributions with mean y; s, then a feasible solution containing only those
Xi's satisfying 1 < ¢ is a least risk solution.

Proof: The proof is given in the Appendix 5.5. [

Remark 14 The theorem holds in a more general setup when U; := X; — i, i =
1,2,-..n satisfy for any i; = 0,1, j=1,2,...,n,

(1)U, (1)U, ..., (~1)"U,) 2 (U, Uy, Uy) (36)

which is true when X;’s are independent and symmetrically distributed with mean
U3

Remark 15 The assumption about symmetrical distribution is critical for the va-
lidity of Theorem 10. First of all without symmetry the surrogate parameters are no
longer (necessarily) the means p;’s. Perhaps more critically, as the following exam-
ple shows, without the symmetry assumption, one may not get an optimal solution
by combining the optimal solutions of the {independent) one-dimensional stochastic
DOP’s (i.e., having single random element). While this may appear to be counter-
intuitive, this is a natural manifestation of nonlinear regret function. To illustrate
this take n = 2 and consider

"= (G = {thhX2! 02}38 = {{XI:X:!]'; {Xl,(‘/)}, {clsxﬁ}v {ch 02}}, z)

where X; ~ Beta(l,1.5); ¢ = 0.401; X, ~ Beta(l,2); ¢z = 0.35. Now consider the
two sub-DOP’s each with single random element, viz.,

7 = (G = {X;, 6}, 8 = {{Xi}, {a:}},2), i=1,2; r(t) =2

23



Then
R](Cl) = 00306, Rl(X]_) = 00380, RI(CQ) = 00261, R]_(Xz) = 00298,

i.e., ¢; is better than X, and c; is better than X, but for SDOP 7 {c,, Xa} is optimal,
since

RQ(C],Cz) = 00809, Rg(C},Xz) = 0.0808, Rz(Xl,Cg) = 00881, Rz(Xl,-Xg) = (.0881.

- 5 Computational Experience

In this section we report our experiences with algorithms that we designed to obtain
minimum risk solutions to combinatorial optimization problems. We chose to imple-
ment our algorithms to obtain minimum risk solutions to the 0-1 knapsack problem
(01KP). The algorithms were coded in C and compiled and run on a 2.8GHz personal
computer with 512MB RAM running Linux.

5.1 Description of the Problem Sets

For the 01KP, we chose problems with N random elements, and 10 fixed (non-random)
elements. The marginal distributions for each of the N random element were discrete,
each having a pre-specified number P support points. Therefore, each of our problems
therefore have 2V candidate optimal solutions, and PN support points in the joint
distribution of the random elements.

In our experiments, we considered two situations, one in which the N random ele-
rents were independent, and the second in which they were dependent. To facilitate
comparison, for each problem instance in the dependent case, the joint distributions of
the random elements were generated keeping the marginal distribution for each ran-
dom element, identical with the marginal distribution of the element with the same
index in the corresponding independent case.

We experimented with the (N, P) pairs (6, 6), (6, 8), (6, 10), (8, 4), and (8, 6).
Problems smalier than these were too trivial to be interesting computationaily, while
problems larger than these took exorbitant amounts of solution time. For each of the
(N, P) pairs that we chose, we generated ten instances. Each instance consists of
the profit and coet values of all the fixed elements, the non-random cost values of the
random elements, and the joint distribution of the profits of the random elements.
The collection of these ten instances is called a set.The performance of an algorithm
on any instance is measured by the suboptimality of the solution it generates — the
higher the value of suboptimality, the worse the performance. The performance of
an algorithm on any of the sets is measured by the average of the performance of the
algorithm on all the ten problems in the set. Table 1 presents the size of the search
problem for our chosen values of N and P.
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Table 1: Size of the search problem
N P 2F pPY
6 6 64 46656
6 8 64 262144
6 10 64 1000000
8
8

4 256 65536
6 256 1679616

5.2 Description of the Algorithms

For knapsack problems, we do not have an efficient representation of the regions in

the solution space in which a particular solution is the minimum cost one. We are

therefore unable to make use of (28) in our implementations; instead we adopt one of
the two methods described below to compute the risk of any solution.

Generate All Support Points (GASP) In this method, all support points of the
joint distribution are generated. The objective function values of each of the
candidate optimum solutions are obtained for the support point, and the max-
imum of the solution values is retained as the best solution value achievable
at that point. In order to compute the risk associated with any solution, the
objective function value of the solution is computed at each point in the support
of the joint distribution, and the suboptimality of the solution at that support,
point is computed, making use of the retained best solution value at that point.
The expected value of suboptimality of that solution is then computed as the
risk of the solution.

Monte-Carlo (MC) In this process, a simple random sample of a pre-specified
number (s) of points are generated in the support of the joint distribution. As in
GASP, the objective function values of each of the candidate optimum solutions
are obtained for the points in the sample, and the maximum of the solution
values is retained as the best solution value achievable at that point. In order
to compute the risk associated with any solution, the objective function value of
the solution is computed at each of the sampled points, and the suboptimality
of the solution at that point is computed. The suboptimalities of the solution at
each sample point are added up and appropriately scaled to provide a measure
of the rigk of the solution. Needless to say, this is an approximate value of the
risk of the solution.

We slso implement the following two ways of searching for a least risk solution among
the candidate optimal solutions. '

Complete Enumeration (CE) In this method, we simply evaluate the risk asso-
ciated with each of the 2V candidate optimal solutions, and choose one with
the minimum rigk value. This method is extremely time consuming, and is ap-
propriate only for very small problems. However, it is also an assured method
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of finding a least risk solution when combined with GASP, and can be used to
benchmark the performance of other algorithms.

Tabu Search (TS) Tabu Search is a well-known method of obtaining high-quality
solutions to large combinatorial optimization problem. It is an extension of the
local improvement algorithm. The pseudocode below describes the procedure.

Procedure Tabu Search

Step 0 (Initialize) : Choose a solution as the current solution. Generate an
 empty list TABU. Let BestSolution «— current.

Step 1 (Termi.nate) : If a user-specified termination condition is reached,
output HestSolution and exit.

Step 2 (Search) : Search the neighborhood of current. Let BestNontabu
be the best solution in the neighborhood that can be reached from the
current solution without the aid of any move in the TABU list. Also let
BestTabu be the best solution in the neighborhood that can be reached
from the current solution using & move in the TABU list.

Step 3a (Aspirate) : If BestTabu is better than both BestNontabu and
BestSolution then let BestSolution +— DBestTabu, current « Best-
Tabu, and empty the TABU list. Go to Step 1.

Step 3b (Move) : Choose a value of tenure and add the move from current
to BestNontabu to the TABU list for a period of tenure iterations. Let
current «— DBestNontabu. If BestNontabu is bett.er than BestSolution
then let BestSolution + BestNontabu.

Step 4 (Update) : Update the TABU list by removing the moves that have
already been in the TABU list for their prescribed tenure. Go to Step 1.0

In our implementations, two solutions are said to be neighbors if the sets of
random elements in the two solutions differ by at most two elements. The
solution chosen as the initial current solution is an optimel solution to the 01KP
instance obtained by setting the profit value of each of the random elements to
the expected value of its marginal distribution. The tenure value is chosen as
a random integer between 4 and 2Y. The termination criterion was based on
the execution time alloted for the search, and was set betweenr 15 CPU seconds
and 250 CPU seconds depending on the N and P values.

Given that we have two methods for computing the risk of a solution and two methods
for search a least risk solution, we define four algorithms, GASP-CE, which uses
GASP to compute the risk of each individual solution, and CE to obtain a least risk
solution; GASP-TS, which uses GASP to compute the risk of each individual solution,
and TS to obtain a least risk solution; MC-CE, which uses MC to compute the risk of
each individual sojution, and CE to obtain a least risk solution; and MC-TS, which
uses MC to compute the risk of each individual solution, and TS to obtain a least
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risk solution. Of these we recommend GASP-CE for instances with low N and P
values, GASP-TS for instances with low P values and moderate N values, MC-CE
for instances with moderate N and P values, and MC-TS for instances with high N
and P values.

5.3 Results from Computations

We first report our experience with the execution times required by the four algo-
rithms on our problem sets. The time required by the algorithms can be broken up
into two components, the time required by the algorithms to generate the support
points (i.e., the GASP and the MC components) and the time required to search
for the least risk solution among the candidate solutions (i.e., the CE and TS com-
ponents). Table 2 reports the times taken by the copmponents of the GASP-CE
algorithm, while Table 3 reports the times required by the components of the MC-CE
algorithm with different cardinalities of the support (denoted by s). The time required
by any of the components on an instance in the dependent, case was never found to be
significantly different from the time required by that component on the correspond-

ing problem instance in the independent case; therefore we report an average of these
times in our tables.

Table 2: Execution times required by GASP-CE (in CPU seconds)

N P GASP CE

6 6 1.626 2475
6 8 9.084 13.871
6 10 34759 53.005
8
8

4 11558 18.641
6 280.255 433.200

Table 3: Execution times required by MC-CE (in CPU seconds)

N P 5=3000 5=4000 5=5000

MC CE MC CE MC CE
6 34.061 0.037 45.127 0.056 b56.323 0.078
8 37469 0.037 49552 0.055 60.799 0.079
10 49333 0.037 64981 0.057 79.896 0.077
4 132237 0.154 176.485 0.236 220.763 0.330
6 159400 0.155 208.820 0.240 258.795 0.329

(o v = R R )

In our experiments with GASP-TS and MC-TS, we found that GASP-TS and
MC-TS used the same time as GASP-CE and MC-CE respectively to generate all
support points and compute the maximum profit solution at each support point. The
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TS procedure took less that 0.001 seconds in all cases for GASP-TS and the maximum
time limit set for MC-TS to generate the solution that the algorithms finally output.

Note that GASP-CE is an exact algorithm in the sense that it outputs the least
risk solution to the problem. The three other algorithms output solutions which
- are not necessarily minimum rigk (but hopefully low risk}). The suboptimality of a
solution output by any algorithm (say A) to an instance is computed as

R(zA)} — R(z*)

suboptimality = Rie)

(37)
where z° is the least risk solution for the instance, and z# is the solution output by
the algorithm A.

The performance of GASP-TS was very encouraging for the problems we tested
it on. Each of the solutions that it output was found to be optimal. Hence we
can conclude that, at least for these problem sizes, GASP-TS clearly outperforms
GASP-CE in terms of execution times, without sacrificing solution quality.

In case of MC-CE and MC-TS algorithms we chose three values of s for our
experiments, viz. 3000, 4000, and 5000. Since we take a random sample for the MC
procedure, we performed 25 runs for each problem instance and chose the average
of the suboptimality values over all 25 runs as the suboptimality of the MC-CE
algorithm for each instance. Tables 4 and 5 contain the results of our experiments

Table 4: Quality of solutions output by MC-CE and MC-TS when random elements
are independent

=
i

g MC-CE MC-TS
mean  s.d. mean  s.d.
3000 1.7354 0.0060 0.4826 0.0000
3000 19721 0.0048 0.5169 0.0000
3000 1.9564 0.0010 0.4205 0.0000
3000 0.0230 0.0100 0.0770 0.0000
3000 0.0194 0.0020 - 0.1775 0.0000
4000 1.7347 0.0056 0.4588 0.0000
4000 1.9697 0.0022 0.4964 0.0000
4000 1.9562 0.0000 0.4205 0.0000
4000 0.0230 0.0107 0.0659 0.0001
4000 0.0198 0.0034 0.2039 0.0000
5000 1.7337 0.0032 0.2672 0.0000
5000 1.9716 0.0038 0.5169 0.0000
5000 1.9564 0.0010 0.4205 0.0000
5000 0.0236 0.0083 0.0770 0.0000
5000 0.0191 ©0.0025 0.2039 0.0000

- WAL X - =
[ [ bt
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with MC-CE and MC-TS on the problem sets. The mean suboptimality value for
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Table 5: Quality of solutions output by MC-CE and MC-TS when random elements
are dependent

2
v

] MC-CE MC-TS
mean s.d. mean s.d.
3000 1.7395 0.0077 0.4835 0.0000
3000 1.9724 0.0052 0.5189 0.0000
3000 1.9563 0.0010 0.4205 0.0000
3000 0.0221 0.0076 0.0766 0.0000
3000 0(.0188 0.0044 0.1773 0.0000
4000 1.7380 0.0058 0.4595 0.0000
4000 19700 0.0027 0.4965 0.0000
4000 1.9561 0.0000 0.4205 0.0000
4000 0.0206 0.0106 0.0657 0.0001
4000 0.0197 0.0027 0.2005 0.0000
5000 1.7376 0.0056 0.2661 0.0000
5000 19717 0.0038 0.5169 0.0000
5000 1.9563 0.0010 0.4205 0.0000
5000 0.0226 0.0079 0.0766 0.0000
5000 0.0182 0.0024 0.2005 0.0000

LR e S R L e N N [ R
omESwook ool oeoo

solutions output by MC-CE for problems with 6 random elements is seen to be high
when compared to those for solutions output by MC-TS. On inspection of the results
fur individual instances, this high mean suboptimality is seen to be caused by one
problem instance in the set. If we remove this problem instance from the sets, then
the mean suboptimality values of the solutions cutput by MC-CE are seen to be of the
same order as those for the solutions output by MC-TS. Changing the set of points
in the sample of support points chosen by MC-CE for this problem however, did not
remove this anomaly.

From the standard deviation values seen in the tables, it seems that MC-CE
is sensitive to the samples of support points chosen by the Monte-Carlo method,
while MC-TS is not. However, on examination of the results for individual problem
instances, MC-CE is seen to he sensitive to the choice of sample points in 1 or 2 of
the instances in the sets with 6 random elements, and in 5 or 6 of the instances in
the sets with 8 random elements.

We do not see any consistent improvement in the quality of solutions when the
sample size is increased. This is surprising, although we think that such an improve-
ment will be observed when the sample size increases significantly. The quality of
solutions output by the algorithms when the random elements are independent is
not significantly different from when the random elements are dependent. This is
expected, since the algorithms do not make use of the property of independence (or
otherwise) of the marginal distributions.
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Appendix

5.4 Proof of Theorem 9

We shall give the proof under the general condition (35) of Remark 8. It is sufficient
to compare R(S'?), R(S?), R(S}), and R(Sy3). Without loss of generality assume
that u; < ps.

First consider the situation (a). Note that in this case

Riz=0, Rl = {z; Smin(c,z2)}, Ry ={m S e,z2 S 1}, R = {2, > ¢, > ).

Since R,z = 0, only statement (i) is to be proved. So assume that the fixed cost
¢ < i < pi2. We need to show that R(S'?) < min{R(S?), R(S})}. Note that in this
case the partitions of R?, given in Definition 12, can be taken to be

P],.z = 0, 1:)12 = {:r:1 < min(c,xg)}, Pl = {1:2 L6,Iy < :L'l}, P12 = {3,'1 >C,Ty > C}.
Letting u; = a; — g we can rewrite the partitions w.r.t. {1, ug)-space as follows:

Qur,u) = {u < min(e— gy, up + pp — )},

Qz(ur,ua) = {ug <~ po,ua < 4y + oy — ),
QY2 (uy, ug) {w > c— py,ug > e~ iy}
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From (28} and (35) we then have,

R(8}} = Elr(Xs ~ Xo)lpy(Xt, Xa)] + E[r(X: — )lpra(Xn, X5))
= Elr(Ui+m — Uz — m)lgyw, o)) + Elr(Us + i1 — Ilgrag, vy)
= Elr(Uh + Uz + m ~ p2)lgyun,—ug)) + Elr(Us + p1 — lgragw, va)

and similarly

R(S}) = Elr(Xa— X1)lpa(X1, Xo)} + E[r(Xa ~ )Ip1a(Xy, X))
: Elr(Us + Uz + p2 — p)lgr_vva)} + Elr (U2 + g2 — )igra, u)

Efr(c - Xi)Ipa(X1, Xa)] + Efr(c — Xo)lps (X, X2))
Elr(Us + ¢ — m)lgau, o) + Elr(Ua + ¢ = pm)lgu, —uyl-

Then the difference R(S?) — R(S*?)

= Elr{lh +m = lgraw, ] — Elr(Us + ¢ — i) lga-u, )
+ E[{T‘(Ul + U2 + HL — p‘.z) - T(Uz +c- M)}IQé{UL.—Uz)]'

I

R(sl.z)

Note that (see Figure 8)

QU U, Us) = {Uh > ¢~ w, Uz > c— )
= {c—,ul<U1<p;—c,U2>c—m}U{U1Zm-—c,Ug>c—,u,2}
= AU B, say,

Q=01 1) = {U; > max(p; —c,~Us — gz + 1))}
= BU{lh<e~p,U) 2 —Uy — iy +m} = BuUC®, gay,

QUi ~Ua) = {Up > pp - ¢, Uz > —Uy — iy + 3}
= (U <c—p,Uh> U, — g + 2}
Ufe-msU S~ 2 pp—c Uy +Up > —py + )
U > =, Uy > U= iy + o} U{lh 2 o — ¢, Uy 2 Uz — 13 + 1}
= DWMUEUDUC, say.

Then R(S%) — R{S"?) can be rewritten as

= Elr(Ur+p —~ )] + E[{r(Us + pi1 —¢) — r(Uy + ¢ — 1)) }ig)
— E[r(U1 + ¢ — m)lcw)
+ E[{T(Ul +Uz+p —pa) —r(Ua+c—- M)}{Ip(n +Ip+1p+ Ic}]

Clearly E[r(Uy + gy — c)I4} > 0. Also, since r is incressing and ¢ < p,, we have

r(U1+ 1 ~c¢) 2 #(Ur +c— ) and hence E[{r(Uh + 1 —¢) - r{U; + ¢ — ;) }g) > 0.
Now note that the region C® reflected along u;-axis (i.e., replacing U, by —Ub) is
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Figure 8: Decompositions of sets of integrations for R(S?) — R(5%2). First plot is for
sets involving r(U; + - --) and the second for the (common) set involving r(Us + - - -)
and r(U; 4+ Uz +---). Arrows indicate the (non)inclusion of boundary lines/points.
Symbols ‘+’/‘—’ indicate the contribution from the integral over the corresponding
set to the difference R(S?) — R(S%2).

same a3 C' and similarly, D@ reflected along up-axis (i.e., replacing U by ~U,) is
same as D). Then using symmetry, we get

E[T(U1 +c— ]J.l){cm] = E[T(U]_ +c- ﬂ.])ﬁcl, and
E{{r(U + Uz 4 i1 — pa) — r(Us + ¢ = 122) { )
= E{r(-U1 + Uz + p1 — t1z) ~ r(Uz + ¢ — ps2) }Ip)
Thus
E[{r(Ur + U2 + i1 — 2) — r(Uz + ¢ = p2) He] = Efr(Uh + ¢ — o]
= E{{rhi+Uz+m - o) —r(Us+c~ tz) —r(Uh +e—u)He] 20
because, on C = {U; > py ~ ¢, U, > U — 2+ m},

r(Uh +Us + g = ) — (U te—w) —r(Uy+ec—-py)

= rUtltm—p)—rUate—m) - U +e—pm) - r( 0 )]
b+a b nta a
2 0 since GZO, b_ﬂ=U2+c—u220;

and a=Uy+c-1 20, f-a=2uy -c)>0.
Further E[{r(U) + U + p; — pa)—r(Ug+c— ) HIpoy + In}]

= E{[r(U + U2+ m — ) ~ r(Us + ¢ — )]
+[r(=Ur + Uz + 1 — p2) — r(Uz + ¢ — )| Hp] > 0

because on D = {U; > —c, Uy > U — g + 2},
PO+ U+ 1y —ﬂz)—T(U2+C—M)]+[T(—U1+U2+,U1 —M)"T(Ug‘-f-c——#g)]
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= [T‘LU1+U2+#1—#Q—T@2+C"#3)]
b

b+8
- ['I"(Uz +c— ig) — T(:Ul + s + py — p.fz)]
Gt a

2 0 since a=U-U+py~pp20, b—a=U+c—p >0
and a=Ui+c—py 20, B—a=2(u ~c)>0.

Finally note that E[{r(U; + Uz + py — p2) — 7(U; + ¢ — pz)Hlg] > 0 because on
E={c~pm<Ui<m—cU; 2 mp—c}, Ui+ — ¢ > 0 and 7 is increasing,

Hence R(S?) — R(S'?) > 0. In a similar manner one can prove that R(S}) —
R(S"?) 2 0, completing the proof of Theorem for situation (a).

Note that in situation (b), R'? = @ and thus only statement (i) needs to be
proved, which can be done similarly as for situation (a) by showing the differences
R(S}) — R(S,2) and R(S}) — R(S,2) to be nonnegative.

For situation (c) assume without loss of generality that ¢s < ¢;. Note that, in this
case

RY2 = (g > €4, T2 2 4}, R} = {z1 > c3, T2 < minfey, 1)},
R'% = {xl S Cq, Ty 2 max(CSs 2:1)} H Rl,? = {xl S €3, T2 S C3} .

One corresponding partition can be taken to be

Pt = {5 > ¢, 22 > ¢4}, P} = {x; > c3, 22 < min(ey, 71)},
sz = {Il < ¢4, Ta > max(cs, 331)]’ v Py= {3‘1 <C3 Tz < Cs]'-

As before denoting the partitions w.r.t. the (u;,u;)-space by QEZ; from (28) and (35)
we have
R(8") = E[r(2(8"*) — 2°)]
= E[?‘(Q — Xg)lp%] + E[T(Cq, - Xl)lpf] + E[T(Cs +ecq — X] - Xg)]Ipl‘z]
= Elr(cs — p2 = U)oy 1)) + Elr{ca — p1 =~ U)Igag, 1))
+ Elr(cs + ¢4 ~ 1 — po = Uy — Un)lg, ,w, )]
= E[r{Uz + e — p2)lgyw, —uvny) + Blr(Uh + 64 — 1) lga—pr.0))
+Er(Ui+ Uz +cs+cq— g — 12)lg, a(-tn,- )]
= Blrihte-mPgragl + Elr(Ustce—mlgragl + Elr(th+Uz+estea—pm—pa)lgrzg ph

and similarly, _
R(S%) = E[T'(Xg - Q)I_pl,n] + E‘[r(Xg - X])Ipf] + E[T(Cs — X])Ipl‘z]
= Ejr(Uz + p2 — clguaw, v + Blr(Uz + U + pt2 ~ m)gacpom]

+ E[r(ci* + U - #1)101.2(—'-’1‘-02)]
= E[r(ulm_m}leau)] + E[r(Uz+m-q')leh,,] + Eir(U;+Uz+m-m)195u‘,,].

' R(Sf) = E[T‘(Xl - Cq)lp:_ﬂ] + E[T(X] - x2)IP,‘] + E[T(C:; -_ XQ)IPI.S]
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= Blr(Uy +m — c.;)]lql.z{ullyz)] + Er(U+ U+ py — #2)]IQ%(U1.-U3)]
+ E[r(U2 + ¢3 — t2)llg, p-v1,-u)]

= E[r(Ul +u3 _ctl)le?(l}} + E[T{Uﬂ +Ic3_»u2 }leg (2]} + E[l‘(U1 +U2 Ty —p2 }le¥(1lg,}:

R(Sl‘z) = E{T(Xl + X —c3— Q)Ipl,z] + E[T(X1 - Ca)lpii‘l] + E[T‘(Xz — C3)Ip12]
= ElrU1+Us + 1 + pa — €5 — callguag, vy
+Elr(Us + 1 — ea)lgyun -un)] + Elr(Us + 2 ~ ¢a)lga_yy, 1)
= BlrUitm-cle, yu)] + ElrVatpz—callo, o) + Elr(Us+Ua+in+us—cy—calle, om)

where

O%(1) = Q}(-U1,Uz)  ©'(2)=QY(U1,~Us) ©M(1,2) = Qua(-Us, ~Th)
8}(1) = Qua(-Uh,~U2) ©}(2) = Q3 (Uy,l2)  ©}(1,2) = QX~Us, Uh)
61(1) =QM (U, Ua)  63(2) = Qua(-Uh,—Uz) ©3(1,2) = QMU ~Uh)
012(1) = Q4(Uh,—U2)  ©122) =QH(-Uh,Uh)  ©13(1,2) = QY3(U,, L)

To prove part (¢) assume that (u, 2) € R12, e, 03 < ¢4 < i < pz. We need to
show that R(S"?) < min (R(S}), R(S?), R(S12)). We shall use the same technique
used for situations (a) and (b). Namely, we consider each of the differences R(S}) —
R(S"?), R(S}) ~ R(S"*), and R(S1,) — R(S™?); split the difference into sums of
expectations by decomposing the sets of integration, then regroup the expectations in
such 8 way that the random variables, expectations of which are being taken, become
nonnegative, thus making the difference nonnegative. We prove the nonegativity of
R(S53) — R(S"?) only. The other cases can be proved similarly.

So consider R(S}) — R(S'?)
= E[r(Uy +cs — eyl —~ Elr(Us + ¢4 — i )loragy)]
+ Elr(Us + 12 — ci)loyap} — Elr(Us + ¢4 — pa)lenagz)]
+ E[T(Ul +Uy+ py ~ #1)]19%(13)] - E[T(Ul +Us+ea+eq— Hy — ,u,g)lgl.z(llg)].
The decompasition of the sets of integrations are as follows (see figure 9).

83(1) = 0'%1L,2) = {ti>pi—cy, V2> m—ca} = Ay, say,
0%3(1) = OJ(1,2) = 4 U {m—c<l; € ~cy, Uz U1+ pa =} .
Ul —cu<UaSpr~cy, 1 2Ua+ 1 —pia} U (U > iy —cq, Ca—p2 SUz < pg—ed}
Ules—pasUs<ei—pg, Uy 2 —Us 4+ uy — g}
AluBllJC;UD]Ung), »ay,
03(2) {h2a-p,a>a-a) U {h2e—m, =SS =-c) = EyUF, sy,
02 = B U{as-mSUi<e—p, Va>p~m-U) = EUBD, sy
Then R(S}) — R(S'?)
= El(r(U&+ca-m)—r(U:+c4—m)+r(Uz+Ua+m—~m)-r(U;+Us+q+q—m-m))14l]

+ Eltr(th + Uz + pia — 1) = 1(Us + &g — a1, ) + E{(r(Uy + Us + pia — ) —r{lh + e — m))ig,|
+Bl(r(Ur + Uz + g2 — 1) = v(U1 + 24 — 1 )py | + BUNUL + U + 43 ~ 1) — 7(Us + ¢4 ~ M ein]

+ Eltr(Uz + pu3 ~ e) — v(Ua + ¢4 — 42)g, ) + Efr(Uz + pa — clnf— Elr(Us +ca— m)lnsul
= h+h+Is+li+Is+ s+ I+ Iy, say.

It
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Figure 9: Decompositions of sets of integrations for R(S}) (solid line) and R(S'?)
(dashed line). First plot is for sets involving r(U; + --), second for sets involv-
ing r(Uz + ---) and third for sets involving r(U; + U, + ---). Arrows indicate the
(non)inclusion of boundary lines/points. Symbols ‘+’/*~’ indicate the contribution
from the integral over the corresponding set to the difference R(S}) — R(§2).

From growth condition (34) it follows that I, > 0 because on
Ay ={U1>pm ~c3, U2 > ps —c3},

rtes=p)—rUi+ea—m) +1{U01+ Uz + 2 — 1) — ¥{th + Uz + cg + e — i1 = pa)
= [f(_U:+U=+m-m)—f(y1+ug+ca+c4—m—#:.9]—[r(qu.q_m)..,-(yl+c3_m‘}]
w8 b ato a
0, since a=ci-c320, fro=2up—es~ci— (=)l =2uz—cy) 20
and a=W+e-u120, b—a=li+ei—p22Us+ea—p > 0.

v

Also, noting that B{” reflected w.r.t. the y-axis is same as B, and C}z) reflected
w.r.t. the z-axis is same as C}, from (35) we have

s = ElrlUz+ea~pallgm] = Elr(Uz + ca — p2)lg,]
Iy = E[(r(Uy+ Uz +pz — 1) ~r{th + &4 — HN )

]

El(r(th = Uz + pa ~ p1) — vl + e ~ 1 g, |

Then Iy + Is > 0 because on By = {1, —cg < Uy < pty — €3, Uy > Uy + pia — 1},

(riUr + Uz + pa — pa ) —r(Ur 4 ea — 1)) ~ r{Uz + ¢4 = p2)
= ["(}f1+Uz+m—m)—r{‘U1+q—ng)l—[r{£z+q—u%)-rw
b+8 b ata a
2 0, sicce a=Usdci—pp 20, P-a=U+m—ec—(Ua+es—pg)=2up—e 20
end a>0, b-a=lh+eg=u1 20

Similarly, I3 + Is > 0 because on Gy = {2 ~ ¢4 < U2 < 2 — ¢, Uy = Un + oy — pa},

UL+ Uz + pa ~ p1) = 7(Us + &g — 1)) = (r(U1 - Uz + 52 — 1) = +(U1 + e — 1))
= [0 +Uadpa—m) - rUs +oi — sl ~ [r(U1 + co—p1) - r(lh — Uz + pa = 1))

b8 b ata M .
2 0 since a=li+e—pp20, f-a=li+pma—cu=-(a+oi-pa)=2pg—cd 20
ad a=lU)-W+uz—p1 20, b—a=Us+cg=pa>0.

Furthermore, Iy 2 0 because on Dy = {Uy > py ~ ¢4, s — pia < U < iy — 4},

WUt —p)-rUi+ea~u) 20, since b-—a=Uz+pa—eq20;
b a
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Is > 0 because on By = {Uy 2 ¢y — g, U > puy —¢q},

r(l2 + p2 ~ca} - r{la + 00— p2) 2 0, since b-a=2ur—c) >0
b a

and I7 > 0 because on F; = {U, > ¢; — 413, cq — pp KUz < o — ¢4},

Uz +pz—ca} 20, since Uztpa—cy 200
Thus R(S3) ~ R(§**) =L+ L+ L+ Li+ L+ I+ L+ L > 0.

Part (ii) of the theorem is also proved similarly: assuming that (u,, y7) € Ryg,
le, 1 € pp < €3 < ¢ and further showing that the differences R(S; ) — R(S1?),
R(S1,2) = R(5}) and R(S,2) — R(S?) are nonnegative.

5.5 Proof of Theorem 10

We prove the theorem under the general setup of Remark 14, i.e., under (36). Note
that the set of feasible solutions § = {§; : I C {1,2,...,n} =: N}, where X; € §;,
if £ € I, otherwise ¢; € S;. Then z; := 2(S;) = X7 + ¢/, where | = N\ I, the
complement of /, and we use a’ to denote 3, ; a;, if I # ¢ and 0, otherwise.

Then defining d; = ¢; — u; we have

R; = {ZI=I.}::1‘£ZJ} = nJ{Z]‘SZJ} = ﬂJ{XI'i'CISXJ'I'CJ}

= X' -X'<d-d = -} = nU -0 <df -d'}
AU UM <@V — gV} = (U, <dicTand U, > d, i ¢ 1)

One set of corresponding partition can be then taken to be
Pr={Uj<d,ielandU;>d;,i¢ I}, ICN
Then from (36), we have

Ri = R(8) = 3 Elr(zr—2)le)] = 3 Bp(U - U7V — @V — )\t

Il J#L
= D BrUN +UN - @V - d\)lp,| = 3B — @V - dV))o,)
JAL J£I
- % E [r (U¥ - (a%7 - o ).) Wrax |
K#¢

where
Q1={U,->—di,iEIandU,-zdi,z'¢I}, I'CH.

Now suppose that g < ¢;,i € M and y; > ¢, ¢ M, ie, d; > 0,i € M and
d; £ 0,2 ¢ M. For the theorem we need to show that R(Sy) < R(S)) for all I C N.
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R(S1) — R(Sy) =

Note that for any I C N,

Z E [r (UK ~dXI 4 dxf) Loay = T (UK _ KM dK!Cf) ]IQMM]

KCN
K#é

= Z E [{'r (UK —dft 4 dxr) -r (UK - dfM dkﬁ) } lmef‘lQumc]

KCN
K#¢

+ Z E [r (UK G + dKi) ]IQIAK\QMAK]

Note that

KcN
K#¢

- Z E [r (UK ~d M+ dmﬁ) ]IQMAK\QIAX]
K23

(UK — d¥! +dm‘) _ (UK —gKM +d""ﬂ) — dKI — d¥! 4 gKM _ afkM

= KM 4 gKT _ JKIM _ KU | GKIM | GKIM _ K18 KTV

= (aX™ _ gKT™) > 0, since d; > 0,i € M, and d; < 0,i ¢ M.

for Qrax | Qmarx | Qrax \Quax | Quakx \Qiax
SEKMI) diSu | i<y di < d; <y
i€ KMI|—di<w;| di<w |“~di<u;<d” d; <
TEKMI| di<uw |—di<u| “d <y < —d” —d; < w
1€ KMI | —d; <w; | —d; < —d; < 1wy —d; < uy
i€ KMI| —d; <u | —d; < —d; < uy —d; < u;
i€ KMI| di<wy |—di<y d; <y “—d; <u < dy”
i€ KMI | ~di<w| d <y —d; < y; “dy < uy € —dy”
i€ KMI| di<w | di <y di < d; <

Hence the first sum in R(S;) — R(Sy) is nonnegaﬁive. Now let us look at the sets
Qrax \ Qmax and Quax \ Qrax- Below we describe the structure of these sets.

In the table if a region is within quotation marks, this implies that some {(but not nec-
essarily all) of these type of boundary conditions would appear in the corresponding
set. The exact construction is as follows. For nonempty K*, KX C N,

[ disw i€ K'MIVK'MI )
—-d<w i€ K*MIUR*MI
_ ~di<u<d i€J
Qrak- \ Qmak: = U . U | d<w ieFKMIURMI {
sekMI Leckemn | g g ielr o
| ~di<w iel*K*MIUK"MI |
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U U en\Mx.rr) sy,
JecK*MI LcKeMI
([ di<w i€ KMIUKMI )
—d;<u; 1€ KMIUKMI

_ —-d; < u; < d 1eJ
Quax \ Qiax = U _ U_ ! d<u i€ JKRMITUKMI
JCRMI LRMI [ g e g ie L

~di<w; i€ LKMIUKMI |

"

= U U QM\I1,K,J,L).
JCKMI Lokl
Then
R(S1) - R(Sy) ) |
> Z E [‘r (UK —~d® 4 dKI) ]IQIAK\QMAK] = Z E [‘r (UK —d M dKM) ]IQ““‘\Q“"]

KcN KCN

> X X B[ (UF a4+ ) I, 0]

K*CN JecK*MI L*ck+MI
K¢

-y Z Z E [-r (UK — g¥M 4 gkM ) ]IQ(M\IJ(.J,L)]

KcN JoeRMT Lok
i) C c

I

We shall show that for each negative term in the 2nd sum a.bbve there is a positive
term in the 1st sum so that the net contribution from these two terms becomes
nonnegative, and thus proving that R(Sy) > R(Sy). So fix a negative term, i.e., fix
p#FKCN, JCKMI, LC KMI. Consider K*=KUJUL, J'=J, L*=L.

First note that J C MIand JC K* = J*=J C K*MI, and similarly
I*=LCK*'MI

Next JUL C (IAM) =

KMI=Rn(JULynMI=KMI, R'MI=FRn (JUL)NMI = KM]I,

K*MI = KMIU[(JUL)NMI]| = KMI  K*MI= KMIU[(JUL)NMI} = KMI.
Further, note that J ¢ KMT = J 5 KUMUI>KMI. Then

LcMI = JK'MI=Jn(JUKULNMI=JnKnMI=KMI.
In a similar fashion one can see that L*X*MI = KMI. Finally note that

LcMI = LoMI = KMI=RninInMI=JRMI,

and similarly K*MI = LEM].
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Hence QIM\I,K,J, L) = Q(I\ M,K*,J*,L*), and

Er (U ~d®! 4 d5T) Igipgae,o00)] — B [r (UK ~ d5M 4 a*M) Toani k. oz)]

= E H T (QK T @K g ’) - (é’ K a4 dm‘?.) } IQ(M\I.K.J.L}}

T v

b a

= 1

because from K*MI = KMI, K*M] = KMI, and the facts that d >0, 1 ¢
M; d; <0, i1 ¢ M, we have
b-a = UK — gk 4 gk'T _yK 4 gKkM _ giss
UK+ + UL _ (dxMI +d1f-m) + (dx-ui+dk-ﬂf)
— UK + (dKM! +dKMf) - (dm\?l +dKATIf)

= UJ 4 UL —gKk*MI | gKk*MT + dKkMI _ gk Ml

= U7+ UL — gl — gLKMI 4 g7 | gIK*MT 4 gKkMI _ gK#a

— (U" + d.r) + (UL _ dL) + (dJK‘MI + dKMf) _ (dEK'A?I + dKJI'U)

= Tt +Tw-d)+ T 4w g

ie(FK*MIGKMACM ie(LK*MIGKMI)C N
> 0,

if (Uy,...,Un) € QM\I,K,J,L)

Finally, it is clear that this mapping from negative term to positive term is injec-
tive. Hence we do not use the same positive term for two different negative terms,
Le., each negative term is compensated by a separate positive term. Hence the result
is proved.

5.6 Tables



Table 6: Data for Figure 5

f value

2.05

2.1

2.15

22 225

23

2.35

24

245

== RO L

12
14
16
18
20
25
30
35
40
45

55

TR

0.494
0.494
0.495
0.495
0.495
0.495
0.495
0.496
0.496
0.496
0.496
0.497
0.497
0.497
0.498
0.498
0.498
0.498
0.498
0.498
0.499
0.499
0.499
0.499

0.488
0.489
0.489
0.489
0.489
0.490
0.490
0.491
0.492
0.492
(.492
0.493
0.494
0.494
0.495
0.495
0.496
0.496
0.496
0.496
0.497
0.497
0.497
0.498

0.482
0.483
0.483
G.484
0.484
0.485
0.486
0.486
0.487
0.488
0.488
0.489
0.490
0.491
0.492
0.493
0.493
0.494
0.494
0.494
0.495
0.496
0.496
0.496

0.477 0471
0.477 0472
0.478 0.472
0.478 0473
0.479 0473
0.480 0.475
0.481 0.476
0.482 0477
0.483 0479
0.484 0.480
0.485 0.481
0.485 0.482
0.487 0.484
0.488 0.485
0.489 0.487
0.490 0.488
0.491 0.489
0.482 0.489
0.492 0.490
0.493 0.491
0.483 0.492
0.494 0.492
0.494 0.493
0495 0.494

0.465
0.466
0.467
0.468
0.468
0.470
0.472
0.473
0.474
0.478
0.477
0.478
0.480
0.482
0.484
0.485
0.486
0.487
0.488
0.489
0.490
0.491
0.492
0.492

0.460
0.461
0.462
0.463
0.463
0.465
0.467
0.469
0470
0.472
0.473
0475
0477
0.479
0.481
0.483
0.484
0.485
0.486
0.487
0.488
0.489
0.490
0.491

0.456
0.457
0.458
0.459
0.460
0.461
0.463
0.465
0.466
0.468
0.470
0.471
0.474
0.477
0.479
0.480
0.482
0.483
0.484
0.485
0.486
0.488
0.489
0.489

0.451
0.452
0.453
0.454
0.455
0.457
0.459
0.460
0.462
0.464
0.466
0.468
0.471
0.474
0.476
0.478
0.479
0.481
0.482
0.483
0.485
0.486
0.487
0.488

41




Table 7: Data for Figure 6

7 values (corresponding 3 values)

610 015 020 025 030 035 040 045
n_{(240) (270) (3.15) (3.75) (4.80) (6.50) (11.00) (35.00)
2 | 0.456 0427 0390 0.350 0296 0.237 0.155  0.054
3 | 0457 0428 0392 0352 0298 0239 0156 0.054
4 10458 0429 039 0354 0300 0241 0158 0.055
5 ] 0459 0431 0395 0356 0303 0244 0.159 0.055
6 | 0460 0432 0398 0359 0305 0246 0.161 0055
8 | 0461 0435 0402 0364 0311 0251 0.164 0.056
10 { 0463 0438 0406 0369 0.317 0.256 0.168  0.056
12 [ 0465 0442 0410 0374 0323 0262 0.171 0057
14 | 0.466 0444 0415 0379 0329 0268 O0.175 0.057
16 | 0.468 0447 0418 0384 0335 0275 0180 0058
18 | 0470 0450 0421 0.389 0341 0282 0.8  0.050
20 | 0471 0452 0425 0.393 0346 0288 0.191  0.060
25 | 0474 0457 0432 0403 0359 0303 02056 0.062
30 | 0477 0460 0438 0412 0371 0316 0219  0.065
35 | 0479 0463 0443 0419 0379 0328 0233  0.068
40 | 0480 0466 0447 0423 0387 0338 0246 0073
45 | 0.482 0.469 0451 0428 0394 0347 0257 0078
50 | 0.483 0.471 0454 0433 0401 0356 0267  0.083
55 { 0484 0472 0457 0437 0406 0363 0277  0.088
60 | 0485 0.474 0459 0440 0411 0370 0286  0.005
70 [ 0.486 0.476 0462 0446 0419 0380 0302  0.109
80 | 0.488 0.478 0466 0450 0425 0389 0315 0.123
90 | 0489 0.480 0468 0454 0430 0397 0327 0136
100 | 0.489 0482 0470 0457 0.435 0.404 0336  0.149
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Table 8:

Data for Figure 7

Mode M

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 041 042

0.43

0.44

0.45

0.46

0.47

(.48

0.49

Do oo |3

12
14
16
18
20
25
30

50
55

76
80

100

0.354
0.358
0.363
0.367
0.372
0.381
0.389
0.397
0.405
0.411
0.417
0.422
0.433
0.441
0.447
0.452
0.457
0.460
0.453
0.466
0.470
0.474
0.476
0.479

0.371
0.375
0.379
0.383
0.387
0.395
0.403
0.411
0.418
0.424
0.429
0.434
0.444
0.451
0.457
0.462
0.466
0.469
0.471
0.474
0.477
0.480
0.482
0.484

0.387
0.390
0.394
0.398
0.402
0.410
0.417
0.424
0.430
0.436
0.440
0.445
0.454
0.460
0.465
0.469
0.473
0.475
0.477
0.479
0.482
0.484
0.486
0.487

0.403
0.406
0.410
0.413
0.417
0.423
0.430
0.436
0.442
0.446
0.451
0.455
0.462
0.468
0.472
0.475
0.478
0.480
0.482
0.483
0.486
0.487
0.489
0.490

0.419
0.422
0.425
0.428
0.431
0.437
0.442
0.448
0.452
0.457
0.460
0.463
0.470
0.474
0.478
0.480
0.483
0.484
0.486
0.487
0.489
0.490
0.491
0.492

6.436
0.438
0.440
0.443
0.445
0.450
0.455
0.459
0.463
0.466
0.469
0.472
0.477
0.480
0.483
0.485
0.487
0.488
0.489
0.490
0.491
0.492
0.493
0.494

0.452
0.454
0.455
0.457
0.459
0.463
0.466
0.470
0.472
0.475
0.477
0.479
0.483
0.486
0.488
0.489
0.490
0.491
0.492
0.493
0.454
0.494
0.495
0.496

0.468 0.471 0.474
0.469 0.472 0.475
0.470 0473 0.476
0.472 0.474 0.477
0.473 0476 0.478
0.475 0.478 0.480
0.478 0.480 0.482
0.480 0.482 0.484
0.482 0484 0.486
0.484 0.485 0.487
0.485 0.487 0.488
0.486 0.488 0.489
0.489 0.490 0.491
0.491 0.492 0.493
0.492 0.493 0484
0.493 0.494 0.494
0.494 0.494 0.495
0.494 0.495 0.495
0.495 0.485 0.496
0.495 0.496 0.496
0.496 0.496 0.497
0.496 0.497 0.497
0.497 0.497 0.497
0.497 0.497 0.498

0.478
0.478
0.479
0.480
0.481
0.483
0.484
0.486
0.487
0.489
0.490
0.490
0.492
0.493
0.494
0.495
0.496
0.496
0.496
0.4597
0.497
0.497
0.498
0.498

0.481
0.482
0.482
0.483
0.484
0.485
0.487
0.488
0.489
0.490
0.491
0.492
0.493
0.494
0.495
0.496
0.496
0.497
0.497
0.497
0.498
0.498
0.498
0.498

0.484
0.485
0.485
0.486
(.486
0.488
0.489
0.490
0.491
0.492
0.493
0.493
0.494
0.495
0.496
0.496
0.497
0.497
0.497
0.498
0.498
0.498
0.498
0.499

0.487
0.488
0.488
0.489
0.489
0.490
0.491
0.492
0.493
0.494
0.494
0.495
0.496
0.496
0.497
0.497
0.497
0.498
0.498
0.498
0.498
0.499
0.499
0.49%

0.490
0.49
(.491
0.492
0.492
0.493
0.493
0.494
0.495
0.495
0.496
(.496
0.497
0.497
0.498
0.498
0.498
0.498
0.498
0.439
0.499
0.499
0.499
0.499

0.494
0.494
0.494
0.494
0.495
0.495
0.496
0.496
0.496
0.497
0.497
0.497
0.498
0.498
0.498
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499

0.497
0.497
0.497
0.497
0.497
0.498
0.498
0.498
0.498
0.498
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.500
0.500
0.500
0.500
0.500
0.500




Table 9: Table for Example 2: Least Risk solutions in balanced DOP with r = 2, f =
2,k = 2.DOP symmetric when both random elements have Triangular distribution
on {0,1).

Risk of candidate solutions Optimal solution
€ & Sia St S; 5™ | stochastic non-stochastic

0.5020 0.5216 | 0.0516 0.0541 0.0541 0.0635 i 1
0.5160 0.5304 | 0.0461 0.0548 0.0548 0.0695 1 |
0.4260. 0.4350 | 0.1010 0.0587 0.0587 0.0292 4 4
0.4630 0.4831 | 0.0723 0.0545 0.0545 0.0450 4 4
0.4771 0.5888 | 0.0521 0.0491 0.0491 0.0870 2o0r3 2or3
0.4872 0.5235 | 0.0562 0.0528 0.0528 0.0616! 2or 3 2or3
04937 0.5844 | 0.0471 0.0504 0.0504 0.0881 1 20r3
0.4069 0.5816 | 0.0806 0.0461 0.0461 0.0743| 2 or 3 20r3
0.4052 0.5064 | 0.0931 0.0501 0.0501 0.0462 4 2or3
04920 0.5945 | 0.0467 0.0499 0.0499 0.0926 1 2o0r3
0.4381 0.5541 | 0.0704 0.0483 0.0483 0.0663 20r3 2o0or3
0.4739 0.5049 | 0.0639 0.0532 0.0532 0.0532 4 20r3

Among the candidate solutions, ‘1’ stands for S1,2, ‘2’ for 5%, '3 for S}, ‘4 for §12.

Table 10: Table for Example 2: Least Risk solutions in balanced DOP with r =
2,f =2,k = 2, when the first random elements has Triangular distribution while the
other has V-distribution, both being symmetric and supported on (0,1).

Risk of candidate solutions Optimal solution
c ) Sz St S; 5% 1 stochastic non-stochastic

0.5108 0.5559 | 6.0938" 0.1044 0.1001 0.1446 1 1
0.5000 0.5920 | 0.0927 0.1000 0.1054 0.1637 1 1
0.4906 0.4954 | 0.1171 0.1111 0.1100 0.1065 4 4
0.4243 0.4656 ) 0.1641 0.1126 0.1046 0.0801 4 4
04563 0.5939 | 0.1141 0.0967 0.0990 0.1532 2 20r3
0.4558 0.5979 ! 0.1137 0.0964 0.0988 0.1556 2 20r3
0.4014 0.5473 | 0.1553 0.0984 0.0961 0.1152 3 20r3
0.4893 0.5599 | 0.1033 0.1022 0.1052 0.1409 2 “2o0r3
0.4987 0.5385 | 0.1020 0.1054 0.1080 0.1311 1 20r3.
0.4491 0.5334 | 0.1300 0.1025 0.1015 0.1166 3 2or3
0.4564 0.5040 { 0.1333 0.1073 0.1045 0. 1032 4 20r3

Among the candidate solutions, ‘1’ stands for $12, 2’ for 8%, ‘8" for S}, ‘4’ for §12.
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Table 11: Table for Example 2: Least Risk solutions in balanced DOP. with r =
2, f =2,k = 2, when the random elements have Bivariate Normal distribution with
parameters (10, 10, 22,22, 0.5)

Risk of candidate solutions Optimal solution
- ey Sz St 83 S™ | stochastic non-stochastic
9.7878 10.5819 | 5.8811 3.6495 3.6495 7.0734 20r3 20r 3
10.0808 10.9109 | 4.5136 3.7759 3.7759 10.1913 | 2or3 1
9.7309 10.6532 | 59344 3.5430 3.5430 8.1143 2or3 2or3
9.3275 10.8678 | 6.9623 3.0832 3.0832 8.0872 20r3 20r3
9.0232 10.1056 { 9.9350 3.5207 3.5207 4.0349 20r3 20or3
10.2677 10.4189 | 4.7955 4.3670 4.3670 R.6602 2or3 1
, 9.1540 9.2689 | 12.2440 4.8715 4.8715 3.1350 4 4
9.5687 9.7831 | 8.5563 4.2835 4.2835 4.9070 20r3 4
9.9648 10.1442 | 6.2135 4.2314 42314 6.8232 20r3 20r3
9.9922 10.6016 | 52304 3.8505 3.8595 8.5805 20r3 20r3
' 9.5665 9.7024 | 8.8109 4.3991 4.3991 4.6926 20r3 4
10.1397 10.3131 | 5.3387 4.2816 4.2816 7.8793 20r3 1
9.9847 10.9146 | 4.7675 3.6559 3.6559 9.0144 20r3 2o0r3
9.0580 10.4022 | 8.9925 3.2497 3.2497 5.8969 20r3 2or3
9.2538 9.2613 | 11.7790 4.9465 4.9465 3.2422 4 4
10.5343 10.7314 | 3.6777 4.5678 4.5678 10.9126 1 1
92382 10.1482 | 8.8688 3.5946 3.5946 5.3771 20r3 20r3
9.2667 9.3125 | 11.5106 4.8525 4.8525 3.3587 4 4
9.9942 10.9693 | 4.6668 3,6388 3.6388 10.1946| 2or3 20r3
10.5294 10.6980 | 3.7340 4.5807 4.5807 10.7390 1 1
10.0045 10.8500 | 4.8045 3.7150 3.7150 9.6824 2or3 1
9.0064 0.5372 | 11.4701 4.3431 43431 3.6093 4 4
9.3021 10.2835 | 8.2582 3.4993 3.4993 5.8027 2or3 Zord
9.7833 10.3975 | 6.2512 3.7915 3.7915 7.2698 2or3 20r3
9.2989 9.3875 | 11.0653 4.7205 4.7295 3.5533 4 4
10.3386 10.3812 | 4.6797 4.5062 4.5062 8.7205 2or3 1
9.0451 9.1262 | 13.4294 5.1145 5.1145 2.7558 4 4
10.6072 10.8468 | 3.3767 4.6307 4.6307 11.7469 1 1

Among the candidate solutions, ‘1’ stands for S, 2, ‘2" for 8%, ‘3’ for S}, ‘4’ for S12.
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Table 12: Table for Example 2: Least Risk solutions in balanced DOP with r =
2,f = 2,k = 2, when the random elements have independent Normal distributions
with different means (10 and 10.5) but common variance (4)

Risk of candidate solutions Optimal solution

€ c S1a Sy S3 5™ | stochastic non-stochastic
9.7625 10.0184 | 7.5375 4.0959 6.4900 4.0194
10.0000 10.4717 | 5.8275 3.8730 6.2397 5.6888
9.7096 10.7309 | 6.5484 3.5082 b5.9328 6.2476
0.1287 9.6320 | 11.6021 4.3394 6.7660 2.6561
10.5744 10.8635 ) 3.6596 4.1358 6.5352 8.2825
9.0402 9.7990 | 11.5749 4.1165 6.5154 2.9672
10.0595 10.2779 | 5.9188 4.0354 6.4215 5.1306
10.2182 10.2558 | 5.4184 4.1572 6.5579 5.2931
10.0220 10.2892 | 6.0321 4.0047 6.3872 5.1154
10.0333 10.7403 | 5.3659 3.7553 6.1083 6.7243
10.3668 10.3944 | 4.7497 4.1774 6.5806 6.0064
9.6629 10.3751 | 7.2607 3.7726 6.1278 4.9614
0.3484 9.6319 | 10.4384 4.3892 6.8213 2.7768
10.6620 10.9034 | 3.4091 4.2156 6.6250 8.6760
9.9010 10.6388 | 5.9497 3.7291 6.0790 6.1477
10.2715 10.5342 | 4.8527 4.0177 6.4018 6.3379
9.0644 10.0375 | 10.7892 3.8743 6.2433 3.5472
9.47256 104940 | 7.8700 3.6336 5.9726 5.1643
10.0050 10.7596 | 5.4393 3.7304 6.0805 6.7564
9.2382 10.2543 | 9.4010 3.7292 6.0801 4.2393
9.4704 109830 | 7.2246 3.4172 5.7311 6.9812
9.2210 9.4979 | 11.5401 4.5472 6.9996 2.4416
9.6162 10.0760 | 8.0326 3.9846 6.3655 4.0349
9.8459 10.8350 | 5.9125 3.6158 59525 6.8247
9.2678 9.4441 | 11.4710 4.6396 7.1035 2.3666
9.1721  9.9425 | 10.4659 3.9866 6.3691 3.3691
9.6200 10.5430| 7.1299 3.6591 6.0008 5.4814
9.6380 10.6710 | 6.9102 3.5973 5.9319 5.9443
9.5055 9.5645 | 9.8598 4.5269 6.9757 2.7417

B b R R R B DI W B PO RO RS B R R el B DD RN B BRI B i k= o B b
W B hO b b BO OBD B DD DD B BD DD B BD = b BRI B3 ORI B B B i = BT B b

Among the candidate solutions, ‘1’ stands for Sy 5, ‘2* for 52, 3’ for S}, ‘4’ for S'2.
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Table 13: Table Reporting Simulation Results: Least Risk solutions in balanced

DOP with r = 2, f = 1,k = 2. The random elements have independent Normal

distributions with means 10.0 and 10.01 and common variance (1)

Risk of candidate solutions Optimal solution

fixedcost ¢ | S, S% S; stochastic non-stochastic
10.99468 | 0.475127 4.435111 4.483167
0.303764 | 4.841084 2.165788 2.208434
0.952451 | 2.424857 2.454669 2.497831
9.267555 | 5.003737 2.159396 2.202032
10.00178 | 2.280517 2.496789 2.540035
9.915653 | 2.536187 2.425664 2.468769
9.969233 | 2.375121 2468573 2.511763
9.475918 | 4.107202 2.206233 2.248941
10.17492 | 1.817931 2.677059 2.720683
10.20032 | 1.755787 2.708123 2.751814
10.28028 | 1.569552 2.814299 2.858226
10.96328 | 0.504639 4.335819 4.383602

o e e B = RD B B
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Among the candidate solutions, ‘1’ stands for S 5, ‘2 for 5%, ‘3’ for S1.
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Table 14: Table Reporting Simulation Results: Least Risk solutions in balanced
DOP with r = 3, f = 2,k = 2 when the random elements have independent Normal
distributions with means 10.0 and 10.1, and 10.11 with identical variance 1

Risk of candidate solutions

Optimal solution

51

C2

3
Sl2

Shs

. 1
S23

S

13
Sy

12
S

3123

stoch. non-stoch.

9.34
9.97
9.05
9.97
9.34
16.31
9.45
9.51
9.16
10.12
9.29
9.63
9.22
10.20
10.55
9.70
9.88
9.20
9.99
10.65
9.82
9.10
9.54
10.15
9.58

10.57
10.77
9.67
10.71
9.67
10.74
10.88
10.31
9.34
10.61
10.79
9.96
10.96
10.66
10.92
10.50
10.59
9.96
10.14
10.70
9.83
9.53
10.04
10.90
0.82

11.47
7.84
14.00
7.85
11.42
6.66
10.49
10.35
12.81
7.25
11.67
9.48
12.05
7.00
6.13
9.17
8.24
12.76
7.63
5.93
8.30
13.47
10.13
7.15
9.71

11.47
7.88
14.01
7.88
11.45
6.72
10.50
10.37
12.84
7.30
11.66
9.51
12.04
7.05
6.20
9.20
8.27
12.76
7.68
5.99
8.36
13.49
10.16
7.20
9.75

11.54
7.94
14.08
7.95
11.52
6.78
10.57
10.43
12.91
7.36
11.73
3.58
12.11
7.11
6.26
9.26
8.3
12.83
7.74
6.05
8.42
13.57
10.23
7.26
9.82

6.16
7.14
6.61
7.16
6.62
8.18
6.14
6.47
6.77
7.59
5.99
6.73
5.84
7.81
9.09
6.66
6.98
6.44
7.31
3.54
6.98
6.69
6.61
7.63
6.71

6.21
7.20
6.66
7.22
6.68
8.26
6.19
6.53
6.83
7.65
6.05

6.79

5.90
7.87
9.16
6.72
7.04
6.49
7.37
9.61
7.04
6.75
6.67
7.69
6.77

6.22
7.25
6.67
7.27
6.70
8.31

6.21

6.55
6.84
7.71
6.06
6.82
5.90
7.93
9.23
6.75
7.09
6.49
7.42
9.69
7.09
6.75
6.69
7.75
6.80

8.45
11.43
3.91
11.01
4,25
12.78
10.54
7.4
2.94
10.99
9.64
5.97
10.57
1L.71
15.38
8.87
9.94
5.18
7.86
14.39
5.86
3.48
6.12
13.07
5.26
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Among the candidate solutions, ‘1’ stands for S3,, ‘2’ stands for 5%, ‘3’ stands for

S35, ‘4’ stands for SB, ‘5" stands for S}3, ‘6’ stands for
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Table 15: Table Reporting Simulation Results: Least Risk solutions in balance
random elements are independent variables having
10 £ 3) Triangular shaped (mean 10.1, supported on 10.1 + 3.0)

(symmetric) marginal distributions V-shaped (me
and Normal distribution with mean 10.11 and variance 1.

d DOP with r = 3, f = 3,k = 3, when the
an 10.0, supported on

_ Risk of candidate solutions Optimal solution
o Cg cs | Sizs S5, Sz Sk SP 8P ST 3™ [Stoch  non-stoch.
10.13 1027 1062 | 7.98 823 833 9.26 038 10.34 10.44 1391 1 1
955 994 1042|1284 923 928 996 825 890 895 10.66| & 5
9.65 1040 109911016 7.66 7.76 8.66 9.49 10.45 10.55 16.76 2 2
964 9.85 10391272 962 965 1031 809 869 873 1025 5 5
960 1059 10.88] 988 723 7.35 832 1023 11.30 11.42 17.10 2 2
913 953 999 (1894 11.42 11.40 11.86 7.60 803 800 7.00 8 8
9.69 1065 10.83)9.23 715 7.27 827 1052 11.62 11.76 17.14| 2 2
9.37 10.79 10.88 |10.81 6.84 6.97 7.99 11.08 12.24 1239 1828 ] 2 2
954 974 088 11469 10.59 10.59 11.09 821 863 863 711 8 8
10.40 10.72 10.76 | 551 7.34 750 870 11.43 1275 12.93 18.05 1 1
9.52 978 10.23 (1403 1001 10.03 10.63 800 853 855 9.04 4] 5
9.35 1079 1090 1096 6.84 6.97 7.99 11.06 1221 12.36 18.43 2 2
9.22 9.52 988 |18.45 11.61 11.58 1200 7.80 811 807 6.48 8 8
9.20 1035 10.55 |13.44 7.84 7.92 876 9.29 1018 10.27 13.16 2 2
9.08 911 948 |23.85 1481 1471 1487 793 788 776 418 8 8
9.40 943 987 (1762 1209 1206 1246 773 7.99 795 6.31 8 8
9.53 10.63 10641028 7.20 7.32 829 1042 11.49 11.62 1545| 2 2
9.61 1025 11.07 (10.89 803 812 896 897 084 993 1657( 2 2
9.29 975 996 |16.36 10.43 10.44 10.85 8.09 853 853 7.42 8 8
9.60 9.62 10.24 (1440 1076 10.77 11.32 7.72 818 818 863 5 5
9.32 1022 1084)1291 812 819 9.00 883 9.67 074 1459 2 2
933 995 10991403 897 9.02 973 811 878 884 1444 5 5
10.05 10.66 1097 | 724 721 7.35 841 1076 11.93 1208 1 8.66 2 2
9.73 1001 10461131 899 905 978 846 918 023 11.29| 5 5
9.23 9.68 10.94(16.28 10.09 10.12 1072 756 808 810 13.03 5 5

Among the candidate solutions, ‘1’ stands for S123, ‘2’ stands for §

‘6" stands for 533, ‘7" stands for 532, ‘8 stands for S1%,

t2, ‘3’ stands for §%, ‘4’ stands for S, ‘5’ stands for 53,
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Table 16: Table Reporting Simulation Results: Least Risk solutions in balanced DOP with r = 3, f = 2,k = 3, when the
random elements are independent variables having Normal distribution with variance 1.
Mean of Random elements | fixed costs Risk of candidate solutions _ Optimal solution
fi1 2 s o 2 | Sis Siz Stz Sz 8P 83° 53 |stoch. non-stoch.
9.57 10.10 9.65 10.45 1064 | 3.32 7.85 5.24 837 11.56 1574 1216
9.04 9.33 10.60 10.96 1099 | 203 3.67 11.24 13.28 14.25 16.51 29.02
10.03 9.21 10.12 10.53 1099 3.001 520 1090 582 17.72 11.23 1860
10.04 9.82 9.09 10.27 1055} 3.64 1091 6.25 502 1663 1476 9.35
9.57 9.67 9.15 10.35 1098 | 230 9.04 590 6.48 1911 2007 1545
972 1061 10.89 10.88 10.96 | 482 487 648 1241 688 1294 1525
9.47 10.02 10.74 10.73 10.89 | 3.85 3.90 802 11.74 893 1282 19.01
948 10.52 10.60 9.58 10.54 |10.89 5.22 5.63 1260 515 1202 1258
9.09 1052 9.19 10.52 1071 ] 3.07 1093 3.12 11.68 1220 2512 1299
9.7¢ 10.4 10.00 917 10201293 802 537 944 648 1081 7.80
.19 10.60 9.22 919 1092} 903 10.02 214 1022 11.38 2426 11.60
10.03 10.81 9.13 993 1044 | 799 1423 341 7.83 11.21 17.68 5.47
9.57 9.56 = 9.40 953 994 | 644 762 662 6.60 1002 10.00 888
10.67 9.22 9.92 972 1004 | 950 859 1367 415 1474 4.85 9.06
10.03 10.94 10.77 10.70 1076 | 7.01 6.71 573 11.72 575 1172 10.50
10.57 9.91 10.89 9.36 9.76 {19.29 7.90 1538 10.07 7.48 368 9.55
10.29 10.01 10.13 926 9.66 |1549 950 10.39 841 758 586 6.59
10.24 10.59 9.87 9.97 1023 | 943 1053 583 801 813 1056 5.88
9.94 10.76 9.82 949 993 |13.39 1154 534 10.62 6.17 11.62 5.45
10.36 9.80 9.19 944 979 )10.24 1262 829 488 12.66 858 493
960 1092 9.26 916 933 [17.12 1684 500 1387 584 1490 3.95
9.65 10.44 9.44 9.05 9.25 |16.21 1357 6.48 11.89 581 1091 463
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Among the candidate solutions, ‘1’ stands for S123, ‘2’ stands for S3,, ‘3’ stands for S%, ‘4’ stands for S};, ‘5’ stands for S,
‘6’ stands for S3°, ‘7’ stands for 532



