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Abstract

This article examines the average cost function for property and casualty insurers.

Cost function describes the relationship between a firm’s minimum production cost

and outputs. The comparison of cost functions could shed light on the relative cost

efficiency of individual firms, which is of interest to many market participants and has

been given extensive attention in the insurance industry. To identify and compare the

cost function of insurers, common practice is to assume an identical functional form

between cost and outputs and to rank insurers according to the center (usually mean)

of the cost distribution. Such assumption could be misleading because insurers tend to

adopt different technologies that are reflected by the cost function in their production

process. We find that the cost distribution is skewed with a heavy tail. Therefore, the

center-based comparison could lead to biased inference regarding an insurer’s efficiency

in operation. To address these issues, we propose Bayesian semiparametric quantile

regression approach to model the longitudinal data on production cost of insurance

companies. Particularly we formulate the quantile regression using the asymmetric

Laplace distribution; the effects of various firm characteristics on the quantiles of cost

are specified as a linear function; the firm-specific relation between cost and multiple

outputs is captured by a single-index function based on a spline basis where the coeffi-

cients are assumed to have a Dirichlet process prior. The single-index formulation with

splines renders flexibility in modeling the nonlinear cost-output relation and the use of

Dirichlet process leads to a natural clustering of insurers with similar cost efficiency.

The method is applied to data on US property casualty insurers from the National

Association of Insurance Commissioners (NAIC). The analysis of average cost at dif-

ferent quantiles indicates that better insights on efficiency are gained by comparing the

whole cost distribution. A comparison of the model results with an external financial

strength ratings for property casualty insurers provides interesting insights on which

part of the cost distribution are perhaps weighted more by the rating agency.

Key words: Bayesian quantile regression; Asymmetric Laplace distribution; Single-

index ; Dirichlet process; Spline; Clustering; Longitudinal data
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1 Introduction

The insurance industry is one of the more important economic sectors in well-developed

nations. The global insurance premiums totaled $4.27 trillion US dollars in 2008 with

58% from life insurance and 42% from property-casualty (nonlife) insurance. As the

world’s largest insurance market, the US insurance industry underwrites $1.24 trillion

US dollars, among which, life and nonlife insurance contribute $0.58 and $0.66 trillion

US dollars, respectively (I.I.I. Insurance Fact Book 2009). A well-functioning insurance

industry is thus critical to the stable growth of any developed economy.

In a competitive insurance market, a profitable and financially healthy insurer is

built on a cost-efficient operation. A fair indicator of an insurer’s financial status is a

letter-based rating issued by independent financial rating agencies. Such rating reflects

to a great extent an insurer’s cost efficiency. For example, the financial strength rating

of A.M. Best Company (from A++ to D) offers the largest coverage of insurers and

reinsurers in the United States.

In this paper, we wish to analyze the cost efficiency and thus determine the financial

strength of companies in the US property casualty insurance industry. Our goals are

three fold. First, to identify the cost curve of each insurer (i.e. cost as a function of

produced output) and show that insurers choose to operate at different positions of

their own cost curves. Second, to compare individual insurers according to the level of

efficiency in operation and validate results with independent financial strength ratings.

Third, to identify groups of companies with similar efficiency level. To achieve these

goals, we examine the average cost curve for property and casualty insurers. We define

a more cost-efficient operation as one with lower average cost, i.e. the cost per unit of

output produced.

In microeconomics, cost function describes the relationship between a firm’s mini-

mum production cost and outputs. A comparison of cost functions of individual firms

is very important due to several reasons. First of all, a better understanding of cost-

output relationship helps achieve economies of scale, improve profitability, and align a

company’s financial and operational plans. Secondly, insurance is a competitive busi-
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ness, thus a cost-efficient operation is the key to sustainable growth. Therefore, such

a comparison would help investors in the evaluation of operation efficiency, to identify

more profitable insurers, and to make better-informed investment decisions. Another

important aspect of efficiency analysis is to provide guidance to regulators and pol-

icy makers regarding the problems and development in the industry or the economy.

For example, in the past two decades, the US property casualty insurance industry

has experienced a wave of mergers and acquisitions, partly motivated by the adoption

of regulatory risk-based capital standards. As insurers enjoy the risk diversification

through consolidations, it is interesting to regulatory authorities whether consolidation

is beneficial or detrimental to the scale efficiency of insurers. Not surprisingly, Berger

and Humphrey (1997) identified more than 130 articles on cost efficiency studies for

banking and insurance industries. In less than ten years after Cummins and Weiss

(2000), where 21 studies for the insurance industry are surveyed, anther 95 studies are

identified for the insurance industry alone (Eling and Luhnen (2010)).

To identify and compare the cost function of insurers, usual practice is to assume an

identical functional form between cost and outputs and to rank insurers according to

the center(usually mean) of the cost distribution. Such assumption could be inappro-

priate because insurers tend to adopt different technologies in their production process,

suggesting a variable cost-output relation across firms. Usually cost distributions are

skewed with long tails. For example, in our motivating data that is analyzed later,

we find that insurer’s cost distribution is highly skewed and heavy tailed (see Figure

1). Therefore, a center-based comparison can lead to biased inference regarding an

insurer’s efficiency in operation. Contrary to the usual practice, in this work we look

into insurers’ average cost rather than total production costs. According to microe-

conomic theory, a company’s average cost, as a function of its output, is a U-shaped

curve. Each firm chooses the optimal output level to maximize its profit. As a result,

one insurer might end up with an output level with economies of scale (the decreasing

section of the U-shaped curve), while another insurer might end up with an output

level with diseconomies of scale (the increasing section of the U-shaped curve). Thus,

by investigating average cost, one obtains additional insights regarding returns to scale
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in its production process without sacrificing the capability of ranking an insurer’s cost

efficiency. Comparisons of the average cost are not straightforward because of the

complicated production decision process. To identify the unique average cost curve of

each insurer, one needs to observe an insurer repeatedly over time. To further compare

two distinct cost curves, ideally one should examine the whole cost distributions rather

than focusing on the center. Motivated by such observations, we propose Bayesian

semiparametric quantile regression to model the data on production cost of insurance

companies over time. In our application, the method is used to derive the distributions

of average cost and to compare the cost efficiency among insurers. As a highlight of

our model, the quantile regression is formulated using the asymmetric Laplace distri-

bution(ALD); the effects of various firm characteristics on the quantiles of cost are

specified as a linear function; the firm-specific relation between cost and multiple out-

puts is captured by a single-index function (e.g. Hardle et al. (1993),Ichimura (1993),

Yu and Ruppert (2002) ) with a Dirichlet process prior (Ferguson (1973)). In the fol-

lowing, we briefly introduce the two key concepts, namely single-index formulation and

longitudinal quantile regression method, that are necessary to develop our proposed

model.

1.1 Single-index Formulation and Economies of Scale

One challenge in our study is the analysis of economies (diseconomies) of scale for

insurers, i.e., to determine whether an insurer operates on the increasing or decreasing

side of it’s average cost curve. In microeconomics, the economies of scale for a single-

output firm could be simply measured by the elasticity of average cost with respect to

that output (in a linear regression model, this would be the regression coefficient of

output). However, insurance companies produce multiple intangible outputs. Accord-

ing to Cummins and Weiss (2000), property-casualty insurers provide two principal

services: risk transfer and financial intermediation. Hence, two outputs related to

these types of services are typically used in efficiency studies. What has been ignored

in the multiple-output case is the combined effect of the two outputs and their possi-

ble nonlinear effects on the production cost. In our application, we use a single-index
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formulation in order to arrive at a single measure for output based on both types of

services. In doing so, we measure their combined effect on average cost and capture

the potential nonlinear relationship.

In a single-index formulation, the parameter of interest (θ) is modeled as a function

of multiple covariates (X) as θ = g(hβ(X)), where the function hβ(·) is known up

to the finite-dimensional parameters β and the “link” function g is unknown. On

one hand, this formulation provides much desired flexibility over a known parametric

formulation. On the other hand, it does not suffer from the curse of dimensionality that

arises from a complete nonparametric formulation, since the argument of function g(·)
is still univariate. See Hardle et al. (1993), Ichimura (1993), Yu and Ruppert (2002)

for some key developments in the analysis of single-index models and Wu et al. (2010)

for it’s application in quantile regression. Bayesian analysis of single-index models has

also received much attention recently (e.g. Antoniadis et al. (2004) and Wang (2009)).

In our model, the parameter of interest θ is the τ th quantile of the distribution of

average cost of an insurer, which is modeled as follows.

hβ(X, risk transfer, financial intermediation)

= XTβ + g(a× risk transfer + b× financial intermediation)

The covariates X represent various company characteristics such as size, product mix,

and investment portfolio etc, that are modeled linearly in the first term. The depen-

dence on outputs namely, risk transfer and financial intermediation is modeled by the

second term. The function g(·) can be interpreted as the τ th quantile of the average

cost after controlling for firm characteristics. Since we are interested in the combined

effects of multiple outputs, we define insurer’s output as a linear combination of the

individual outputs (i.e., κ1× risk transfer+κ2×financial intermediation) and its effect

on average cost will be captured by function g(·).

1.2 Longitudinal quantile regression and clustering

Our cost analysis resorts to quantile regression because conditional quantiles provide

a more complete picture of the cost distribution. Quantile regression was introduced
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by Koenker and Bassett (1978), and has been investigated for cross sectional and time

series data, for example, see Koenker and Xiao (2002), Koenker and Xiao (2004),

and Koenker and Xiao (2006). Although there have been recent studies on the use of

quantile regression in longitudinal data (see Jung (1996), Lipsitz et al. (1997), Koenker

(2004) among others), research into the Bayesian approach for the same is relatively

new and limited. There are however a small yet growing number of studies (see Geraci

and Bottai (2007), Yuan and Yin (2010) and Yue and Rue (2011)) where Bayesian

quantile regression has been extended in a few directions including nonparametric

setting.

In this article, we adopt a new Bayesian hierarchical modeling approach to analyze

cost data from property casualty insurers that address the above mentioned issues.

The key contributions of our work are:

1. We perform a quantile regression analysis for the longitudinal data on costs of

property casualty insurers, which allows for the comparison of the whole cost

distribution. In fact, we show that better insights on efficiency are gained by

examining different (conditional) quantiles of average cost.

2. We identify firm-specific cost function via a single-index formulation on the mul-

tiple outputs of insurers. Such a formulation renders flexibility in modeling the

nonlinear relationship of cost with multiple outputs and enables us to determine

on which part of the average cost curve an insurer operates

3. We allow the single-index function to vary by firm with a Dirichlet process prior

on its coefficients. While the longitudinal data helps capture the relationship be-

tween average cost and output, the prior on the coefficients provides the necessary

shrinkage on the large number of parameters needed to model the relationship at

firm level.

4. Moreover, as a consequence of using Dirichlet process, there is a borrowing of

strength within the coefficients across firms, since the Dirichlet process model

results in automatic clustering of companies with similar cost curves. The clus-

tering of insurers is interesting in quantile regression context, because potentially
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different clustering results can be obtained at various quantiles.

5. On the one hand, we use the letter-based financial strength ratings assigned by

an independent rating company to validate our results. On the other hand, our

analysis sheds light on which part of the cost distribution (left tail, middle, or

right tail) is weighted more heavily by rating agencies.

It is also important to note that given the objective of estimating firm-level cost

function and the fact that the data is limited to a few years, a purely classical formu-

lation of the model may have estimation problems and thus a Bayesian approach may

be more useful.

The rest of the article is structured as follows: Section 2 introduces the data that

motivated the work. In Section 3, we propose the Bayesian quantile regression model

with a subject-specific single-index formulation and in Section 4, the Bayesian inference.

In Section 5, we analyze data and show the benefit of the proposed approach, develop

how to cluster insurers and compare cost efficiency. We conclude in Section 6. Technical

notes on simulating from posterior distribution of the various model parameters are

provided in the appendix.

2 Motivating Data

We consider a dataset of US property-casualty insurers from the National Association of

Insurance Commissioners (NAIC) database. The NAIC, an organization of insurance

regulators, maintains one of the largest insurance regulatory database in the world.

The database contains financial statements of thousands of insurers writing business

in US. Further details of this database is available in Shi and Frees (2010).

The definition and selection of variables are all followed from the insurance litera-

ture. The average cost of insurers represents the cost per unit of output. As pointed

out earlier, a property casualty insurer produces two types of output: “risk transfer”,

which protects a personor businesses from property losses and legal liabilities, and “fi-

nancial intermediation”, which compensates for the opportunity cost of the funds held

by the insurer through a discount in premiums. The production process is accom-
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plished by property-casualty insurers through two principal functions, underwriting

and investment, associated with three types of cost: underwriting, investment, and

loss adjustment expenses. Underwriting expenses aggregate policy acquisition and

maintenance costs; Investment expenses are associated with the portfolio management

of an insurer’s invested assets; Loss adjustment expenses result from loss investigation

and claim settlement. Using gross premiums written and invested assets to measure

the quantities of “risk transfer” and “financial intermediation”, respectively, we define

the average cost for a property- casualty insurer as:

Average cost =
Underwriting expenses+ Loss adjustment expenses

Gross premiums written

+
Investment expenses

Invested assets

In addition to average cost and output variables, we control important firm charac-

teristics in the quantile regression: business mix is captured by the distribution in

different lines of business; Investment portfolio is described by the allocation of premi-

ums funds into various types of financial assets; Ownership structure is categorized as

stock verses mutual insurer; Firm affiliation is differentiated by whether an insurer is

a single entity or belongs to a group. Table 1 summarizes these variables along with

their descriptions.

We use firm-level observations for active primary insurers from years 2001-2006.

To construct our modeling dataset, we exclude from the data: 1) Companies with

non-positive net written premiums in all observation years. These companies are not

underwriting business, either because they have stopped issuing new policies or be-

cause they are doing other types of business (for example investment) under a shell.

2) Records with an inactive company status. The NAIC records an inactive status

when the company is merged with or acquired by another company, the company is

voluntarily out of business, or the charter is inactive. 3) Certain specialty insurers,

such as financial guaranty and title insurers, insurers that do not file statements with

the NAIC, as well as professional reinsures classified by the NAIC.

We analyze data for individual companies, as opposed to groups of affiliated insur-

ers. The above criterion produces a dataset of 9,362 company-year observations for
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1,741 property casualty insurers over a six-year time horizon. In the following anal-

ysis, all variables expressed in monetary values are deflated to 2001 dollars using the

consumer price index. The descriptive statistics are presented in Table 2.

In this work, our dependent variable is avg cost (i.e. the cost per unit of output

produced). The histogram of this dependent variable is displayed in Figure 1. It is

evident that the distribution is right skewed and presents long tails, suggesting that

focusing on the center is not sufficient for a comprehensive description of an insurer’s

cost distribution. Such observation motivates the use of quantile regression, where a

more complete picture of cost distribution is captured by conditional quantiles. Also,

quantile regression analysis helps gain much insights into the relationship of average

cost with different firm characteristics. To account for the variation across the data, we

control for different firm characteristics as well as an overall macro effect of time that

impacts all companies. As will be seen later in Figure 3, the strength of relationship can

be different for different variables, and moreover for the same variable, can vary across

quantiles. A mean regression approach in such a situation could give an incomplete

picture and some times mislead us into concluding that no relationship exists.

3 Methodology

3.1 Bayesian quantile regression model

Given dependent variables Yi (i = 1, 2, ..., N) and explanatory variablesXi, the quantile

regression problem (see Koenker and Bassett (1978), Koenker (2005)) involves solving

for β in the following problem.

min
β

N
∑

i=1

ρτ (Yi −XT
i β)

where ρτ (u) = u(τ − I(u≤0)) with I(·) being the indicator function and 0 < τ < 1. This

is equivalent to the maximum likelihood estimation problem by assuming asymmetric

Laplace distribution(ALD) for the response, i.e. Yi ∼ ALD(., µτ
i , σ, τ), where µτ

i =
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XT
i β and

ALD(y;µτ , σ, τ) =
τ(1− τ)

σ
exp

{

−(y − µτ )/σ × (τ − I(y≤µτ ))
}

, −∞ < y < ∞

The τ th quantile of this distribution happens to be µτ . In light of this fact, Yu and

Moyeed (2001) introduced Bayesian methods in quantile regression by formulating the

problem as a generalized linear model using ALD for the response. Based on empirical

findings, they observe that using ALD for response is robust to the true underlying

likelihood. Sriram et al. (2011)(unpublished manuscript) explored a theoretical justifi-

cation for using ALD in Bayesian quantile regression. An alternative to ALD is using

Bayesian nonparametric methods which allow for relaxing the distributional assump-

tion (see e.g. Reich et al. (2010), Reich et al. (2011)). However, given the robustness

of ALD to the true underlying distribution and ease of implementation, we formulate

our problem using ALD for the response.

Let Yit be the dependent variable for subject i at time t and Xit be the vector of

firm specific factors. Further, let Vit is a vector of factors for which the interest is to

derive a more precise functional relationship with the dependent variable. For a fixed

τ ∈ (0, 1), we use the following formulation to model the τ th quantile of the dependent

variable.

Yit ∼ ALD(·, µτ
it, σ, τ) (1)

where µτ
it is specified semi-parametrically as,

µτ
it = XT

itβ +

T
∑

l=2

αlI[t=l] + gi(V
T
itκ) (2)

Here, β is a vector of fixed effects for the firm specific factors, Ix is the indicator

function for condition x, αl allows for the yearly effect. The single-index part gi(V
T
itκ)

models for subject specific functional relationship between the τ th quantile of Yit and a

linear combination of the vector of covariates Vit. Note that this linear combination is

given by VT
itκ where the coefficients κ are unknown but common across subjects. We

vary the nonparametric function gi(·) by firm. The proposed semiparametric quantile

regression model offers great flexibility in modeling the response. In particular, the
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model reduces to a linear model when gi(·) is the identity function. Following, Ruppert

et al. (2003), we specify gi(·) by the following spline formulation based on a piecewise

truncated polynomial of degree L:

gi(V
T
it κ) = γi1 + γi2(V

T
itκ) + · · ·+ γiL(V

T
itκ)

L +

D
∑

d=1

γi,L+d+1(V
T
itκ− ηd)

L
+ (3)

where (x)+ = x if x > 0, and 0 otherwise, and η1 < η2 < · · · < ηD are the fixed knots,

which are typically placed at quantiles of the distribution of unique values of VT
itκ.

The vector of random effects γi = (γi1, · · · , γi,L+D+1) is modeled nonparametrically by

using a Dirichlet process prior. The above spline model of order L represents adequate

fits for most of the data situations. However, the number of parameters may not be

practical for smaller data sets. In those situations, simpler spline models such as linear

splines may be used, or subject specific splines may be dropped. Typically, linear

(L = 1), quadratic (L = 2) or a cubic (L = 3) splines are common choices in practice

(Ruppert et al. (2003)) as they ensure a certain degree of smoothness in the fitted

curve .

3.2 Dirichlet Process

The spline coefficient vectors γi, for i = 1, 2, .., N , are usually assumed to be i.i.d with

a parametric multivariate normal distribution. Recently, Ghosh et al. (2009) have

shown that this assumption can be misleading if the actual distribution is misspecified.

Thus, to make the model robust to misspecified distributions, we assume a Dirichlet

process (Ferguson (1973)) prior for the spline coefficients. A Dirichlet process would

assume an unknown probability measure G for γi and thus incorporate infinitely-many

parameters in order to more flexibly model the uncertainty in G. In order to allow G to

be an unknown distribution on the Euclidean space, let G ∼ DP (ν,H0), where ν > 0

is called the concentration parameter, which characterizes the prior precision and H0

a base distribution on the Euclidean space. By choosing a Dirichlet process prior for

G, one allows G to be an unknown distribution, with H0 corresponding to the best

guess for G and ν expressing confidence in this guess. In particular, H0 can be chosen

to be a normal distribution with some mean and variance parameters. In addition, ν
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is commonly assigned a gamma hyperprior to allow the data to inform more strongly

about the extent to which G is close to H0. Based on the above discussion we assume

the following :

γ1, ...,γN |G iid∼ G, G|ν,H0 ∼ DP (ν,H0),

H0|µh,Σ ∼ NL+D+1(µh,Σ), ν|a, b ∼ Gamma(a, b) (4)

There are several ways to implement a Dirichlet process prior. Recent research has

focused on using the following constructive definition to produce Markov Chain Monte

Carlo (MCMC) algorithms (Sethuraman and Tiwari (1981) and Sethuraman (1994)),

where the unknown random probability measure G can be written as:

G(·) =
∞
∑

r=1

prδφr
(·) (5)

where φr
iid∼ H0 and δφr

(·) is the degenerate probability at φr,

p1 = q1, pr = qr

r−1
∏

j=1

(1− qj) and qr
iid∼ Beta(1, ν), r ≥ 1

Recently, a common approach has been to truncate the above sum at a chosen large

integer to obtain a finite approximation (Ishwaran and Zarepour (2002), Ishwaran and

James (2002)). However, we prefer to use an approach due to Walker (2007) that

circumvents the requirement of taking a finite approximation. The idea of this method

is as follows. Let p = {p1, p2, .....} and φ = {φ1,φ2, ...}. For each fixed i, a latent

variable Ui is introduced such that the joint density of (γi, Ui) conditional on (p,φ) is

given by,

g(p,φ)(γi, ui) =

∞
∑

r=1

Iui≤pr × δφr
(γi)

Then the marginal density of γi obtained by integrating out ui w.r.t the Lebesgue

measure, will be as in equation (5) and the marginal density of Ui will be:

gp(ui) =
∑

r∈Ap(ui)

Iui≤pr , where Ap(ui) = {r : ui ≤ pr}

Note that for a given ui and p, the set Ap(ui) is finite (because
∑∞

r=1 pr = 1 implying

pr → 0 as r → ∞). The conditional density of γi given Ui is then given by

gp,φ(γi|Ui = ui) =
1

gp(ui)

∑

r∈Ap(ui)

δφr
(γi)
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Further, another latent variable δi is introduced to indicate the component k ∈ Ap(ui)

for which γi = φk. The joint density now becomes

g(p,φ)(γi, Ui = ui, δi = k) =

∞
∑

k=1

Ik∈Ap(ui) × δφk
(γ)

The idea is to then design the MCMC sampling scheme to iteratively generate γi, Ui

and δi for every i ∈ {1, 2, ..., N}.

3.3 Clustering of functions

A key feature of the Dirichlet process is the almost sure discreteness of the random

measure G that assigns positive probability to common values among all γi’s. The

pattern of ties among the members of {γi, i = 1, 2, ...., N} determines a partition of

the set of distinct subjects of C = {1, 2, · · · , N}. In other words, C is divided into

m unordered sets of disjoint nonempty subsets C1, C2, · · · , Cm whose union is C. If

we associate a latent variable si with each γi, then we can write si = l if i ∈ Cl and

define γi = φsi . The si acts as a classification variable to identify φl corresponding to

a specific γi. Thus, given the classification vector s = (s1, · · · , sN )T one can describe

the clustering behavior of (γ1,γ2, · · · ,γN )T , which in turn is equivalent to clustering

the functions gi(·).
However, it is important to note that the resulting clustering depends on the partic-

ular realization of the random distribution G. Therefore, each simulation of G from an

MCMC scheme will result in a possibly different clustering configuration. Understand-

ably, one needs to arrive at a final clustering based on all the simulations of G (post

the burn-in period). Our approach is similar to that of Medvedovic and Sivaganesan

(2002) and can be briefly described as follows.

1. We compute the percentage of simulations in which subjects i and j are classified

into the same cluster and denote this by Pij .

2. We then compute the pair-wise distance matrix D with (i, j)th entry as Dij =

1− Pij
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3. Finally, we cluster the subjects using standard clustering techniques (more specif-

ically “Complete-Linkage method”) with D as the distance matrix. (This can be

carried out using the hclust function in R or Proc clust procedure in SAS).

Since we carry out quantile regression at different quantiles, we get a membership

matrix [Pij ] at each quantile. One way to apply the above method would be to choose a

particular quantile on which we would like to base the clutering. In our case, instead of

preferring any one quantile model for clustering, we use all the quantiles by computing

Pij as the average pairwise membership probability across all the quantile models.

4 Bayesian Inference

4.1 Likelihood

The model specification for the data {(Yit,Xit,Vit) i = 1, 2, ..., N, t ∈ {1, 2, ..., T} },
is given by equations (1), (2) and (3). Let Si ⊆ {1, 2, .., T} be the time points at

which data for subject i is observed. In order to subsequently derive an effective

MCMC sampling scheme, we find it advantageous to use the representation of ALD

as a scale mixture of normals (see Tsionas (2003), Yue and Rue (2011)). If Wit
iid∼

Exponential (with mean=σ) and Zit ∼ N(0, 1), then

Yit =
(

µτ
it + ξWit + ǫZit

√

σWit

)

∼ ALD(·, µτ
it, σ, τ)

where ξ = (1−2τ)×(τ(1−τ))−1 and ǫ2 = 2×(τ(1−τ))−1 . Accordingly, the likelihood

based on the model specifications for a fixed τ ∈ (0, 1) can be written as follows.

L(Y|X,W,β, κ, γ, α, σ) =

N
∏

i=1

Li(Xi1, ..,XiT ,Wi1, ..,WiT ,β, α, κ, γi, σ) (6)

where,

Li(Xi1, ..,XiT ,Wi1, ..,WiT ,β, α, κ, γi, σ)

=
∏

t∈Si

{

(2πσǫ2Wit)
−1/2

e−(Yit−ξWit−XT
itβ−

∑T
l=2 αlI[t=l]−gi(VT

itκ))
2
/(2σǫ2Wit)

}

(7)

where Y,X and W respectively denote the collections of Yit,Xit and Wit over all

possible i and t. Similarly, α = (α2, .., αT ) and γ is the collection of γi over all i. For
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identifiability, the intercept term is added to the spline function gi(·) and excluded from

Xit. Also, note that the parameters (β, α, κ) are common for all subjects whereas the

parameter coefficients for the spline function γi vary by subject.

4.2 Prior specification

The Bayesian specification is completed by specifying prior distributions for the set

of parameters Ω = {β, α2, .., αT , σ,κ,γ1, ...,γN}. Recall that Wit
i.i.d∼ exp(1/σ). We

assume elements of Ω are independent. We assign conjugate priors for the regression

coeffcients of the linear part (namely, β, α2, .., αT ) by assuming a normal density for

each and for the scale parameter σ by assuming a inverse-gamma(IG) density. More

specifically, β ∼ N(µβ,Σβ), αl
iid∼ N(µl, σl), l = 2, .., T and σ ∼ IG(a, b), which is

the distribution of 1/S, where S follows a gamma distribution wth density function

f(s) ∝ sa−1exp{−b× s}.
We assume a Dirichlet process prior for γi as described in equation (4). The

functions gi(·) and parameters κ are identifiable only up to a scalar multiple and

hence we restrict the parameter space of κ to vectors with unit norm. Therefore, we

assume a uniform distribution on the set {κ : κTκ = 1}. It is worth noting that a

careful choice of prior on σ drastically improves the accuracy of Bayesian estimation.

Especially, in our problem the support of the dependent variable (average cost)is mostly

between 0 and 1, with more than 99% values falling within this range. Therefore, a

prior on σ which ensures that a large probability under the specified ALD density lies

between 0 and 1, helps the estimation. We also impose a prior on the hyper parameter

ν ∼ Gamma(aν , bν).

4.3 MCMC algorithm

MCMC techniques have been extensively used in Bayesian modeling for the computa-

tion of posterior distributions (see Hastings (1970), Gelfand and Smith (1990)). Simula-

tion for all the parameters except κ is based on a Gibbs sampling. Following Karabatsos

(2009), we use an Adaptive Random-Walk Metropolis (ARWM) algorithm for simulat-
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ing κ. This uses a Metropolis-Hastings procedure with a symmetric distribution on the

unit sphere as the proposal distribution and modifies the proposal distribution by in-

troducing a scalar parameters λ so as to optimize the acceptance rate of the algorithm.

Hence we introduce the parameter λ in our sampling. Also, we use the representation

of Walker (2007) as described in Section 3.2 to simulate from the Dirichlet process. Let

U = (U1, U2, ..., UN ), δ = (δ1, δ2, ..., δN ), where the elements within the vectors are as

in Section 3.2. The MCMC procedure is designed to generate all the required param-

eters, namely β, σ,ν ,α,κ, λ,γ1, ...,γN ,U, δ,p,φ. The detailed procedure is provided

in the appendix.

5 Data Analysis

5.1 Model specification

We analyze the insurance cost data described in Section 2 using the proposed mod-

eling methodology. The data consists of information on the variables shown in Ta-

ble 1 for N = 1741 insurance companies, collected over the years 2001 to 2006 (in-

dexed using t = 1, . . . , 6). In our context, the dependent variable is Yit = avg cost

for company i in year t. Our interest is to analyze the τ th quantile of the distribu-

tion of avg cost for each company, for various values of τ . Specifically, we consider

τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90}. This is accomplished by using the ALD formulation

as described in Section 3. An important part of our model is the subject specific

single-index curve which is formulated as a spline function that models the relation-

ship between avg cost and output. We try to obtain output as a linear combination of

risk transfer and financial intermediation which are operationally measured by gross

written premiums and total invested assets respectively. A key feature of a Bayesian

approach is that it accommodates dependence across observations through random ef-

fects. In our case, the dependence within subject is modeled via the random effects in
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the firm specific spline coefficients. Accordingly, the model formulation is as follows.

avg costit ∼ ALD(., µτ
it, σ, τ), i = 1, 2, .., N, t ∈ {1, 2, .., 6}

µτ
it = β1 pct propertyit + β2 pct liabilityit + β3 pct combinedit

+β4 pct equityit + β5 pct cashit + β6 groupit + β7 stockit

+

6
∑

l=2

αlI(t=l) + gi (κ1 prem totit + κ2 assets invit)

Note that a company specific intercept enters the model through the spline function.

We use a linear spline basis (degree L = 1) with knots chosen at the ten different

deciles of the variable (κ1 prem totit + κ2 assets invit) in the data. This specification

results in a basis with 11(= L + D + 1) degrees of freedom. The advantage of a

linear spline over those of higher degrees is its simplicity, which also translates into

a better convergence of the MCMC scheme. In line with our objective of deriving a

firm-specific dependence of avg cost on output, the coefficients of the spline function

(γil(·)) are taken to be firm-specific. Coefficients (α2, .., α6) are the fixed effects for

the years 2002 to 2006 respectively. The fixed effect for the year 2001 is excluded to

ensure identifiability. For β1, .., β7 and α2, .., α6 we take independent N(0, 1) priors.

For γi = (γi1, γi2, ..., γi(L+D+1)), we take a Dirichlet process prior with base probability

measure H0 = NL+D+1(0, I) and precision parameter ν ∼ Gamma(1, 1). For σ we

take IG(10, 0.1). This particular choice of prior on σ helps ensure that the essential

support of ALD density resembles that of the variable avg cost in the data and to a

great extent helps the convergence of MCMC scheme. Also, we impose a uniform prior

on the set {(κ1, κ2) : κ21 + κ22 = 1}

5.2 Model Results

Implementing the MCMC scheme described in Section 4, the quantile regression model

is estimated for five different quantile values, i.e. 10th, 25th, 50th, 75th, 90th quantiles.

To achieve convergence, the first 100,000 simulations are discarded as burn-in samples

and further 10,000 simulations are generated for the analysis. Simulation of κ involved

a Metropolis-Hastings step which resulted in approximately 20% acceptance rate.
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Figure 1 presents a comparison of the empirical density curves for the modeled

values at different quantile regressions with the histogram of actual data. As expected

we see that the density curves for the lower quantiles are to the left of data and higher

to the right, with the median model density curve mostly matching with the data. The

relation between densities with modeled values and actual data suggests that the range

of values resulting from the models are reasonable compared to that in the data.

To provide a little more insight into the cost distribution of individual firms, we

show in Figure 2 the comparison of the actual average cost with modeled values for two

different insurers. The insurer in the left panel presents higher volatility in that the

average cost jumps back and forth across various quantiles. In contrast, the average

cost of the insurer in the right panel is more stable, staying close to the 50th quantile.

Figure 3 summarizes the parameter estimates at various quantile regressions, with

the plus sign indicating the posterior mean of the parameter and the dotted lines

marking the 95% credible interval. The horizontal solid line denotes the constant line

at zero. Though one would conclude with an insignificant effect if zero lies within the

credible interval, we emphasize that in a Bayesian context, we are more interested in

the likelihood that a covariate would affect an insurer’s cost. In this sense, if most of the

interval is above (below) the zero line, the chance is high that the variable has a positive

(negative) effect. Firstly, we observe that most of firm characteristics affect insurers’

cost significantly. It is interesting to see the mixed effects of underwriting mix variables

which are significant at lower and higher quantiles but not at the middle quantiles.

Furthermore, the sign of coefficients of these variables is positive at lower quantiles

and negative at higher quantiles, suggesting a positive effect for thrifty insurers and a

negative effect for ones with higher costs. This result also emphasizes the importance of

carrying out quantile regression at different values of τ . The traditional regression or a

simple median regression would lead us to the biased conclusion that underwriting mix

variables do not affect the insurer’s production cost. As for investment mix variables,

though zero is mostly within the credible interval, cash equivalent tends to have a

negative effect on cost and equity tends to have a positive effect on cost. This could

be explained by the lower transaction cost involved in the cash equivalent investment.
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Another noticeable result is the effect of organization form on the average cost. Figure 3

suggests that stock insurer has lower cost at higher quantiles but higher cost at lower

quantiles. This is consistent with the coexistence of stock and mutual property-casualty

insurers in the market, though the agency theoretical hypothesis predicts that mutual

insurers are less successful than stocks in minimizing costs (Cummins et al. (1999)).

Finally, as anticipated, the fixed effect of years are less pronounced at all quantiles,

because the year effects presumably have been captured by the individual effects in the

single-index function.

5.2.1 Average Cost Curve

One application of our approach is to identify the unique average cost curve for each

insurer. As discussed earlier, microeconomic theory implies a U-shaped average cost

curve as a function of output for individual firms and different firms might produce at

different positions of its own cost curve. However, in practice, curves need not exactly

conform to this theory. For example, there could be certain ranges of output for which

the curve is flat. Therefore, a method that allows for more flexible curve shapes is

desirable. The single-index formulation based on splines provides this flexibility and

allows us to capture the aggregated effect of multiple outputs. Note that in reality

one does not observe the entire cost curve for an insurer, thus the estimated curve has

more credibility in the range of observed output. To illustrate, we choose to present the

average cost curve for two individual insurers, as shown in Figure 4. The cost curve for

insurer X is estimated from the 50% quantile regression and the cost curve for insurer

Y is estimated from the 75% quantile regression. The actual average costs in different

years are marked by solid triangles. Figure 4 suggests decreasing return to scale for

company X and constant return to scale for company Y. Presuming that the insurance

market is competitive, company X is expected to be more profitable than company Y.

5.2.2 Comparison with Independent Financial Ratings

Additional insights could be gained by comparing our result with an external measure.

In doing so, we look into the A.M. Best financial strength rating for the US property
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casualty insurers. A letter-based score is assigned for each insurer by A.M. Best Com-

pany based on an independent evaluation of the insurer’s ability to meet its ongoing

contract obligations. In general, each insurer will be categorized into one of the four

rating scales: superior, excellent, good, and vulnerable. Figure 5 shows the mean cost

curves at different quantiles by groups of A.M. Best ratings. Presumably, a more cost-

efficient insurer tends to be more profitable and thus to have a better financial status.

The better alignment of the 75% quantile model with the A.M. Best rating suggests

that the 75th percentile of the insurers’ cost is more weighted in the evaluation process.

This is not surprising as the cost distribution is right skewed as seen in Figure 1. Note

that the A.M. Best rating incorporates many other factors apart from cost, thus we do

not expect an exact match.

5.2.3 Clustering of Insurers

The utilization of the Dirichlet process prior allows us to cluster insurers according

to the similarity in the level of cost and shape of the curve. Specifically, we group

insurers based on the pairwise membership matrices obtained for the coefficient vector

γi, i = 1, . . . , N of the single-index spline function gi(·). As described in Section 3.3,

a specification of the number of target clusters is needed for the hierarchical cluster-

ing procedure. Since the number of clusters from the Dirichlet process varies across

quantiles, we chose the average number (=9) of clusters that is implied by the MCMC

simulation of the Dirichlet process for different quantile regressions. For illustration

purposes, we show the plot of individual cost curves within each cluster from the 75%

quantile model in Figure 6. To help discern the typical shape of the curves within

each cluster, we also exhibit the mean curve (black solid line). As we expected, the

shapes of the curves do not exactly conform to theory of being U-shaped. However,

they are not totally inconsistent either. The initial part of the curve corresponding to

approximately half the range of output is clearly part of a U-shape. The rest of the

curve would have been if not for a portion that is flat or has a slight dip. The latter

behavior can perhaps be attributed to significant changes in the production process

beyond certain levels of output. In general, clustering points us to companies with
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similar returns to scale. In particular, cluster 1 and cluster 9 show steeper returns to

scale than clusters 2 or 5, which are relatively flat.

5.2.4 Comparison of cost efficiency

Another application of the proposed method is to compare the cost efficiency across

insurers. The quantile regression specification enables us to derive the cumulative dis-

tribution function of average cost for individual insurers. Insights of relative efficiency

among insurers could be gained by comparing the distribution of their average costs.

For demonstration purposes, we display in Figure 7 the implied cumulative distribu-

tion function of average cost for two pairs of insurers. Note that the distribution of

average cost is derived after controlling for firm characteristics. In the left panel, we

see that insurer A has first-order stochastic dominance over insurer B, indicating a

higher cost efficiency of insurer A than insurer B. In contrast, the right panel exhibits

a case that ranking the cost efficiency among insurers is not straightforward. While the

medians for the two companies are close, the average cost of insurer C is higher at low

quantiles but lower at high quantiles than insurer D. This example again emphasizes

the advantages of quantile regression analysis: more information could be revealed by

looking into different quantiles of the cost distribution rather than focusing on the

center, where two insurers show similar level of cost efficiency.

6 Concluding Remarks

We examined average cost of property-casualty insurers using a Bayesian semipara-

metric quantile regression approach. Although much of the motivation for this article

was developed in the context of insurance industry, in principle, our results are useful

for any market where each firm has multiple outputs and cost function varies across

individual firms. Additional potential applications are easy to imagine, for example,

banking industry. Thus the size of the economic sector such as insurance industry

provides sufficient motivation for this work.

The average cost curve by definition is unobservable. For a given firm, it measures
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the hidden relationship between average production cost and output level given the

technology adopted by the company in the production process. To compare the av-

erage cost among insurers, we proposed a Bayesian quantile regression based on the

asymmetric Laplace distribution. The quantile regression examines the whole distri-

bution of average cost instead of just focusing on the center. We show that such

analysis is in particular useful for skewed and heavy-tailed distributions such as insur-

ers’ production costs in our application. We also show that more insights on relative

cost efficiency could be gained by comparing the cumulative distribution function of

average cost derived from the regression quantiles. Our formulation of the quantile

regression employed a single-index formulation to capture the nonlinear dependence of

average cost on multiple outputs. Thus, we arrive at a single measure of output that

helps identify returns to scale for individual insurers. Motivated by the observation

that insurers adopt different technologies in their production, we also showed that the

unique cost function of each insurer could be identified by allowing the single-index

formulation to be firm-specific within a longitudinal context. By using a Dirichlet pro-

cess prior, we show that insurers could be grouped according to similar level of cost

efficiency. A comparison of our results with an independent financial strength rating

leads to an interesting finding that the right tail of the cost distribution is perhaps

weighted more by rating agencies.

While the semiparametric quantile regression using single-index turns out insightful,

few limitations of our method must be underlined. Firstly, the quantile regressions at

different quantiles are estimated individually by running the model separately for each

desired quantile. One may be interested to look at more than one quantile simultane-

ously. Although there have been some recent developments on simultaneous modeling

of quantiles, their adaptation to the current problem is not straight forward and re-

quires further investigation. Secondly, the parameters κ can vary for different quantile

regressions, which is a problem if one wishes to fix it across quantiles and only vary the

function gi. A good way to address this would again involve simultaneous modeling of

quantiles. We are currently exploring these issues pf modeling. Notwithstanding these

limitations, this research has pointed to a new road map for the modeling of insurance
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cost data and addresses some of the key challenges.
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Appendix

Details of the MCMC algorithm

By way of notation, X will include the dummy columns indicating the year variable.

Let V be the matrix with elements of the set {Vit, i = 1, .., N, t ∈ {1, .., T}} as it’s

rows. Let v= number of columns of V. Similarly let W be the column containing

the elements Wit. For a matrix Z1 and column vector z2 with same number of rows,

Z1/z2 will mean the matrix, whose columns are obtained by taking term-wise ratios

of each column of Z1 with the vector z2. Similarly
√
Z1 will be the matrix obtained

by taking square-root of each element and matrix multiplication Z1.Z2 for two equally

dimensioned matricies Z1 and Z2, will be a matrix of the same dimension whose entries

will be the scalar product of the entries of the two matricies in the same position. Also

recall that ξ = (1− 2τ)× (τ(1 − τ))−1 and ǫ2 = 2× (τ(1 − τ))−1. After starting with

some initial values, let the simulated values of the parameters of interest at step s be

given by β(s), σ(s),ν(s),α(s),κ(s), λ(s),γ
(s)
i ,U

(s)
i , δ(s),p(s),φ(s).

Step 1: Simulating κ and λ

We generate these parameters in the lines of Karabatsos (2009). Using their method,

κ(s+1) is obtained after generating a proposal κ∗ as follows

• κ ∼ Nv

(

κ(s) × 2× λ(s)2, Iv

)

, where Iv is the identity matrix of order v.

• κ∗ = κ/κ′κ

• Compute ρ = min
(

1, L(Y|X, ...,κ∗, ...)/L(Y|X, ...,κ(s), ...)
)

, where parameters

other than κ in computing likelihood L(·) (as in equation 6) are held fixed at the

values obtained at the sth step.

• κ(s+1) = κ∗ with probability ρ and κ(s+1) = κ(s) with probability (1− ρ).

• λ(s+1) = max
(

0, λ(s) + (s+ 1)−1/2(.234 − ρ)
)

. This step is to approximately en-

sure a 23% acceptance rate in the sampling.
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Step 2: Simulating β and α

Although β and α represent two types of variables (viz. company characteristics and

year dummies), we find it easier to simulate them as a combined block, denoted by

β̃ = (β, α2, ..., αl)
T . The corresponding covariate matrix X̃ is formed by stacking the

rows Xit for i ∈ {1, 2, ..., N}, t ∈ {1, 2..., T} and by appending dummy columns for the

year variables. Accordingly the prior for β̃ ∼ Normal(µ
β̃
,Σ

β̃
), which is obtained by

combining the independent priors specified for β and α in Section 4.2. So, β̃
(s+1)

is

simulated as follows.

• X∗ = X̃/
√
σǫ2W(s)

• Y∗ = (Y−ξW(s)−X̃µβ̃− g(s)(Vκ(s+1)))/
√
σǫ2W(s), where g(s)(Vκ(s+1)) is the

column vector with entries
{

g
(s)
i (Vitκ

(s+1)), i = 1, 2, ..., N, t ∈ {1, 2, .., T}
}

and

g
(s)
i (x) = γ

(s)
i1 + γ

(s)
i2 x+ · · · + γ

(s)
iL xL +

D
∑

d=1

γ
(s)
i,L+d+1(x− ηd)

L
+

with (η1, .., ηD) being equally spaced quantiles of {Vitκ
(s+1) for i = 1, .., N ,

t ∈ {1, 2, ..T}}. Note that the superscripts on κ and γ are differnt since an

(s + 1)th updated value for κ is available from the previous step but not yet for

γ.

• Σ∗

β̃
=

(

Σ
β̃
−1 +X∗TX∗

)−1

• µ∗

β̃
= Σ∗

β̃
×

(

X∗TY∗ +Σ−1

β̃
µβ̃

)

• Simulate β̃(s+1) from Nb(µ
∗

β̃
,Σ∗

β̃
), where b is the dimension of β̃

Step 3: Simulating W

It can be seen (as in Yue and Rue (2011)) that the distribution of W−1
it for each (i, t),

conditioned on other parameters and the data is Inverse Gaussian. As mentioned in

their paper, the inverse gaussian density with parameters (λ′, µ′)is given by

f(x) =

√

λ′

2π
x−3/2exp

(

−λ′(x− µ′)2

2(µ′)2x

)

;x > 0

We simulate W(s+1) as follows.
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• Compute the vector µ
′

= (ξ2 + 2ǫ2)/
(

Y − X̃β̃
(s+1) − g(s)(Vκ(s+1))

)2
, where

X̃, β̃
(s+1)

,g(s)(Vκ(s+1)) are as in the previous step.

• Compute λ
′

= (ξ2 + 2ǫ2)/σǫ.

• Simulate W
(s+1)
it

−1
from Inverse Guassian(µ

′

it, λ
′

), where µ
′

it is an individual

element of the vector µ
′

.

Step 4: Simulating σ

• Compute Y∗ =
(

Y − ξW(s+1) − X̃β̃
(s+1) − g(s)(Vκ(s+1))

)

/
(

2ǫ2W(s+1)
)

.

• Compute b∗ = b+Y∗′Y∗ +
∑N

i=1

∑

t∈Si
Wit.

• Compute a∗ = a+N +N/2.

• Simulate σ(s+1)−1
from Gamma(a∗, b∗).

Step 5: Simulating γ

Recall that δ is a vector of dimension N, whose ith entry indicates the position of

subject i in the infinite series of equation (5).

• Simulate U
(s+1)
i from Uniform

[

0, p
(s)
i

]

, for each i = 1, 2, ..., N .

• For k ≤ max
{

δ
(s)
i , i = 1, 2, ..., N

}

, such that k 6= δ
(s)
i , for any i ∈ {1, 2.., N},

simulate φ
(s+1)
k from NL+D+1(0,Σ).

• For k ≤ max
{

δ
(s)
i , i = 1, 2, ..., N

}

, such that k = δ
(s)
i , for some i ∈ {1, 2, .., N},

simulate φ
(s+1)
k as follows.

(i) Let Yγ =
(

Y − X̃β̃
(s+1)) − ξW(s+1)

)

/
√
ǫ2σW(s+1) and Yγi be the sub-

vector of the vector Yγ containing only rows that corresponding to subject i.

(ii) Let Gγ be the matrix of the following columns.

[

1, (Vκ(s+1))
1
, · · · , (Vκ(s+1))

L
, (Vκ(s+1) − η

(s+1)
d )1+, · · · , (Vκ(s+1) − η

(s+1)
d )L+

]

and let Gγi be the submatrix of the matrix Gγ containing only rows that corre-

sponding to subject i.
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(iii) Compute Σφk
=

(

Σ−1 +GT
γiGγi

)−1
.

(iv) Compute µφk
= Σφk

(

GT
γiYγi +Σ−1µh

)

(v) Simulate φ
(s+1)
k from NL+D+1(µφk

,Σφk
)

• For k ≤ max
{

δ
(s)
i , i = 1, 2, ..., N

}

, obtain p
(s+1)
k as follows

(i) Let a(p) = max
{r:δ

(s)
r =k}

{

U
(s+1)
r /

(

∏

l<k

(

1− q
(s)
l

))}

(ii) Let b(p) = 1−max
{r:δ

(s)
r >k}

{

U
(s+1)
r /

(

qδr
∏

l<δr,l 6=k

(

1− q
(s)
l

))}

(iii) Simulate q
(s+1)
k from truncated beta ∝ Beta(1, ν(s))I(a(p)<q<b(p))(·)

(iv) Compute p
(s+1)
k from q

(s+1)
k using the relation under equation (5)

• In order to simulate the (s+1)th step of δ(s+1), it may appear as though we need

p
(s+1)
k and φ

(s+1)
k for all k. Note that so far the simulation has been described

only for k ≤ max(δ
(s)
i , i = 1, 2, ..., N). The key feature of Walker’s method is that

the introduction of latent variables Ui helps put an upper bound on k, which is

the smallest k∗ such that
∑k∗

k=1 p
(s+1)
k > 1−min

(

U
(s+1)
1 , .., U

(s+1)
N

)

. Now, if k∗ ≤
max(δ

(s)
i , i = 1, 2, ..., N) then there is no need to simulate additional terms and

we can discard the terms p
(s+1)
k , φ

(s+1)
k after k∗. If k∗ > max(δ

(s)
i , i = 1, 2, ..., N)

then for k > max(δ
(s)
i , i = 1, 2, ..., N) up to k∗, simulate φ

(s+1)
k from N(µh,Σ) ,

q
(s+1)
k ∼ Beta(1, νs) and update p

(s+1)
k .

• For each i ∈ {1, 2, .., N}, simulate δ
(s+1)
i from a discrete distribution taking values

in {1, 2, ...., k∗} with probabilities {π1, ..., πk∗} such that

πr ∝ Lr

(

β(s+1), α(s+1),W
(s+1)
i1 , ..,W

(s+1)
iT , γi = φ

(s+1)
r

)

, where the function Lr(.)

is as in equation (7).

• Then for i ∈ {1, 2, .., N}, compute γ
(s+1)
i = φ

(s+1)

δ
(s+1)
i

.

Simulating hyper parameter ν

Here we follow the methodology in Escobar and West (1995).

• Let C
(s+1)
γ = number of distinct elements in the set

{

γ
(s+1)
1 , ..,γ

(s+1)
N

}

. Note

that this is indeed the number of clusters obtained from the (s+1)th simulation.
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• Let ηγ be a simulated value from Beta(ν(s) + 1, N)

• Compute Oη = (aν + C
(s+1)
γ − 1)/(N × (bν − log(ηγ))) and πη = Oη/(1 +Oη)

• Simulate ν(s+1) from the mixture distribution

πηGamma
(

aν + C(s+1)
γ , bν − log (ηγ)

)

+(1− ηγ)×Gamma
(

aν +C(s+1)
γ − 1, bν − log(ηγ)

)

References
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Figure 1: Histogram of avg cost - The empirical density curves for the modeled values at

different quantile regressions along with the histogram (bar chart) for actual data.
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Figure 2: Actual vs modeled by year- A comparison of the actual average cost with modeled

values over time for two different insurers. The small circles indicate the actual average cost

in the data. Position of the circle is suggestive of the quantile of the average cost distribution

at which the company is operating in a given year.
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Table 1: Description of variables

Variable Description

avg cost Average cost

pct property Percentage of premium written in property lines

pct liability Percentage of premium written in liability lines

pct combined Percentage of premium written in combined lines

pct equity Percentage of assets invested in equity

pct cash Percentage of assets invested in cash equivalent

prem tot Gross premiums written

assets inv Total invested assets

group equals 1 if the insurer is affiliated to a group, and 0

otherwise

stock equals 1 if the insurer is a stock company, and 0 other-

wise

Table 2: Descriptive statistics of variables†
Variable Mean SD Q1 Median Q3

avg cost 0.298 0.264 0.168 0.287 0.380

pct property 0.217 0.231 0.003 0.178 0.322

pct liability 0.505 0.369 0.168 0.494 0.773

pct combined 0.230 0.297 0.000 0.085 0.385

pct equity 0.137 0.167 0.000 0.079 0.21

pct cash 0.162 0.218 0.035 0.084 0.192

prem tot 396.300 1583.551 14.718 57.164 212.620

assets inv 590.606 2834.126 20.347 68.42 250.904

group 0.662

stock 0.702

† Monetary variables are in million dollars.
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Figure 3: Parameter estimates- + indicates the estimated posterior mean of the parameter.

The dotted lines mark the 95 percent credible interval. The solid line marks the constant

line at 0. The x-axis shows for which quantile of avg cost the regression has been run (viz;

10th, 25th, 50th, 75th and 90th)
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Figure 4: Individual company cost curves- The average cost curve for two individual insurers.

The cost curve for insurer X is estimated from the 50% quantile regression and for insurer

Y is estimated from the 75% quantile regression. The actual average costs in different years

are marked by solid triangles.
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Figure 5: Mean Cost curves by AM Best rating - Mean cost curves at different quantiles by

groups of A.M. Best ratings. Each insurer is categorized into one of the four rating scales:

superior, excellent, good, and vulnerable. The curves shown are the average of all the curves

within a given class.
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Figure 6: Individual Cost curves within clusters for 75th quantile regression- Plot of indi-

vidual cost curves within each cluster from the 75% quantile model. The black solid line

indicates the mean curve within the cluster.
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Figure 7: Comparing cost distribution for different companies- The implied cumulative dis-

tribution function of average cost for two pairs of insurers. The distribution of average cost

is derived after controlling for firm characteristics
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