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Abstract

We propose a joint model to combine models for hospital visits and out-of-pocket

medical expenditures. It allows for the presence of non-linear effects of covariates us-

ing splines to capture the effects of aging on healthcare demand. Sample heterogeneity

is modeled robustly with the random effects following Dirichlet process priors with

explicit cross-part correlation. We validate our model using a simulation study. We

apply this model to Health and Retirement Survey data and show that healthcare

varies with age and gender and exhibits significant cross-part correlation that provides

a richer understanding of how aging affects healthcare demand.
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1 Introduction

The world population is aging. According to a joint report by the U.S. Department of State

and the National Institute on Aging (NIA), almost 500 million people worldwide were 65

and older in 2006 (Dobriansky et al. 2007). That number is expected to increase to 1 bil-

lion, 1 in every 8 of the earths inhabitants, by the year of 2030. In the United States, life

expectancy has increased from 49 years for Americans born in 1900 to 78 years for those

born in 2006 (Arias 2010). Rapid demographic change is expected to lead to an increase in

healthcare spending by 25% by 2030 (Strunk et al. 2006; Dobriansky et al. 2007). While

global aging represents a triumph of medical, social, and economic advances, it also poses

tremendous challenges for health systems. It is well understood that aging will change the

mix of diseases in favor of chronic conditions for inpatient care and this alone is likely to

increase demand for healthcare (Strunk et al. 2006; Hartman et al. 2008). With limited

long-term benefits under Medicare, such increases in demand will lead to large out-of-pocket

medical expenses for the elderly (Wei et al. 2004; Hartman et al. 2008). Thus, reliable

estimates for the demand of healthcare has never been more important than now with aging

becoming a worldwide challenge (Dobriansky et al. 2007).

Health economics has always focussed on healthcare demand and Duan et al. (1982)’s

seminal work on healthcare demand explored different strategies to estimate medical expen-

diture to address data concerns specific to healthcare cost data. Another metric that is also

frequently used to measure healthcare demand is the rate for hospital admission (Atella and

Deb 2008). Clearly, out-of-pocket medical expenditure by an individual is closely related to

the number of hospitalizations an individual experiences in a year (see Figure 1). In addi-

tion, the probability of needing healthcare increases with age, particularly with the onset of

chronic conditions, as does the probability of out-of-pocket expenditures. Thus, managing

healthcare demand better will require a better understanding of hospitalizations as well as

medical expenditures. In this research we try to understand the key factors affecting both
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Figure 1: Co-movement of Hospital Visits and OOP-Medical Expenditure
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Note: On each x-axis we plot the survey wave in which the case was observed. On the left y-axis we
plot the count of hospital visits made and on the right y-axis we plot the amount of out-of-pocket
medical expenditure (OOPMD) in US dollars. The dotted line captures the OOPMD incurred at
each wave while the straight line captures the count of hospital visits.

these endpoints by developing a novel joint modeling framework which allows us to reliably

study healthcare demand and the correlation between these two endpoints.

Modeling these longitudinal events requires the full consideration of a number of complica-

tions specific to healthcare data. First, both hospitalization and out-of-pocket expenditure

at the individual level usually have a considerable amount of zero observations, which cannot

be adequately described by a simple distribution (e.g., Poisson or lognormal). For example,
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in our data 90% of the sample have no hospital visits and 17% report zero out-of-pocket

expenditures in wave 1; these numbers are 40% and 4% respectively by wave 8 (see Table

1). Spurious overdispersion occurs due to the presence of these extra zeros. Recently, Naya

et al. (2008) compared model fits of a Poisson model and a zero-inflated Poisson (ZIP)

model to zero-inflated data and found that a ZIP model gave estimates closer to the true

values. Thus, we need to modify parametric distributions to incorporate excess zeros in the

distribution of the hospitalizations and out-of-pocket expenditure. Recent literature (Deb

and Trivedi 1997, Winkelmann 2004 and Atella and Deb 2008 and references therein) has

developed zero-inflated distributions for modeling the count of hospital visits and medical

costs; however, these are modeled independently. Second, the two main responses, hospital

visits and medical costs, are likely to be correlated with each other over time for the same

individual. Accounting for this correlation will result in borrowing information, which can

lead to a better understanding of the healthcare demand. Third, some important charac-

teristics of an individual, such as age, may have complex nonlinear effects. In addition, the

potential nonlinear effects of this variable could vary with other demographic covariates,

such as gender, resulting in an interaction effect that influences healthcare demand in a

nonlinear fashion. Fourth, both the count of hospital visits and medical costs are known to

be skewed (Liu et al. 2010). Although, some authors have argued for log transformation

for dealing with skewness, this is problematic. Re-transformation presents no problem when

errors achieve linearity, normality and homoscedasticity assumptions (Jones 2000). When

any one of these does not hold, re-transformation bias arises when we try to revert back to

the original scale. Since the log-transformed model results in geometric means rather than

arithmetic means, log scale predictions will in general provide biased estimates of the impact

of any explanatory variable on the arithmetic mean (Yu et al. 2011).

In this paper, we develop a joint model for describing count of hospital visits and out-of-

pocket medical expenditure in an integrated framework to accommodate the aforementioned
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complications as follows. We model the count of hospital visits by an individual using a

Poisson hurdle model (Mullahy 1986) and we model the out-of-pocket medical expenditure

using a semicontinuous model (Liu et al. 2010). The Poisson hurdle model (semicontinuous

model) consists of two components: a Bernoulli component that models the probability of

hospitalization (any positive expense) and a truncated Poisson component (log-normally

distributed component) that models the number of repeat hospital visits (amount of money

spent) among users. Together, these components accommodate both the high proportion

of zeros and the right-skewness of the nonzero events. In addition, we explicitly account

for interdependencies of these events by modeling the correlation of these two processes.

While the literature on healthcare demand discusses “multi-part” models such as in the

original work of Duan et al. (1982) or the more recent work of Liu et al. (2008), these

are different from our model in a number of ways. These models look at a single outcome

and the multi-part model allows for flexibility in model parameters across sub-groups with

different demands for health care. For example, Duan et al. (1982) were interested in

how the parameters vary by non-spenders, ambulatory spenders, and inpatient spenders;

more recently, Liu et al. (2008) are interested in the differences between non-spenders,

out-patients spenders and inpatient spenders. Our model provides a richer specification of

healthcare demand that not only captures healthcare costs but also hospital visits within

the same joint model with explicitly modeled random effects. In addition, our sample is a

predominantly aging population where the effects of “age” on hospital visits and medical

costs is poorly understood.

We thus adopt a semi-parametric approach using spline models to flexibly capture the pos-

sibly nonlinear effects of age. This approach not only protects the model from the possible

misspecifications of age effects but also explores if this nonlinear effect varies across gender.

For the distribution of the latent random effects terms of the joint model a standard assump-

tion is to use a parametric distribution, such as the multivariate normal. The importance of
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Table 1: Distribution of Outcomes

Count of Hospital Visits Out-of-Pocket Medical Expense
HRS % Non-zeros % Non-zeros
Wave Zeros Mean Min Max Zeros Mean Min Max
1 91.33 1.50 1 3 16.33 1,108 2 18,494
2 81.00 1.72 1 8 12.33 1,175 9 26,629
3 76.33 1.63 1 6 11.67 1,767 10 58,250
4 75.33 1.99 1 10 8.00 1,325 6 39,800
5 68.33 1.80 1 8 8.00 1,522 15 24,800
6 58.33 2.82 1 60 9.00 3,710 35 232,400
7 51.00 1.64 1 5 7.00 3,422 10 301,000
8 40.33 2.47 1 25 4.00 2,516 5 45,200

such a choice has received a lot of attention in the joint modeling literature. Particularly, it

has been also shown that a restrictive parametric assumption for this distribution could in-

fluence the results (Tsonaka et al. 2009 and Naskar and Das 2006). Thus, in order to protect

the derived inferences against potential misspecification effects, we opt for a semiparametric

approach based on a Dirichlet Process prior. A similar approach to modeling random effects

has been proposed by Jochmann and Leon-Gonzalez (2004), although they have considered

it with a single endpoint and without splines.

The rest of the paper is organized as follows: Section 2 discusses the notation and presents

the four part model with cross-equation and cross-part correlation as well as details for

Bayesian inference. Section 3 presents simulation results that investigate the advantage of

this class of models. Section 4 discusses the data we use, Section 5 presents our results, and

Section 6 closes with a discussion of our proposed model.

2 A 4 Part Robust Semi-parametric Joint Model

Our joint model consists of three components: a semiparametric Poisson hurdle mixed effects

model for the number of hospitalizations, a semiparametric semicontinuous model for out-

of-pocket medical expenses, and a Dirichlet process for the joint distribution of the latent
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random effects from the Poisson hurdle model and the semi-continuous models.

2.1 Poisson Hurdle Model for the Count of Hospital Visits

The hurdle Poisson model is a two-component mixture model consisting of a point mass

at zero followed by a truncated Poisson for the nonzero observations (Mullahy 1986). For

independent and identically distributed (i.i.d.) responses, the hurdle model is given by

Pr(Yi = 0) = 1− p, 0 ≤ p ≤ 1

Pr(Yi = k) = p
µke−µ

k!(1− e−µ)
, k = 1, . . . ,∞, 0 < µ < ∞, (1)

where Yi denotes the response for subject i = 1, . . . , n, and µ is the mean for an untruncated

Poisson distribution. As the zeros and nonzero counts are modeled uniquely, the hurdle

model accommodates both an excess number of zeros and a right-skewed distribution for the

positive counts. By comparison, a standard Poisson regression would have to compromise

between these two competing goals, since excess zeros would tend to lower the Poisson mean

while large nonzero values would tend to increase it. The expected count under the Poisson

hurdle model is given by E(Y ) = pµ/ (1− e−µ).

In health services research, p is known as the usage probability—i.e., the probability of

using services at least once. When (1 − p) > e−µ, the data are zero inflated relative to an

ordinary Poisson; when (1−p) < e−µ there is zero deflation (i.e., fewer than expected zeros).

In the extremes, p = 0 or 1. When p = 1, there are no zero counts and the model reduces to

a truncated Poisson, and when p = 0, there are no users (i.e., all counts equal zero), and the

model is degenerate at zero. Typically, one assumes that p is strictly between 0 and 1, so

that all subjects have a nonzero probability of usage and are therefore considered “potential”

users even if they do not actually use services during the study period.A special case of (1) is

the zero-inflated Poisson model (Lambert 1992), which consists of a degenerate distribution
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at zero mixed with an un-truncated Poisson distribution:

P (Yi = 0) = (1− p) + pe−µ, 0 < p < 1 (2)

P (Yi = k) = p
µke−µ

k!
, k = 1, . . . ,∞, 0 < µ < ∞. (3)

Note that the zero-inflated Poisson model can be rewritten as a hurdle model with mixing

probability θ = p(1 − e−µ). Unlike the hurdle model, which accommodates zero deflation

as well as zero inflation, the ZIP allows only for zero inflation and thus allows for greater

flexibility (Neelon et al. 2010). Let Y H
ij be the count of number of hospital stays reported

by the ith subject in the jth wave, i = 1, 2, · · · ,m; j = 1, 2, · · · , n, where m represents the

number of subjects in the study, and n is the total number of waves over which the individual

is surveyed. Depending on the fact whether a subject is hospitalized or not, a large number

of zeros is observed in Y H
ij . Also, let Xijk be the kth covariate for subject i at time j; such

covariates include baseline and time-varying variables.

Each subject’s total count of hospital visits is determined simultaneously by needing some

healthcare (pij) as well as the level of care needed given that the person needs care λij. Given

that these are jointly determined, and that the determinants of either may or may not be

relevant for the other, we consider simultaneous modeling of both λij and pij. The hurdle

model can be extended to accommodate covariates and random effects as follows:

p(yHij |ϕi) = (1− pHij )1(yHij=0) + pHijTpois(y
H
ij ;µ

H
ij )1(yHij>0)

logit(pHij ) = XT
ij1β

p
1 + ZT

ij1bi1 + f p(Wij)

log(µH
ij ) = XT

ij2β
λ
1 + ZT

ij2bi2 + fλ(Wij) (4)

where, Xij1,Xij2 are the vector of covariates corresponding to fixed effects and Zij1,Zij2 are

the vector of covariates corresponding to the random effects. Note that the zero-state and
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the Poisson state do not need to have the same set of covariates. The bi1 and bi2 are the

random subject effects on pij and λij, respectively. We will discuss the distribution of the

random subject effects later. In many situations, such as ours, the effect of some covariates,

viz., Wij on pHij and µH
ij may not be linear. Thus, effects of those covariates can be modeled

by unspecified nonparametric functions f p(Wij) and fλ(Wij). These unknown smooth func-

tions reflect the nonlinear effects of the covariate. However, these functions represent only

the population averages for a single population.

We now consider a modified model for multiple factors/populations. Instead of fitting one

nonparametric smoothing spline for a single population, we can include multiple nonpara-

metric smoothing splines for multiple populations in one model. We consider:

logit(pHij ) = XT
ij1β

p
1 + ZT

ij1bi1

+ f p
1 (Wij)d

p
ij1 + f p

2 (Wij)d
p
ij2 + · · ·+ fp

L(Wij)(1− dpij1 − dpij2 − · · · − dpij(L−1)) (5)

log(µH
ij ) = XT

ij2β
λ
1 + ZT

ij2bi2

+ fλ
1 (Wij)d

λ
ij1 + fλ

2 (Wij)d
λ
ij2 + · · ·+ fλ

L(Wij)(1− dλij1 − dλij2 − · · · − dλij(L−1)) (6)

where, dijk; k = 1, 2, · · · , L are indicator variables for multiple populations. With L pop-

ulations, the first group is indicated by (dij1 = 1, dij2 = 0, · · · , dij(L−1) = 0), the second

group is indicated by (dij1 = 0, dij2 = 1, · · · , dij(L−1) = 0) and the last group is indicated by

(dij1 = 0, dij2 = 0, · · · , dij(L−1) = 0). The f1, f2, · · · , fL are their respective nonparametric

smoothing splines.

We approximate the spline function f(Wij) (suppressing the subscripts) by a piecewise

polynomial of degree τ . Let the knots w̃ = (w̃1, w̃2, · · · , w̃m) are placed within the range of

Wij, such that min(Wij) < w̃1 < w̃2 < · · · < w̃m < max(Wij). Then f(Wij) is approximated
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by

f(Wij) = ν1Wij + ν2W
2
ij + · · ·+ ντW

τ
ij +

C∑
c=1

ucγc(Wij − w̃c)
τ
+

where X+ = x if x > 0, and 0 otherwise, ν = (ν1, · · · , ντ ), w̃ are the vectors for regression

coefficients in the polynomial regression spline. Note that there is no intercept in the poly-

nomial regression to avoid the identifiability. We assume uc ∼iid N(0, σ2
u); i = 1, . . . , C. In

the above formulation one of the important issue is the choice of how many knot point and

where to locate them. If there are too few knots or they are poorly located, estimated curve

may be biased, while too many knots will inflate the local variance. Thus, following Smith

and Kohn (1996) we incorporate selector indices, γc, that allow the spline coefficients to be

included or excluded and that are defined for each knot. The γc are then drawn indepen-

dently from a Bernoulli prior, viz., γc ∼ Bernoulli(0.5). By introducing this, we can select a

subset of well supported knots from a larger space. For each knot point uc the γc will weight

the importance of a particular knot point.

2.2 Semicontinuous Model for Out-of-Pocket Medical Costs

In this section a semi-continuous model for longitudinal data on out-of-pocket medical cost

data is introduced. Since in some years the subject may not have any medical cost, this

kind of data has a mix of many zeros and positive continuous observations. To formulate

the model, let yMij be the medical cost for subject i at year j. Let Rij be a random variable

denoting the yearly medical cost where,

Rij =


0, if yMij = 0

1, if yMij > 0,

(7)
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with conditional probabilities

Pr(Rij = rij) =


1− pMij , if rij = 0

pMij , if rij = 1,

(8)

For this semicontinuous data, we introduce an analogous semi-continuous model consisting

of a degenerate distribution at zero and a positive continuous distribution, such as as a

lognormal (LN), for the nonzero values:

f(yMij |pM
i ) = (1− pMij )

1−rij
{
pMij × LN(yMij ;µ

M
ij , σ

2)
}rij

logit(pMij ) = XT
ijβ

Mp
1 + ZT

ij1bi3

+ hp
1(Wij)e

p
ij1 + hp

2(Wij)e
p
ij2 + · · ·

+ hp
L(Wij)(1− epij1 − epij2 − · · · − epij(L−1)) (9)

log(µM
ij ) = XT

ijβ
Mλ
1 + ZT

ij2bi4

+ hλ
1(Wij)e

λ
ij1 + hλ

2(Wij)e
λ
ij2 · · ·

+ hλ
L(Wij)(1− eλij1 − eλij2 − · · · − eλij(L−1)) (10)

where, rij is an indicator defined above, µM
ij and σ2 are the mean and variance of log(yMij ). The

interpretation of eijk is same as dijk in the ZIP model and the nonparametric spline functions

h(.) is also defined in a similar fashion. Model (9-10) is a semiparametric counterpart of the

correlated two-part model proposed by Olsen and Schafer (2001); a gamma or log-skew-

normal may also be used to model the nonzero values.

2.3 Latent Random Effects Distribution: Dirichlet Process Prior

Without loss of generality, we assume that all bik in (5,6,9,10) are r × 1 unobserved vec-

tors. Let b = (b1, . . . ,bm) denote the random effects for all the m subjects, where bi =

(b⊤
i1,b

⊤
i2,b

⊤
i3,b

⊤
i4)

⊤ ∈ R4r, i = 1, . . . ,m, is a 4r × 1 vector representing the random effects

10



for the ith subject. To allow for correlation structure between repeated observations from

the same subject taken over different years and also to account for uncertainty in probabil-

ity distributions of the random effects, we assume the unknown distribution G of random

effects for different subjects, bi, i = 1, . . . ,m, to be a Dirichlet process (DP), which is a

popular choice of a random probability measure served as a prior distribution over the space

of probability measures discussed in Ferguson (1973). That is,

bi|G
iid∼ G, i = 1, . . . ,m,

G|a,G0 ∼ DP(aG0), with G0 = N4r(0,Σ), (11)

where random effects for different subjects are exchangeable, and they are random vectors

distributed as G, which is a random probability measure from the DP characterized by a

total mass a > 0 and a base probability measure G0 as a 4r-variate normal distribution with

a zero mean vector and a 4r × 4r variance-covariance matrix Σ = (σij)4r×4r.

A priori the unknown G is expected to be the same as G0, while a is a precision parameter

that measures the strength of this prior belief. Following Blackwell and MacQueen (1973),

given a,G0, the joint (marginal) distribution of the exchangeable sequence of unobserved

random effects b1, . . . ,bm is summarized by the Pólya urn distribution. That is,

b1 ∼ G0, and bi|b1, . . . ,bi−1 ∼
a

a+ i− 1
G0 +

i−1∑
k=1

1

a+ i− 1
δbk

, i = 2, . . . ,m.

This implies that G is an almost surely discrete random probability measure which assigns

positive probability to ties/duplicates among b. Let B = (B1, . . . ,B|c|) denote the unique

vectors among b, where c = {c1, . . . , cm}, with ci = 1, . . . ,m, is a classification vector induced

by the relationship that ci = j if and only if bi = Bj, and |c| ≤ m records the number of

unique values (or equivalently, the largest value) in the vector c. An alternative description
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of the joint distribution of all the random effects b1, . . . ,bm follows from Antoniak (1974)

in terms of a classification vector c and the unique vectors among b, which gives the joint

density of the random effects as

m(b) = Pr(c|a)
|c|∏
k=1

ϕ4r(Bk;Σ), (12)

where

Pr(c|a) = a|c|
∏|c|

k=1(nk − 1)∏m
i=1(a+ i− 1)

with nk being the total number of bi, i = 1, . . . ,m, identical to Bk, or equivalently, the

number of ci equal to k, and ϕp(·;Σ) represents the probability density function of a p-

variate normal vector with a zero mean vector and a variance-covariance matrix Σ. That is,

given the vector c, one can summarize the random effects b for allm subjects by B1, . . . ,B|c|.

This idea, or analogous idea in terms of partitions, plays a key role in not only characterizing

the posterior distribution but also designing most efficient and popular numerical algorithms

for inference in Bayesian hierarchical models involving DP.

2.4 Bayesian Inference

Under the joint model described in (5,6,9,10), the likelihood of the observed data for the

ith subject, denoted by Yi1, . . . ,Yin, with Yij = (yHij , y
M
ij )

⊤ for j = 1, . . . , n, based on the

parameters set Ω and the random effects bi is proportional to

Li(Yi1, . . . ,Yin|Ω,bi) =
n∏

j=1

[
(1− pHij )

]I
[yH
ij

=0] ×

[
pHijµ

H
ij

yHij e−µH
ij

yHij !(1− e−µH
ij )

]1−I
[yH
ij

=0]

× (1− pMij )
1−rij

{
pMij × LN(yMij ;µ

M
ij , σ

2)
}rij

(13)

Assuming independence between observations from different subjects, the resulting likelihood

for all the observations from the m subjects is the product of these individual likelihood

values. Then, marginalizing out all the random effects which are modeled by a DP as given
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in (11) with a fixed a > 0 yields that the likelihood of all the observed data is proportional

to

L(Ω|data) =
∫
Rr

· · ·
∫
Rr

m∏
i=1

Li(Ω,bi|Yi1, . . . ,Yin)m(b)db1 · · · dbm,

which is an m-folded integral. To complete the Bayesian specification of the model, we

assign priors to the unknown parameters in the above likelihood function. Thus, the set of

parameters from the model may be listed as:

Ω =
(
βHp
11 , βHλ

21 , βMp
31 , βMλ

41 , . . . , βHp
19 , βHλ

29 , βMp
39 , βMλ

49 , νHp
1 , . . . , νHp

τ , σ2
Hp
,

νHλ
1 , . . . , νHλ

τ , σ2
Hλ

, νMp
1 , . . . , νMp

τ , σ2
Mp

, νMλ
1 , . . . , νMλ

τ , σ2
Mλ

,Σ, a
)

(14)

For each parameter in Ω we next specify a prior: for each model specific regression coefficient

(βθ
ij) and each spline specific regression coefficient (νθ

i ) we assume a normal density prior;

for each variance parameter (σ2
θ) we assume an inverse-gamma (IG) prior and finally for the

cross-part variance covariance matrix (Σ) we assume an inverse Wishart prior. Further, for

the total mass, a we assume a uniform distribution (Ohlseen et. al. 2007).

An IG prior with shapre parameter c and scale parameter d is denoted by x ∼ IG(c, d) and

its density is given by f(x) ∝ x−ce(d/2x
2). Additionally, we assume a Wishart distribution

for the inverse of a variance covariance matrix where WG(ρ, s) is a G-dimensional Wishart

distribution with ρ degrees of freedom and a mean of ρs−1. Thus, we specify the following

13



priors on the model parameters:

π(β˜) =
(
βHp
11 , . . . , βMλ

49 ,
)
∼ N(µβ˜ ,Σβ)

π(νHp˜ ) =
(
νHp
1 , . . . , νHp

τ

)
∼ N(µHp

ν ,ΣHp
ν )

π(νHλ˜ ) =
(
νHλ
1 , . . . , νHλ

τ

)
∼ N(µHλ

ν ,ΣHλ
ν )

π(νMp˜ ) =
(
νMp
1 , . . . , νMp

τ

)
∼ N(µMp

ν ,ΣHp
ν )

π(νMλ˜ ) =
(
νMλ
1 , . . . , νMλ

τ

)
∼ N(µMλ

ν ,ΣMλ
ν )

For the remaining variance parameters, the variance covariance matrix and a we assume:

π(σ2
Hp) ∼ IG(cHp, dHp)

π(σ2
Hλ

) ∼ IG(cHλ
, dHλ

)

π(σ2
Mp) ∼ IG(cMp, dMp)

π(σ2
Mλ

) ∼ IG(cMλ
, dMλ

)

π(Σ−1) = Wishart(ρ, s)

π(a) = Uniform(e, f)

The joint posterior distribution of the parameters of the models conditional on the data are

obtained by combining the likelihood and the prior densities using Bayes Theorem:

Post(Ω,b|Y) ∝
∫
Rr

· · ·
∫
Rr

m∏
i=1

Li(Yi1, . . . ,Yin|Ω,bi)m(b)π(β˜)π(ν˜
Hp)π(ν˜Hλ)

π(ν˜Mp)π(ν˜Mλ)π(σ2
Hp)π(σ

2
Hλ

)π(σ2
Mp)π(Σ

−1)π(a)db1 · · · dbm (15)

The posterior distributions are analytically intractable. However, models described pre-

viously can be fit using Markov chain Monte Carlo (MCMC) methods such as the Gibbs

sampler (Gelfand, Dey and Chang 1992). Since the full conditional distributions are not
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standard, a straightforward implementation of the Gibbs sampler using standard sampling

techniques may not be possible. However, sampling methods can be performed using adap-

tive rejection sampling (ARS; Gilks and Wild 1992). In this research, we follow their proce-

dure, which first uses a data augmentation step to sample the values of the latent variables

based on the current value of the parameters, and then samples the parameters using the

ARS method given the latent variables. Samples were directly obtained from the joint

posterior distribution of the parameters as well as the latent variables. The samples from

the posterior obtained from the MCMC will allow us to achieve summary measures of the

parameter estimates and to obtain credible intervals (CIs) of the parameters of interest.

3 Simulation Study

In this section, we present two simulation exercises to justify the relative complexity of the

proposed model. This will also verify the performance of the model fitting procedure over

more conventional models. The complexity of the proposed model arises from two aspects:

1) using a DP for the skewed distributed random effects bi and (2) spline-based modeling of

nonlinear time effects. The purpose of our simulation study is to verify the performance of

our proposed model in comparison to simpler and parsimonious but parametric models.

3.1 Using DP model for skewed distributed random effects bi

This simulation evaluates the performance of our method when the random effects are from

skewed distribution. For this simulation we consider the following models:

logit(pHij ) = β11 + β12tij + β13Xi + β14Zij + bi1

log(λij) = β21 + β22tij + β23Xi + β24Zij + bi2

logit(pMij ) = β31 + β32tij + β33Xi + β34Zij + bi3

log(sij + 1) = β41 + β42tij + β43Xi + β44Zij + bi4 + eij (16)

In this model, we consider a subject-specific baseline covariate Xi, random intercepts bi =
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(bi1, bi2, bi3, bi4)
′
, and a time-varying covariate Zij, where i = 1, 2, . . . , 100 and j = 1, 2, . . . , 16.

Data are generated from Equation (16) to mimic the real data presented in the article. The

data is generated using following steps:

1. Xi’s are assumed to be continuous and generated from a univariate normal distribution

with mean µX = 0 and σX = 0.5.

2. Time dependent covariates (Zij) for 16 time-points are generated using MVN(µZ ,

ΣZ). In order to maintain a correlation between the Z values in adjacent time-points

within one subject ΣZ was assumed an AR(1) variance-covariance structure.

3. Random intercepts bi1 are generated from a skewed bimodal distribution (a balanced

mixture of the N(-1, 2.25) and log normal (2.30, 0.48) distributions). In order to create

correlated random effects bil was generated as linear combination of bi1, bi2, . . . bil−1 and

skewed bimodal distribution described as above (l = 2, 3, 4).

4. The eij’s of the two part model are generated from normal distribution.

5. Finally, we generated Yi1 from a hurdle Poission distribution(pH , λ) and Yi2 from

TP(pM , s). Parameter values used in the simulation are chosen to produce data that

are similar to the real data. In particular, we take β11 = 6.23, β12 = 1.41, β13 = 0.81,

β14 = −0.21, β21 = −3.32, β22 = −0.32, β23 = −0.94, β24 = 0.08, β31 = −0.10,

β32 = −0.34, β33 = 0.02, β34 = −1.65, β41 = −3.70, β42 = 0.30, β43 = 0.49 and

β44 = −0.23.

6. One thousand simulated data sets are used in the simulation study.

Using generated data described above, we fit our proposed model with normal random effects

and DP random effects. Model performance is evaluated for both the normal and DP model

for random effects bi. Our results are presented in Table 2. We have computed the bias,

mean square error (MSE) and coverage probability (CP). The numbers in parentheses in
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column 1 of Table 2 are the true population values of the parameters. Our simulation

results show that the DP model produces better estimates of the model parameters with

minimal bias and better coverage probabilities compare to normal model.

Table 2: Results for Normal and DP models in the presence of skewed random effects

Normal Model DP Model
Parameter Mean Bias MSE CP Mean Bias MSE CP
Logit-pH

β
Hp

11 (6.23) 4.33 -1.91 2.444 0.85 7.02 0.79 1.087 0.93

β
Hp

12 (1.41) 0.62 -0.79 0.457 0.82 1.77 0.15 0.202 0.95

β
Hp

13 (0.81) 0.87 0.06 0.313 0.90 0.85 0.04 0.133 0.97

β
Hp

14 (-0.21) -0.13 0.08 0.271 0.89 -0.25 -0.03 0.274 0.90
Log-linear-µH

βHλ
11 (-3.32) -5.25 -1.93 1.476 0.86 -3.93 -0.61 1.003 0.91

βHλ
12 (-0.32) -0.23 0.09 0.333 0.89 - 0.29 0.03 0.091 0.94

βHλ
13 (-0.94) -0.81 0.13 0.452 0.90 -0.91 -0.03 0.512 0.91

βHλ
14 (0.08) -0.01 -0.07 0.122 0.84 0.05 -0.03 0.006 0.95

Logit-pM

β
Mp

11 (-0.10) -0.08 0.02 0.022 0.93 -0.11 -0.01 0.062 0.94

β
Mp

12 (-0.34) 0.12 0.46 0.013 0.76 -0.36 -0.02 0.014 0.96

β
Mp

13 (0.02) 0.005 -0.01 0.070 0.83 0.02 0.00 0.086 0.98

β
Mp

14 (-1.65) -0.47 1.18 0.097 0.85 -0.99 0.66 0.035 0.91
Log-µM

βMλ
11 (-3.70) -7.12 -3.42 1.303 0.79 -4.17 -0.47 1.406 0.94

βMλ
12 ( 0.30) 0.09 -0.21 0.082 0.81 0.33 -0.03 0.047 0.92

βMλ
13 (0.49) 0.48 -0.01 0.013 0.96 0.48 -0.01 0.029 0.96

βMλ
14 (-0.23) -0.11 0.12 0.107 0.90 -0.35 -0.12 0.103 0.95

Note: Number in parenthesis next to each parameter indicates its true population value.

3.2 Spline-based modeling of nonlinear time effects

This simulation study illustrates the performance of our proposed model under complexity

of nonlinear time effect. For this simulation we have considered the following model:

logit(pHij ) = β11 + β12tij + β13Xi + β14Zij + bi1 + f p(tij)

log(λij) = β21 + β22tij + β23Xi + β24Zij + bi2 + fλ(tij)

logit(pMij ) = β31 + β32tij + β33Xi + β34Zij + bi3 + fM(tij)

log(sij + 1) = β41 + β42tij + β43Xi + β44Zij + bi4 + f s(tij) + eij (17)
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Table 3: Results for Parametric and Spline models in the presence of nonlinear time effects

Linear Model Model with Spline
Parameter Mean Bias MSE CP Mean Bias MSE CP
Logit-pH

β
Hp

11 (6.23) 5.33 0.90 1.044 0.90 6.02 0.21 1.087 0.93

β
Hp

12 (1.41) 0.92 -0.59 0.457 0.89 1.57 0.16 0.202 0.95

β
Hp

13 (0.81) 0.87 0.06 0.313 0.90 0.85 0.04 0.133 0.97

β
Hp

14 (-0.21) 0.13 0.44 0.471 0.83 -0.25 -0.03 0.274 0.90
Log-linear-µH

βHλ
11 (-3.32) -5.25 -1.93 1.476 0.90 -3.93 -0.61 1.003 0.92

βHλ
12 (-0.32) -0.23 0.09 0.333 0.89 - 0.29 0.03 0.091 0.93

βHλ
13 (-0.94) -0.81 0.13 0.452 0.90 -0.91 -0.03 0.512 0.91

βHλ
14 (0.08) -0.01 -0.07 0.122 0.84 0.05 -0.03 0.006 0.95

Logit-pM

β
Mp

11 (-0.10) -0.21 -0.11 0.070 0.90 -0.08 0.02 0.074 0.92

β
Mp

12 (-0.34) -0.89 -0.55 0.116 0.89 -0.16 0.18 0.131 0.90

β
Mp

13 (0.02) 0.05 0.03 0.162 0.95 0.03 0.01 0.057 0.97

β
Mp

14 (-1.65) -2.78 -1.23 0.172 0.89 -1.41 0.24 0.078 0.95
Log-µH

βMλ
11 (-3.70) -3.51 0.19 0.109 0.90 -3.56 0.14 0.112 0.93

βMλ
12 (0.30) 0.66 0.36 0.082 0.88 0.54 0.24 0.068 0.90

βMλ
13 (0.49) 0.82 0.39 0.207 0.90 0.33 -0.16 0.058 0.91

βMλ
14 (-0.23) -0.84 -0.61 0.066 0.87 -0.11 0.12 0.042 0.93

Note: Number in parenthesis next to each parameter indicates its true population value.

In this model, f p, fλ, fM and f s are nonlinear time effects for 16 time-points, while the

remaining variables have the same interpretation as Equation 16. Data for the simulation

is generated from 17 using following steps:

1. Xi, Zij and eij are generate same way as described in Step 1, 2 and 4 in Simulation 1.

2. Random effects bi’s are generated from multivariate normal distribution.

3. Nonlinear time effects are generated using the nonlinear functions fp(t) = 1/9 cos2((t+

9)/17), fλ(t) = −0.9 + 0.005 exp((12 + t)/12), fM(t) = 1/2 cos((t + 12)/12) sin(t/19)

and f s(t) = −1.7 + 0.005 exp(t/2)I{t≥8}.

4. Yi1 and Yi2 are generated from a hurdle model and semi-continuous distribution re-

spectively as described in Step 5 of Simulation 1 using pH , λ, pM and s from 17.
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5. One thousand data sets are generated for illustrating model performance.

Spline model and linear time effect model are fitted with normal random effect. Results of

the simulation is presented in Table 3. We have computed the bias, mean square error (MSE)

and coverage probability (CP).In the presence of nonlinear time effects, linear time effect

model often produce higher bias and substantially lower CP in the time-varying covariates,

although estimates of other covariates appears comparable. Based on both simulations,

we conclude that the models used in the analysis have good performance in the modeling

aging data. Despite the increased complexity, the new analysis provides a safeguard against

potential effects of misspecification of the time effects, thus preventing the occurrence of

large biases in the estimation of time-varying effects.

4 Data Analysis

4.1 Motivating Data Description

We use data from the University of Michigan’s Health and Retirement Study (HRS) to es-

timate the above model. The HRS is a longitudinal survey of Americans over the age of 50

with a follow-up frequency of two years and is designed to provide multi-disciplinary data

to understand challenges of aging. In this paper we use data from the 1931-41 cohort -

the HRS cohort. Baseline observations for the HRS cohort begins in 1992 when individuals

were between 52-62 years of age and were near retirement.1For our outcome measures we

use the number of hospital trips made in the past year and the total out-of-pocket medical

expenses (OOPMD) that excludes all costs that were reimbursed or paid through insurance.2

Figure 1 presents plots of hospital visits and associated out-of-pocket medical expenditure

(OOPMD) over time for four randomly chosen individuals. A number of things stand out -

first, individuals vary widely in the number of hospital visits that they make. Not only do

1The data we use is maintained by RAND’s Center for Study of Aging and has been comprehensively
cleaned and documented (St.Clair et al. 2009).

2In practice we also restrict the HRS cohort further to include only those who did not drop-out of the
study in the first 5 of the eight waves of the study to allow for sufficient length in the panel.
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individuals have different intensities of hospital visits but the associated OOPMD for the

same number of hospital visits varies; additionally, these graphs present preliminary evidence

to show that the number of hospital visits and OOPMD are correlated - as the number of

hospital visits increases (or decreases) so does the OOPMD. This co-movement in these out-

comes suggest that modeling them jointly is important as OOPMD depends on the count of

hospital visits made and vice-e-versa.

Table 1 presents summary statistics of both outcome measures for a randomly selected set of

cases for whom we have non-missing observations for the first 4 waves. The count of hospital

visits exhibits increasing frequency of missing observations in later waves; additionally, there

is a high but declining fraction of the sample in each wave with zero hospital visits. This

change in demand over time is also captured through narrower ranges of outcomes in earlier

waves than in later waves, re-emphasizing the important effects of aging. Thus, while in

wave 1 we have over 90% of the sample did not visit a hospital, by the last wave fraction has

declined to 40%. This high frequency of zeros suggests support for the use of a Poisson hurdle

model for hospital visits. Similarly, OOPMD also shows significant zero-inflation suggesting

that treating it as a continuous variable would be problematic. As people age, the frequency

of hospital visits rises, and so does OOPMD. We see this in Table 1 as the frequency of zeros

declines the average OOPMD rises from USD 1,108 to USD 2,516. Descriptive statistics for

the baseline and time varying covariates are presented in Table 4.
A key aspect of aging is a loss of functional abilities (muscular strength, ventilatory ca-

pacity, incontinence, or cardiovascular output); however the rate of this decay varies with

lifestyle, and environmental factors (Wei et al. 2004). Many of these, such as gender, educa-

tion, occupational status or functional independence (rnodiffdress) are observed in the HRS;

additionally, data on each individual’s self-reported health status, in the current and past

wave is used as it is known to be predictive of health status (McGee et al 1998). The HRS

also collects each respondent’s expectation of being alive for the next ten years or more on 0
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Table 4: Summary Statistics of Response and Predictors

Variables Mean SD Min Max
Time Invariant
Is Female? (femalei) 54.30% 49.89% 0 1
Eduction: GED or Higher? (gedplusi) 71.67% 45.14% 0 1
Time Varying
Count of Hospital Visits 0.44 1.72 0 60
OOPMD 2563.26 9707.71 0 301000
Do Health problems limit work? (rhlthlmij) 0.26 0.44 0 1
Has no difficulty in dressing (rnodiffdressij) 0.95 0.22 0 1
Self-reported expectation of living 10+ years (rliveij) 61.31 29.60 0 100
Change of health at current wave (cohij) 0.09 0.86 -2 2
Change of health at previous wave (cohi,j−1) -0.01 1.43 -4 4

to 100 scale (rlive); Hurd and McGarry (2002) have shown its importance to understanding

mortality. A last covariate we use is the age of the respondent; in almost any aging study

the age of the respondent is an important predictor of health outcomes (Strunk et al. 2006;

and Wei et al. 2004), as it is believed that the age of the respondent is predictive of his or

her healthcare demand and associated costs.

4.2 Model Specifications and Empirical Results

Before discussing our result we first compare our model with some other candidate models

to test the quality of model fit that our model shows. To compare candidate models, we

computed P (Yi|Y−i) which is the posterior predictive distribution of Yi conditional on the

observed data with a single data point deleted. This value is known as the conditional

predictive ordinate (CPO) and has been widely used for model diagnostic and assessment

(Gelfand et al 1992). For the ith subject the CPO statistics under model Ml : 1 ≤ l ≤ L is

defined as:

CPOi = P (Yi|Y−i) = Eθ˜l
[
P (Yi|θ˜l)|Y−i

]
(18)

where −i denotes the exclusion of the data from subject i. The θl˜ is the set of parameters

of the Ml and P (Yi|θl˜ ) is the sampling density of the model evaluated at the ith observation.

The preceding expectation is taken with respect to the posterior distribution of the model
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parameter θl˜ given the cross-validated data, Y−i. For subject i the CPOi can be obtained

from the MCMC samples by computing the following weighted average:

ˆCPOi =

(
1

M

M∑
m=1

1

f(Yi|θ(m)
l )

)−1

(19)

where M is the number of simulations, θ
(m)
l denotes the parameter samples at the mth

iteration. A large CPO value indicates a better fit. A useful summary statistic of the CPOi

is the logarithm of the Psuedo-marginal Likelihood (LPML) defined as:

LPML =
n∑

i=1

log( ˆCPOi) (20)

Models with greater LPML values represent a better fit. The LPML is well defined under

the posterior predictive density it is computationally stable. We compared the following

models using LPML:

Model 1 A 4PM model used in the analysis and whose results we discuss below

Model 2 A 4PM model where each part is modeled independently without Random Effects

Model 3 A 4PM model with correlated random effects in a multivariate normal distribution

Model 4 The 4PM model with robust Random Effects but no age splines or interaction.

The LPML values for models 1-4 were −5405.7, −7198.4, −6201.8 and −61332.4 respec-

tively. The proposed model has the highest LPML values suggesting that it had the best

fit amongst the candidate models. The large difference in the LPML values of our proposed

model and other model indicated the presence of a nonlinear age effect and the need for DP

in our analysis.

We, thus, formulate an empirical version of the 4-part model discussed above for our aging
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data. Equations 21 and 22 present the zero-inflated semi-continuous component of the model

that seeks to explain hospital visits. The same set of covariates are allowed to differentially

impact the propensity for visiting a hospital (in Equation 21) and the count of such visits

made (in Equation 22).

logit(pHij ) = βp
11 + βp

12tij + βp
13gedplusi + βp

14femalei + βp
15rhlthlmij + βp

16rnodiffij

+ βp
17rliveij + βp

18cohij + βp
19cohi,j−1 + fp

1 (ageij)d
p
ij1 + f p

2 (ageij)(1− dpij1) + bi1 (21)

log(µH
ij ) = βλ

11 + βλ
12tij + βλ

13gedplusi + βλ
14femalei + βλ

15rhlthlmij + βλ
16rnodiffij

+ βλ
17rliveij + βλ

18cohij + βλ
19cohi,j−1 + fλ

1 (ageij)d
λ
ij1 + fλ

2 (ageij)(1− dλij1) + bi2 (22)

Similarly, Equations 23 and 24 are the two components of the semi-continuous hurdle model

for out-of-pocket medical expenses incurred. For both, the Poisson hurdle model and the

semicontinuous model, age is allowed to flexibly affect both the propensity and level of

healthcare demand through a smoothing spline that is allowed to vary by gender.

logit(pMij ) = β
Mp

11 + β
Mp

12 tij + β
Mp

13 gedplusi + β
Mp

14 femalei + β
Mp

15 rhlthlmij + β
Mp

16 rnodiffij

+ β
Mp

17 rliveij + β
Mp

18 cohij + β
Mp

19 cohi,j−1 + hp
1(ageij)e

p
ij1

+ hp
2(ageij)(1− epij1) + bi3 (23)

log(µM
ij ) = βMλ

11 + βMλ
12 tij + βMλ

13 gedplusi + βMλ
14 femalei + βMλ

15 rhlthlmij + βMλ
16 rnodiffij

+ βMλ
17 rliveij + βMλ

18 cohij + βMλ
19 cohi,j−1 + hMλ

1 (ageij)e
Mλ
ij1

+ hMλ
2 (ageij)(1− eMλ

ij1 ) + bi2 (24)

Finally, in Equations 21, 22, 23 and 24, the random effects bi = (bi1, bi2, bi3, bi4) are jointly

modeled as a DP (aG0 ≡ N4(0,Σ) and a ∼ Uniform(0.4, 10). To fully specify the Bayesian

model we assign weakly informative conjugate priors for the parameters. For each aggregate-

level coefficient, we assume a normal density prior of N(0, 100). For the variance parameters

23



we assume inverse-Gamma (IG) priors of IG(2.01, 1.01), giving rise to a prior mean of 1 and

a prior variance of 100. Lastly, we take an inverse-Wishart prior for the variance-covariance

matrix by assuming Σ−1 ∼ Wishart(4, 0.1I4), where I4 is the 4 × 4 identity matrix. Each

of this multi-part joint model with robust random effects captures important aspects of

healthcare demand.

Table 5: Poisson Hurdle Model for Hospital Visits

parameter mean 95% Credible Interval
Logit: pH

Intercept β
Hp

11 6.32 [ 0.46, 12.26]

Wave β
Hp

12 1.40 [ 0.75, 2.35]

Education: GED or Higher? β
Hp

13 0.81 [-0.99, 2.69]

Is Female? β
Hp

14 0.76 [ 0.45, 2.24]

Does health limit work? β
Hp

15 0.58 [ 0.07, 2.05]

Has no difficulty in dressing β
Hp

16 -1.09 [-3.78,- 0.63]

Self-reported expectation of living 10+ years β
Hp

17 -0.17 [-0.24,- 0.08]
Self-reported health: ∆ in current wave β18 0.21 [ 0.57, 1.04]
Self-reported health: ∆ in previous wave β19 0.59 [ 0.1, 1.41]
Log: µH

Intercept βHλ
11 -3.32 [-4.52,- 0.91]

Wave βHλ
12 -0.32 [-1.04, 0.06]

Education: GED or Higher? βHλ
13 -0.94 [-3.22, 0.37]

Is Female? βHλ
14 -1.02 [-2.83, 0.03]

Does health limit work? βHλ
15 0.56 [ 0.03, 0.85]

Has no difficulty in dressing βHλ
16 -0.11 [-1.4,- 0.08]

Self-reported expectation of living 10+ years βHλ
17 0.08 [ 0.04, 0.15]

Self-reported health: ∆ in current wave βHλ
18 -0.19 [-0.45, 0.001 ]

Self-reported health: ∆ in previous wave βHλ
19 -0.06 [-0.15, 0.002 ]

Estimates for the two part Poisson hurdle model from Equations 21 and 22 are reported

in Table 5. The top panel reports the determinants of the propensity for visiting a hospital

while the bottom panel looks at the determinants of the count of hospital visits conditional

on visits. Quite clearly, flexibility to differentially affect the logit and log portions are

important with almost each variable behaving differentially in the two components. Two

exceptions to this are if the respondent finds his health condition limits his ability to work

and if he has any difficulty in dressing. If health condition limits work, or there is difficulty

in dressing then they both raise the propensity to visit a hospital as well as the number of
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hospital visits conditional on there being any visits at all. From the top panel of Table 5 it

is evident that, holding all other effects constant, with time (wave) the propensity to visit

the hospital increases. Here males are less likely to visit a hospital, on average, than women,

while respondents with higher self-reported expectations of being alive for the next ten years

have a lower propensity to visit the hospital. Changes in self-reported health, in this case,

worsening health, is also associated with increases in the propensity for hospital visits.

Table 6: Two Part Model for Out-of-Pocket Medical Expenses

parameter mean 95% Credible Interval
Logit: pM

Intercept β
Mp

11 -0.09 [-3.06,2.86]

Wave β
Mp

12 -0.35 [-3.41,-1]

Education: GED or Higher? β
Mp

13 0.02 [-2.74,3.08]

Is Female? β
Mp

14 -0.01 [-3.04,2.84]

Does health limit work? β
Mp

15 -0.07 [-3.08,2.85]

Has no difficulty in dressing β
Mp

16 -0.13 [-3.32,-0.07]

Self-reported expectation of living 10+ years β
Mp

17 -1.65 [-4.32,-0.46]

Self-reported health: ∆ in current wave β
Mp

18 0.05 [-2.85,2.7]

Self-reported health: ∆ in previous wave β
Mp

19 -0.04 [-3.25,2.8]
log: µM

Intercept βMλ
11 -3.69 [-4.56,-2.95]

time βMλ
12 0.31 [0.08,0.42]

Education: GED or Higher? βMλ
13 0.49 [-0.24,1.29]

Is Female? βMλ
14 0.45 [0.14,1.11]

Does health limit work? βMλ
15 -0.01 [-0.26,0.23]

Has no difficulty in dressing βMλ
16 0.11 [-0.02,-0.5]

Self-reported expectation of living 10+ years βMλ
17 -0.23 [-0.38,-0.01]

Self-reported health: ∆ in current wave βMλ
18 0.01 [-0.1,0.12]

Self-reported health: ∆ in previous wave βMλ
19 0.03 [-0.06,0.13]

Table 6 reports estimates from the semicontinuous model for out-of-pocket medical ex-

penditure (OOPMD). A number of interesting differences with the Poisson hurdle model

are noted. First, the propensity for any OOPMD is unaffected by education levels, gender,

health conditions that may affect work, or self-perceived changes in health status. Thus,

holding other things constant, with later waves, with no difficulty in dressing themselves,

and with a higher self-reported expectation of being alive for the next ten years, respondents

have a lower propensity for any OOPMD. However, once we condition on any OOPMD we
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find that, holding other things constant, subsequent waves have higher OOPMD, women ex-

perience higher costs than men, and interestingly, higher self-reported probabilities of being

alive for the next ten years are associated with lower OOPMD.

With the self-reported expectation of being alive for 10+ years variable and the difficulty

in dressing variable being statistically significant in each of the four components of the 4

part model, it is only natural to expect significant correlation across the random effects from

each of the components. Table 7 presents estimates for the correlation coefficients across the

4 components of the model. The two correlation coefficients between the random effects that

are non-zero are the correlation between the random effects of the logit and log components

of the Poisson hurdle sub-model and that between the random effects of the log portion of

the Poisson hurdle model and the log portion of the semi-continuous hurdle model. The first

is negative and suggests that individuals with larger unobserved effects on the propensity of

hospitalization tend to have lower unobserved effects on the conditional count of hospital vis-

its. While statistically significant, the correlation coefficient is much smaller (0.20) than the

correlation seen between the random effects from the conditional count of hospital visits from

the Poisson hurdle model and the random effects from the conditional OOPMD component of

the semi-continuous model (0.66). The high correlation between the unobserved components

of the conditional count of hospital visits and conditional OOPMD is expected as unobserved

factors that determine hospital visits are closely related to unobserved factors that explain

OOPMD. Interestingly, there is no correlation between the random effects from the propen-

sity to visit a hospital and the random effect from the conditional OOPMD model. This

suggests that while the conditional count of hospital visits and the conditional OOPMD are

closely related to each other, the propensity to visit a hospital at all is determined differently.

Finally, we look at the effect of age on health care demand and how it varies as people

age and with gender. Figure 2 plots the effect of aging on each components of the 4 part
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Table 7: Correlation between Random Effects Across Models

mean 95% Credible Interval

corr between logit and log of ZIP -0.20 [-0.49,-0.07]
corr between logit of ZIP and logit of semi-continuous 0.00 [-1.89,1.78]
corr between log of ZIP and logit of semi-continuous -0.28 [-1.91,-0.09]
corr between logit of ZIP and log of semi-continuous 0.02 [-0.09,0.16]
corr between log of ZIP and log of semi-continuous 0.66 [0.11,1.25]
corr between logit and log of semi-continuous 0.00 [-0.13,0.16]

Figure 2: Non-linear Effects of Aging for each part of the 4PM
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Note: On each plot the x-axis measures age in years. The top two plots capture the gender effects
of the Poisson Hurdle model. The top left captures the difference in the propensity for any hospital
visit and no hospital visit for women (dotted line) and men (straight line). The top right captures
the conditional count of hospital visits. The bottom two captures gender effects in semicontinuous
model with the bottom left capturing gender differences in propensity for any OOPMD while the
bottom right captures the gender difference in conditional OOPMD.

model. Each of these diagrams show that the demand for health care varies significantly

across a person’s life and across gender; note this is not apparent from the base effects that

we would see in the regression tables. Section (a) shows that there is a large difference in

the baseline levels of demand for health care with women having higher propensity for any

hospital visits. For women the baseline demand for health care does not change until the age
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of 40 after which it rises linearly till the age of 60. Post the age of 60, further aging appears

to have almost no additional impact on the propensity to use hospital facilities. Men on the

other hand, have no change in baseline propensity to visit a hospital until the age of almost

60. Thereafter, the propensity to visit a hospital at least once increases exponentially. The

conditional demand for health care in terms of the count of visits behaves somewhat differ-

entially - women visit more frequently over the entire life time, while men maintain their

baseline rates of hospitalization almost until the age of 60. Thereafter men start visiting a

hospital more frequently than they had in the past, however the increase is slower than the

increase in conditional counts seen for women.

Similarly, with OOPMD we find that women are more likely to incur costs and they also

tend to incur larger costs than men at each of their life cycle. From the age of 40 the propen-

sity to incur costs rises rapidly till the age of 60 and thereafter it increases at a much more

modest rate for women. For men there is no change in the baseline propensity of incurring

OOPMD until the age of 60. Thereafter, there is a modest increase in the propensity for

incurring any OOPMD. In terms of conditional OOPMD expenditure given that there has

been some, it is clear that women incur substantially higher costs throughout there lifetime

than men, with a modest increase after the age of 40. Consistent with the Poisson hurdle

model, men have a much lower level of baseline conditional OOPMD expenditure till the age

of 60. After the age of 60, conditional OOPMD expenditure increases very rapidly and the

gap between men and women expenditure declines rapidly, but does not fully go away.

5 Conclusion

In this paper we estimate healthcare demand for an aging population using a Bayesian semi-

parametric joint modeling framework. We bring a number of interesting adaptations to this

joint model to ensure that our model is both robust and yet allows us to flexibly estimate

a key covariate for an aging population - the effects of age itself. In a Bayesian framework
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we allow for zero-inflation that is a key characteristic for each healthcare demand endpoint

without which our estimates are problematic (Duan et al. 1982; Olsen and Schafer 2001; Liu

et al. 2010). Thus, our model is a four-part model (4PM) that differentially captures the

propensities for usage as well we levels of use differentially across the two end points. This

enables us to uncover complex patterns of correlations across a range of covariates and at

different portions of the distribution of each outcome. Using DP priors to specify random

effects for each participant allows us to reliably estimate health care demand after account-

ing for unobserved heterogeneity. Finally the correlation across the components allows us

to borrow information across endpoints to better understand the co-movement in our joint

model in a way that has not been done for healthcare demand.

The 4PM model also provides us a way to capture a number of important aspects of how

aging will influence healthcare demand. Age splines and it’s interaction with gender allows

us to show that at younger age healthcare demand is higher for women, however past 60

years of healthcare demand for men increases very rapidly. This affects not only the need

for hospital visits but it also affects out-of-pocket medical expenses. These have different

inferences - with increasing aging there is need for greater profiling of men as they near 60

and has implications for the hospital industry, while greater out-of-pocket medical expenses

will have important implications for financial planning as well as insurance systems. The

robustly specified non-parametric random effects enable us to control for sample wide hetero-

geneity providing greater confidence in these estimates. While modeling healthcare demand

for this population presents several challenges, this type of semicontinuous data is not unique

to this sample. Zero inflated and semi-continuous data are common in the insurance sector,

in modeling loan default and in many other situations. In many of these scenarios, multiple

outcomes jointly allow for interesting and deeper understanding of the data. For example,

micro-finance firms observe borrower’s repayment profiles as a marker for potential default,

however much more could be learnt by modeling both repayment profiles and the likelihood
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of default jointly as the unobserved effects that determine either outcome are surely likely

to be highly correlated and informative.
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