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Abstract

Simultaneously modeling multiple quantiles by possibly incorporating constraints

across quantiles, in particular that of monotonicity, has been an important problem.

While recent attempts to address this problem focus mostly on the monotonicity issue,

we take a different route using a Bayesian approach. We propose a parametric pseudo-

likelihood based approach for simultaneous Bayesian estimation of multiple quantiles

that is computationally simple and has the flexibility to accomodate linear as well

as nonlinear model forms along with different types of prior specifications. A unique

feature of our method compared to existing approaches is the posterior consistency

property for the case of linear quantile regression. Further, we develop a useful ex-

tension of our method to a hierarchical setting which is applicable in particular to the

normal random effects model and binary regression. We demonstrate our methods

using simulations and two real life examples. The first example demonstrates an al-

ternative way to address heteroskedasticity issues in modeling worker’s compensation

claims. The second example provides a novel approach to flexibly model inefficiencies

of firms in a stochastic frontier analysis applied to a dataset on hospital costs.

Key words: Asymmetric Laplace distribution; Bayesian quantile regression ; Cross-

ing ; Hierarchical models; Pseudo likelihood; Simultaneous quantile regression
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1 Introduction

Quantile Regression (Koenker and Bassett 1978; Koenker 2005) is a powerful method-

ology for modeling any conditional quantile of the response (Yi) given some covariates

(Xi). Knowing all quantiles is equivalent to knowing the entire conditional distribution.

Practically, this can be achieved by modeling quantiles corresponding to a sufficiently

dense grid of probabilities. Let Q(Xi, τ) denote the τ th conditional quantile of Yi con-

ditional on Xi and 0 < τ1 < τ2 < .... < τK < 1 be a grid of K probability values.

A naive approach to modeling multiple quantiles would be by modeling each quantile

separately. In the classical set up, this can be achieved by solving the below problem

(1) separately for each τ ∈ {τ1, ..., τK}.

min
Q∈Θ

N
∑

i=1

ρτ (Yi −Q(Xi, τ)) (1)

where, ρτ (u) = u(τ − I(u≤0))

Here ρτ (·) is usually referred to as the “check function” with I(·) being the indicator

function. The above formulation is called linear quantile regression when Q(Xi, τ) =

XT
i βτ for some unknown parameter vector βτ . However, such an approach would not

adequately address two major issues. Firstly, the desired monotonicity of Q(x, τ) w.r.t

τ is not automatically guaranteed and secondly it is not easy to impose constraints

involving multiple quantiles (e.g. fixing a parameter across quantiles or varying it

according to a specific nonlinear function etc).

In this paper, we consider the longstanding problem of simultaneously estimating

multiple quantiles. While recent attempts to address this problem focus mostly on the

monotonicity issue (see e.g. Tokdar and Kadane 2012; Reich et al. 2011), we take a

different route using a Bayesian approach. More specifically, we propose a parametric

pseudo-likelihood based on the asymmetric Laplace distribution (ALD) that can be

used as a simple tool for simultaneous Bayesian quantile estimation with significant

advantages over existing approaches. These advantages include (a) flexibility to ac-

comodate linear as well as nonlinear model forms, (b) ability to accomodate different

types of prior specifications, including priors which may help ensure monotonicity and

(c) computational simplicity. Further, we develop an useful extension of our method to

3



a hierarchical setting. In particular, such an extension provides a new way to flexibly

model random effects in a normal regression model and the link distribution func-

tion in a binary regression model. We demonstrate the working of our methods using

simulations and two interesting real life examples. The first example demonstrates an

alternative way to address heteroskedasticity issues in modeling worker’s compensation

claims, using the data originally presented in Klugman (1992). The second example

provides a powerful approach to flexibly model inefficiencies of firms in a stochastic

frontier analysis and is applied on the hospital cost data previously studied by Koop

et al. (1997) and Griffin and Steel (2004).

We establish two important theoretical properties of our methodology for the case

of simultaneous linear quantile regression. The first property is “posterior consistency”

which is a desirable property in Bayesian estimation where the posterior distribution

of the parameters, for increasing sample sizes, converges to the distribution degenerate

at the true parameter values. We provide sufficient conditions under which the linear

quantile regression parameters are posterior consistent for the true parameter values.

It is interesting to note that the posterior consistency property holds inspite of the

method being based on a pseudo-likelihood that is also a misspecification of the true

likelihood. To the best of our knowledge, this is the first approach to the problem with

a posterior consistency justification. The second property is that the method leads to

a proper posterior even under an improper flat prior on the linear quantile regression

parameters and the posterior consistency property holds even under such priors.

Recently, the problem of simultaneously modeling multiple quantiles has received

much attention leading to the development of both classical as well as Bayesian ap-

proaches. Classical approaches have more commonly involved construction of algo-

rithms to ensure monotonicity in the resulting estimators (e.g. He 1997; Takeuchi and

Furuhashi 2004; Wu and Liu 2009). Chernozhukov et al. (2010) propose an elegant

approach to ensure monotonicity via a post-processing step based on re-arrangement

of the individually estimated quantiles. Such an approach can also be used in conjunc-

tion with our method as will be discussed later. Dette and Volgushev (2008) propose

a nonparametric method to directly estimate the conditional density avoiding the use
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of the check function.

Bayesian methods provide an interesting alternative to this problem. However,

specifying a likelihood for the data is necessary for a Bayesian approach. For modeling

a single τ th quantile ( 0 < τ < 1), Yu and Moyeed (2001) proposed the idea of assuming

asymmetric Laplace density (ALD) for the response, i.e. Yi ∼ ALD(., µτ
i , σ, τ), where

ALD(y;µτ
i , σ, τ) =

τ(1− τ)

σ
exp

{

−
ρτ (y − µτ

i )

σ

}

, −∞ < y < ∞ (2)

Then µτ
i , which happens to be the τ th quantile of the above density is modeled as a

function of covariates as µτ
i = Q(Xi, τ). Based on empirical findings, they argued that

the use of ALD is satisfactory even if it is a misspecification of the true underlying

distribution. Recently, Sriram et al. (2012) have provided a mathematical justification

for this phenomenon by showing posterior consistency of the linear quantile regression

parameters under the ALD misspecification. An alternative to ALD is using Bayesian

nonparametric methods by relaxing the distributional assumption (e.g. Reich et al.

2010).

Among key Bayesian approaches for simultaneously modeling quantiles, Tokdar

and Kadane (2012) propose a method for Bayesian linear quantile regression using

Gaussian process prior for the case of a single covariate and an approximate extension

to handle multiple covariates using a single-index formulation. Reich et al. (2011)

formulate the linear quantile regression parameters as Bernstein polynomials and use

it’s properties to derive a prior that ensures monotonicity of quantiles. Both the

approaches are specifically applicable to linear quantile regression and do not extend

naturally to non-linear formulations. In contrast Taddy and Kottas (2010) propose a

Bayesian nonparametric approach, where they estimate the joint distribution of (Y,X)

using a Dirichlet process prior. The joint distribution then enables the estimation

of conditional quantile functions. However, this purely nonparametric approach can

become computationally challenging for large number of covariates and is not easily

amenable to non-iid covariates. In addition, such an approach cannot accomodate other

semi-parametric specifications , such as a single index model with Q(Xi, τ) = g(XT
i β),

where both g(·) and β are unknown.
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One way to overcome the afore mentioned challenges is to formulate the modeling

of multiple quantiles using a suitable (but perhaps misspecified) likelihood on the data.

Dunson and Taylor (2005) proposed a (pseudo) “substitution likelihood” motivated by

the form of the joint density of sample quantiles from a set of i.i.d observations. This

likelihood requires apriori that the parameters used to model the quantiles be ordered

and further due to its non-conjugate nature, the computation of the posterior becomes

challenging. Another limitation of the substitution-likelihood is that a flat improper

prior does not lead to a proper posterior.

In this paper, we address the above challenges by proposing a Bayesian method

based on an ALD-based-pseudo-density. In section 2, we present our methodolody and

it’s extension. In section 3, we discuss some theoretical properties. We share results

from simulations and two empirical examples in section 4 and conclude in section 5.

2 Methodology and Extension

In this section, we present our proposed methodology for simultaneously modeling

multiple quantiles and it’s extension to hierarchical models. We also comment on some

computational issues.

2.1 Proposed Methodology

We describe a new Bayesian approach to simultaneous estimation of multiple quantiles

by constructing an “ALD-based-pseudo-density” (PALD) for the response as follows.

PALD(y;µτ1 , µτ2 , ..., µτK , στ1 , στ2 , ..., στK )

=

K
∏

j=1

1

στj
.exp







−

K
∑

j=1

ρτj (y − µτj )

στj







, for y ∈ X (3)

where, τ0 = 0 < τ1 < τ2 < ... < τK < 1, στj > 0 ∀ j

where X denotes the support of Y and ρτ (·) is as in equation (1). The (pseudo)

likelihood for modeling multiple quantiles on the data (Y1,X1), (Y2,X2) , ..., (YN ,XN )
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then takes the form,

L(Q,σ|Y,X) =
K
∏

j=1

1

σN
τj

.exp







−
N
∑

i=1

K
∑

j=1

ρτj (Yi − µ
τj
i )

στj







.I{Y1,..,YN∈X} (4)

where, τ0 = 0 < τ1 < τ2 < ... < τK < 1,

σ = (στ1 , ..., στK ), στj > 0 ∀ j

and µ
τj
i = Q(Xi, τj)

Given a prior Π(Q,σ), simultaneous estimation of quantiles is equivalent to knowing

the posterior distribution of (Q,σ) given by,

Π(Q,σ|Y,X)

∝

K
∏

j=1

1

σN
τj

. exp







−

N
∑

i=1

K
∑

j=1

ρτj (Yi −Q(Xi, τj))

στj







. π(Q,σ).I{Y1,..,YN∈X} (5)

Formulation (3) to (5) provides some significant advantages.

(a) It has the flexibility to accomodate both linear as well as nonlinear models and dif-

ferent types of prior specifications, in particular those that ensure monotonicity of

quantiles. It can also accomodate other constraints across quantiles such as keep-

ing a parameter fixed across quantiles or forcing a specific nonlinear functional

relation between quantiles. It is particularly advantageous when monotonicity

ensuring priors are hard to construct as may be the case in complex nonlinear

models. In such cases, this formulation still allows for an exploratory simultane-

ous estimation without requiring the monotonicity condition apriori.

(b) Posterior consistency holds for the case of linear quantile regression involving

covariates that are independent but possibly non-identically distributed across

observations. Interestingly, this is inspite of the “pseudo” nature of the density,

which is also a mis-specification of the underlying true distribution. Further, it

leads to a proper posterior even under a flat improper prior, while retaining the

posterior consistency property.

(c) The computational scheme is but a simple extension of the scheme for the single

quantile ALD formulation.
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A couple of important observations regarding the ALD-based-pseudo-density (3)

are due.

First, it is clearly motivated by the ALD density (2) for the single quantile case.

Although the intention is to model the τ thj quantile via the µτj parameter, we do not

impose the restriction of µτ1 < µτ2 < ... < µτK through the density. Instead, we prefer

to leave the density unrestricted w.r.t these parameters and impose such restrictions

through the prior, if needed. There are several reasons for doing so. (i) Computations

become much simpler without these conditions in the likelihood. (ii) If our interest is

in estimating fewer and sparsely spaced quantiles, monotonicity of resulting quantiles

is less likely to be an issue and the trouble of restricting µτj ’s may not even be worth

the effort. (iii) Monotonicity can also be ensured through an appropriate prior on

the quantile regression parameters. (iv) In the absence of suitable priors ensuring

monotonicity, which is likely while dealing with complex nonlinear models, estimation

using equation (3) can be easily integrated with a post-processing step such as that in

the lines of Chernozhukov et al. (2010) to ensure monotonicity.

Second, it is a “pseudo” likelihood as it does not integrate to 1 w.r.t y. It is

not hard to evaluate the (albeit cumbersome) normalizing constant. Equation (16) in

Appendix B gives the constant when X = (−∞,∞). We do not include the normalizing

constant in our methodology as it would lead to similar problems as in Dunson and

Taylor (2005) (viz. non-conjugate form) making the computations difficult. Further,

posterior consistency property of our methodology is more readily established without

the normalizing constant.

2.2 Extension to Hierarchical Models

We propose an extension of the above methodology to hierarchical models. Let Cij , i =

1, 2, .., s and j = 1, 2, .., Ti, be possibly non-identically distributed observations and let

V1, ..., Vs be independent latent variables. Here i can be thought as an index for one out

of s subjects containing a fixed and known Ti number of observations. We assume that

conditional on (V1, ..., Vs), the observations Cij are independent with density function
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fij(·|Vi,θ), i.e,

Cij|Vi ∼ fij(·|Vi,θ) independent for all i, j (6)

Our goal is to flexibly model the distribution of latent variable Vi as a function of

covariates Xi by using our simultaneous quantile modeling method. Examples of (6)

include commonly used models such as,

(i) Linear Regression Model with Random Effects

Cij |Vi ∼ fij(·|Vi,θ = (γ, ν)) = Normal(ZT
ijγ + Vi, ν2) (7)

Here, Vi is a random effect which is typically modeled by assuming a known

distributional form. Our method is a way to relax any specific distributional

assumption. A further interesting feature is that the distribution of the random

effect (Vi) can be modeled as a function of other subject specific characteristics

(denoted Xi). We later provide an application of this idea to a Stochastic Frontier

Analysis study.

(ii) Binary Regression Model

Cij|Vi ∼ fij(·|Vi,θ = γ) = Bernoulli(pij) (8)

where,

pij =











1, if Vi ≤ ZT
ijγ

0, otherwise

We propose to model the latent variable Vi in (6) by estimating a suitably chosen

grid of it’s quantiles. An interesting feature of our method is that the random effect

distribution can be modeled as a function of other subject specific characteristics.

Suppose Xi is a vector of characteristics of the ith subject. Then, our model includes

the following additional specification for the conditional quantile function of Vi.

Q(Xi, τ) = XT
i βτ (9)
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The (pseudo) likelihood for a Bayesian estimation of the above model based on our

proposed method in section 2.1 would take the form,

L(β, σ, θ|C,X,Z)

=

∫

X

s
∏

i=1

Ti
∏

j=1

fij(Cij |Vi,θ).

s
∏

i=1

g(Vi|β, σ)dV1..dVs

where,

g(Vi|β, σ) =
K
∏

l=1

1

σs
τl

.exp

{

−
s
∑

i=1

K
∑

l=1

ρτl(Vi −XT
i βτl

)

στl

}

τ0 = 0 < τ1 < τ2 < ... < τK < 1, , στj > 0 ∀ j (10)

X is the intended support of Vi

Let β = (βτ1 , ...βτK ) and σ = (στ1 , ...στK ). Bayesian estimation is carried out by

specifying a prior Π(·) on the parameter space Θ of (β, σ,θ). It is important to

note that the intended support X of Vi and the prior on parameters need to be chosen

carefully to avoid non-identifiability issues in the model. For example, in the stochastic

frontier efficiency study that we see later in section 4.3, it makes contextual sense to

constrain the random effect Vi to be supported on (0,∞) which also helps ensure

identifiability of the model.

2.3 Computational Aspects

Here, we comment on some computational aspects relating to the methods described

above.

• In the single quantile case, a Markov Chain Monte Carlo (MCMC) scheme can

be designed by considering the mixture normal representation of ALD (see Yue

and Rue 2011; Tsionas 2003). A similar method can be adapted here by writing
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the pseudo likelihood in (4) as follows

L(Q|Y,X)

=
K
∏

j=1

N
∏

i=1

(

1

ǫj
√

στjWij
φ

(

Yi −Q(Xi, τj)− ξjWij

ǫj
√

στjWij

))

(11)

where ,

φ(·) is the standard normal density

Wij
ind
∼ exponential(mean = στj ), ∀i, j

ǫ2j =
2

τj(1− τj)
, ξj =

1− 2τj
τj(1− τj)

• The above representation turns out to be particularly useful in the case of linear

quantile regression with normal priors for the regression parameters, which leads

to conjugacy and hence efficient gibbs-sampling mechanism. The details of the

MCMC algorithms for the specific models we estimate in this paper are provided

in Appendix C.

• Computations for the hierarchical extension of our method in section 2.2 can be

particularly tricky as we are modeling quantiles of a latent variable that is not

directly observed. In this case, some tweaks to the MCMC scheme may help

expedite the convergence of the algorithm. For example, in the normal random

effects model, the MCMC may be very slow in identifying the split of variance

attributable to the normal error term and the latent variable Vi. As a result it

may keep attributing most variation to the error term leaving almost no room for

variation in the latent variables, which would result in very slow convergence. In

such cases, we found it beneficial to raise the normal density to some power by

taking fK0
ij for some fixed K0 > 1, while writing the likelihood (10). This seems

to have the effect of artificially deflating the variance attributable to normal error

in (7) to ν2

K0
and helps the convergence.

• As mentioned in the introduction, monotonicity of quantiles using our method

can be ensured in two ways. One way is to choose a prior on parameters that al-

ready incorporates the monotonicity property (e.g. Gaussian process based prior

as in Tokdar and Kadane (2012) or Bernstein polynomial based prior as in Re-
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ich et al. (2011) ). Another perhaps computationally more attractive way is to

include a post-processing step in the lines of Chernozhukov et al. (2010) as follows.

For a given valueX = x of the covariate, suppose Q̂j(x) = (Q̂j(x, τ1), ..., Q̂j(x, τK))

(for j = 1, 2, ...,M) be samples for the quantile vectorQ(x) = (Q(x, τ1), ..., Q(x, τK ))

from the MCMC scheme. The conditional quantile vector can then be estimated

by

Q̂(x) =





1

M

M
∑

j=1

Q̂j(x, τ1), ....,
1

M

M
∑

j=1

Q̂j(x, τK)





Monotonized version of quantile vector (denoted by Q̂mon(x)) is obtained by

computing and inverting the transformation suggested by Chernozhukov et al.

(2010) as follows.

Hx(y) =

∫ 1

0
I{ 1

M

∑M
j=1 Q̂j(x,τ)≤y}dτ

Q̂mon(x) =
(

H−1
x (τ1), ...,H

−1
x (τK)

)

Infact, the same approach can be used to monotonize other quantities of interest

such as the 95% credible interval bounds, median etc. Such an approach is more

preferable in exploratory studies, especially involving nonlinear models where

constructing monotonicity ensuring priors may not be straight forward.

3 Theoretical Properties

In this section, we establish posterior consistency of the linear quantile regression pa-

rameters. We also show how it leads to a proper posterior even under an improper flat

prior while retaining the posterior consistency property.

3.1 Posterior Consistency

Here we present the theoretical result in support of our proposed methodology for

the case of linear quantile regression. To keep the notation simple, we take Xi =

(X1i,X2i), where X1i and X2i are univariate covariates. The case of more than two
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covariates is similar. Let {Yi, i = 1, 2, ..., n} be independent observations of a univariate

response and let {Xi, i = 1, 2, ..., n} be 2-dimensional vectors of covariates that are

independent but not necessarily identically distributed across observations. Let P0i

denote the true (but unknown) probability distribution of (Yi,Xi), with the true τ th

conditional quantile given by Q0(Xi, τ) = α0τ +XT
i β0τ . Let P be the corresponding

true product measure. Suppose however that the specified model for Yi is as in equation

(4), where Q(Xi, τ) = ατ +XT
i βτ for τ ∈ {τ1, ..., τK}. Let α = (ατ1 , ..., ατK ) and β =

(βτ1 , ...,βτK ). Similarly, the true parameter values are denoted by α0 = (α0τ1 , ..., α0τK )

and β0 = (β0τ1 , ...,β0τK ). Let Π(.) be a prior on the parameters (α, β, σ) ∈ Θ ×Θσ,

where (α, β) ∈ Θ ⊆ ℜ3K and σ ∈ Θσ = Θστ1
× ... × ΘστK

⊆ (0,∞)K . Expectation

E(·) will always be w.r.t the true underlying probability P. It turns out that posterior

consistency for σ is achieved at σ0 = (σ0τ1 , ..., σ0τK ), where

σ0τ = arg max
στ∈Θστ

{

lim
m→∞

1

m

m
∑

i=1

E (logfi,α0τ ,β0τ ,στ ,τ (Yi))

}

(12)

It will be seen later that σ0 is well defined under the assumptions we make.

We would like to show that the posterior probability of any set that is a neighbor-

hood of (α0,β0,σ0) computed using the possibly misspecified pseudo-likelihood (4)

tends to 1 for large sample sizes. Our result is an extension of the corresponding result

in Sriram et al. (2012) for the single quantile case. Hence, we state the assumptions

and result without much elaboration and provide a sketch of the proof in the appendix

by only highlighting details specific to the multiple quantile case. Let

fi,ατ ,βτ ,στ ,τ (Yi) =
1

στ
exp

{

−
1

στ
ρτ (Yi − ατ −XT

i βτ )

}

(13)

Our assumptions are given below. Assumption 1 is on the prior and assumption 2

is on the covariates. The rest of the assumptions involve the true underlying probabil-

ity. Asssumption 3, in a way, ensures that the quantiles being estimated are unique.

Assumption 4 is a technical condition to enable the application of Kolmogorov’s strong

law of large numbers for non i.i.d random variables and is also needed to ensure that

σ0 is well defined. Assumption 5 is on the finiteness of a quantity similar to the

Kullback-Liebler (KL) divergence of the specified model from the true model. It is not
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exactly KL since the specified model is not a true probability density. Interestingly,

this assumption is not needed in the proof of the main theorem, but comes into play

while extending our result to the case of improper priors.

Assumption 1: Every open neighbourhood of (α0,β0,σ0) has positive Π(·)

measure. i.e. (α0,β0,σ0) is in the support of Π.

Assumption 2: ∃ M > 0, such that E|X1i| ≤ M , E|X2i| ≤ M and EX2
1i ≤ M ,

EX2
2i ≤ M ∀ i ≥ 1.

Assumption 3: ∃ ǫ0 > 0 such that, for any ∆ > 0 and τ ∈ {τ1, ..., τK}

lim inf
n→∞

1

n

n
∑

i=1

E
{

I{0<Yi−α0τ−β01τX1i−β02τX2i<∆}.ISi

}

> 0

holds for each of the following possiblities for the set Si, viz, Si = {X1i > ǫ0,X2i >

ǫ0} or Si = {X1i > ǫ0,X2i < −ǫ0} or Si = {X1i < −ǫ0,X2i > ǫ0} or Si = {X1i <

−ǫ0,X2i < −ǫ0}.

Assumption 4: Both limits limm→∞
1
m

∑m
i=1E (|Zτi|), limm→∞

1
m

∑m
i=1 E (Zτi)

exist and are finite.
∑∞

i=1

E(|Zτi|2)
i2

< ∞ , where Zτi = Yi−α0τ−β01τX1i−β02τX2i,

for τ ∈ {τ1, ..., τK} .

Assumption 5:

E

(

log
p0i(Yi)

∏K
j=1 fi,α0τj

,β0τj
,σ0τj

,τj(Yi)

)

< ∞,∀ i

Below, we state the main result.

Theorem 1.

Let Θσ = [σ1, σ2]
K with 0 < σ1 ≤ σ2 < ∞. Let U be an open neighborhood of

(α0, β0, σ0). Then, under assumptions 1 to 4, we have

Π(U c/(Y1,X1), (Y2,X2), .., (Yn,Xn)) → 0 a.s. [P ]

A sketch of the proof of the theorem is given in Appendix A.
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Remark 1. Using an argument similar to that in Sriram et al. (2012), the theorem

can be extended to the case Θσ = (0,∞)K . The idea of the proof is to choose a

large enough compact region [σ1, σ2]
K that contains σ0 = (σ0τ1 , ...,σ0τK ) so that the

posterior probability on it’s complement goes to 0.

3.2 Posterior Propriety and Consistency under Improper

Priors

If we further make assumption 5, the theorem above generalizes to the case when the

prior Π is improper but has a formal posterior. We say that a formal posterior exists

if the denominator in the posterior probability is finite, i.e.,

∫

Θ×Θσ

K
∏

j=1

fi,ατj
,βτj

,στj
,τj (y)dΠ(α, β, σ) < ∞, ∀ y

Existence of a formal posterior would imply that Π(·|Y1) is proper. Then the idea is

to show that Π(·|Y1) satisfies assumption 1, which follows using arguments similar to

that in Sriram et al. (2012). This result is particularly interesting in view of theorem

1 of Yu and Moyeed (2001) where it is shown that the posterior based on ALD is

always well defined for a flat prior. Their argument can be extended even to work for

our proposed pseudo density which would imply in particular that theorem 1 will hold

when the prior Π(·) is flat w.r.t (α, β) (i.e. when Π(α, β|σ) ∝ 1) and proper w.r.t

σ. As mentioned in the introduction, this is an advantage over the pseudo-likelihood

approach of Dunson and Taylor (2005).

4 Simulations and Empirical Examples

In this section, we assess the performance of our methods through simulation of a linear,

nonlinear and a hierarchical model. Using two real datasets, we further demonstrate

the usefulness of our approach.
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4.1 Simulations

We simulate three models. The first two models demonstrate the simultaneous quantile

modeling methodology on a linear and a nonlinear model respectively. The third

simulation demonstrates the working of our extension to modeling latent variables in a

hierarchical set up using conditional quantiles. The models are described below. The

priors used and the MCMC scheme for the models are provided in Appendix C.

Model 1: There are three types of covariates. For X = (X1,X2), where

X1 ∼ N2(3, 1) (where N2(µ, σ2) denotes square of a normal random variable with

mean µ and variance σ2), X2 is binary (1/0) with 30% values being 1, the coef-

ficients vary by quantile and not by subject. For Z ∼ N2(0, .5), the coefficient is

fixed across quantiles and also across subjects, which illustrates a constraint that

includes multiple quantiles. For P ∼ N2(2, .3), the coefficients ν vary by subject

as well as by quantile. Let S be the vector that maps observations {1, 2, ..., N} to

the respective subject number {1, 2, .., s}.. Ofcourse, the true quantile functions

completely determine the conditional distribution of the response Y which is then

simulated. The true quantile function which is linear in covariates but with it’s

coefficients being non-linear in τ , is given by,

Q0(Xi, Zi, τ) = α0τ + β01τX1i + β02τX2i + γ0Zi + ν0τ [S[i]]× P [i]

where,

α0τ = .01 + .02τ, β01τ = .03 + .04τ + .09τ2, β02τ = .02 + .07τ + .11τ3

γ0 = .4, s = 10, ν0τ = (.01τ, .02τ, .., .1τ), N = 2000

S[1 : ⌊.1N⌋] = 1, ....S[(9 × ⌊.1N⌋+ 1) : N ] = 10, (⌊q⌋ = largest integer ≤ q)

The model is specified as follows.

Q(Xi, Zi, τ) = ατ + β1τX1i + β2τX2i + γZi + ντ [S[i]]× P [i]

where ατ , β1τ , β2τ , γ, ντ are unknown

Figure 1 shows the estimated conditional quantiles versus actual values for a given

vector of covariates. We can see that the actual quantile value (green solid line)
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Figure 1: Simulation 1- Conditional Quantiles given fixed covariates. Green solid line is actual quantile

curve and blue dotted line is the estimated using posterior mean. Red dotted lines mark the 95% credible

region.

is captured by the 95% credible interval (red dotted lines). The chart in the top

row is without the monotonicity constraint. The jaggedness of the dotted lines

in the graph is indicative of the lack of monotonicity in the estimated quantiles,

which is corrected in the graph in the second row. We use the approach described

in section 2.3 for doing the monotonicity correction as a post-processing step. It

is also seen that lack of monotonicity is more of a problem for closely spaced

quantiles which is easily corrected in the second chart.

Model 2: This example demonstrates that incorporating a nonlinear model for-

mulation is relatively easy with our proposed approach. The covariates (X,P )

and the vector S are obtained in the same way as in model 1. Here, we consider
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the true quantile function which is non-linear in it’s parameters.

Q0(Xi, τ) = β01τX1 + τ (β02τX2 + β03P )ν0[S[i]]

where,

β01τ = .03 + .04τ + .09τ2, β02τ = .02 + .07τ + .11τ3, β03 = .5,

s = 4, ν0 = (.25, .5, 1, 2) varies by subject

We specify the model by treating the nonlinear dependence as unknown using a

single-index formulation as follows.

Q(Xi, Zi, Pi, τ) = β1τX1i + γ1Zi + gτS[i](ω1τX2i + ω2τPi)

where β1τ , γ1, ω1τ , ω2τ , gτj(·) are unknown

Following, Ruppert et al. (2003), we specify gτi(·) by using a spline formulation based

on a piecewise truncated polynomial of degree L as follows.

gτi(x) = ντ.i1 + ντ.i2x+ · · · + ντ.i(L+1)x
L +

D
∑

d=1

ντ.i,L+d+1(x− ητd)
L
+ (14)

where (x)+ = x if x > 0, and 0 otherwise, and ητ1 < ητ2 < · · · < ητD are the fixed knots,

which are typically placed at quantiles of the distribution of values of Vτ = ω1τX2 +

ω2τP . For our example, we find it convenient to work with L=1, i.e linear splines.

Note that both the function gτj(·) and the parameters (ω1τ , ω2τ ) in it’s argument are

unknown. Such a formulation is called a single-index formulation. See Hardle et al.

(1993); Ichimura (1993); Yu and Ruppert (2002); Wu et al. (2010); Antoniadis et al.

(2004); Wang (2009) and references therein for some applications and key developments

in the analysis of single-index models. For identifiability, the intercept is included as

part of the unknown function gτj(·) and the condition ω2
1τ + ω2

2τ = 1 is imposed. We

estimate ten quantiles simultaneously by taking 10 equally spaced values of τ between

0.1 and 0.9. Figure 2 shows the estimated nonlinear relationship involving the variables

X2 and P for the four different groups. Each chart within the figure corresponds to

a particular group as indicated by the respective titles. The plotted curves are for a

fixed value of X2 and for a range of values for P . Different quantile curves are shown
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Figure 2: Simulation 2- Single Index Curve versus P for fixed X2. Quantiles shown in different colors.

Dotted lines are actual curves; Solid lines are estimated.

in different color. The lower most curve corresponds to τ = .1 and the upper most

τ = .9. The actual curves are shown as dotted lines and the estimated curves are

shown as solid lines of the same color. Although the actual curves take on different

shapes across groups as well as across quantiles within groups, the estimated curves

reasonably approximate them.

Model 3: Here we look at a simulated stochastic frontier model which is the type

of model we study in a real application in section 4.3. The simulation is done using the

model description (7) by taking Vi
iid
∼ exponential with mean 5, ν2 = 6.25 and the Z

containing two covariates obtained as squares of N(3,2) and N(0,3) random variables

respectively, with coefficients 1 and 0.5 respectively. In the model specification although

the distribution of Vi is treated as unknown, the support is assumed to be (0,∞). Figure

3 shows that actual versus modeled density for the simulated efficiency defined by e−Vi .

The estimated pdf is close to the actual pdf which assumes an exponential distribution

for Vi, thus supporting the extension of our simultaneous quantile modeling method to

a hierarchical setting as described in section 2.2.
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Figure 3: Simulation 3- Modeling Random Effects. Red solid line denotes the actual pdf based on exponen-

tially distributed random effects and blue solid line is based on the hierarchical extension of our simultaneous

quantile modeling approach.

4.2 Empirical Example 1

Here we use data on workers compensation claims to demonstrate an application of our

methodology developed in section 2.1. This data is originally from Klugman (1992)

and has been analyzed by Frees et al. (2001), where a more detailed description is

available. The data contains information on workers compensation claims(or losses)

for 121 risk groups over 7 years. The goal is to model the loss per dollar of payroll,

also refered to as pure premium (PP). A challenge is the heteroskedasticity in PP

that seems to be related to the amount of exposure measured by dollars of payroll

(E). Frees et al. (2001) consider different model formulations and conclude that the

following model which assumes error variance as being proportional to the exposure is

the most reasonable in terms of simplicity and performance. They take

PPit = α1i + β1 + ǫit
√

Eit

where i denotes the risk group, t denotes time and dependencies between observations

from the same firm are modeled through a random effect α1i. We show how simultane-
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ous modeling of quantiles can be another way to address the issue of heteroskedasticity.

Our model formulation involves modeling different conditional quantiles of the response

PP as a function of the covariate E. More formally, we take

Q(Eit, τk) = α1i + gτk(log(Eit)), g(·) unknown

where the function g(·) is treated as unknown and modeled using a spline as in equa-

tion (14). Two important aspects in our formulation demonstrate the flexibility and

strength of our approach. First, the random effect that captures dependencies between

observations for the same firm, is held fixed across quantiles, but varies by firm. Such a

constraint on the random effect involves multiple quantiles and is easily handled by our

simultaneous quantile approach. Second, the function g(·) is modeled nonlinearly using

splines and varied across quantiles. Thus different quantile curves can be of different

shapes, which is also conveniently modeled through our approach. Knowing all condi-

tional quantiles at every exposure essentially amounts to knowing the entire conditional

distribution of PP and hence is a natural way to account for heteroskedasticity. The

MCMC scheme used here is same as given for model 2 in Appendix C. Figure 4 shows

the pure premium (black dots) plotted against log(exposure). The curves drawn in

different colors are the quantile curves with the lowest curve corresponding to 1st per-

centile and the highest corresponding to the 99th percentile. The quantiles as marked

by the curves capture the underlying heteroskedasticity in the data. For example, the

quantile curves at the lower and higher values of exposure are more closely spaced

versus those at the middle that are more separated, thus indicating larger variance in

the middle than extremes. At any fixed value of exposure that can be marked on the x

axis, the points on the different quantile curves help approximate the entire conditional

distribution of pure premium.

4.3 Empirical Example 2

In this example, we show how the hierarchical extension presented in section 2.2 can

be used to flexibly model inefficiencies of firms in Stochastic Frontier Analysis. In

particular, we use the data on hospital costs which has been previously studied by Koop
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et al. (1997) and Griffin and Steel (2004). The data contains information on costs,

inputs and outputs of 382 relatively homogeneous sample of non-teaching hospitals

over 1987-1991. Estimating the cost frontier involves modeling log(cost) as a function

of five different outputs (viz. Y1 =number of cases, Y2 =number of inpatient days,

Y3 =number of beds, Y4 =number of outpatient visits and Y5 =a case mix index), an

aggregate wage index (P ) as a measure of input, a variable to measure the capital

stock or total fixed assets(K) and a linear as well as quadratic time trend variable to

capture time dynamics. The cost frontier model is then formulated as

log(costit) = ZT
itγ + Vi + eit

where, eit
iid
∼ N(0, ν2)

Vi is the firm specific inefficiency term

ZTγ

=
5
∑

j=1

γi log Yj + γ6 log P + γ7 log P
2 +

5
∑

j=1

γ7+j log Yj logP + γ13 logK

+

5
∑

j=1

γ13+j log Yj logK + γ19 log(P ) logK + γ20(logK)2 + γ21t+ γ22t
2

+

5
∑

j=1

5
∑

l=i

γ22+5(j−1)+l log Yj log Yl

Koop et al. (1997) modeled the inefficiency term Vi by treating it as a random effect

with a known parameteric distributional form supported on (0,∞). Griffin and Steel

(2004) relaxed this assumption by treating the distribution as completely unknown

and modeled it using a Dirichlet process prior (Ferguson 1973). Further, they varied

the inefficiencies by firm characteristics by dividing the data into different segments,

each with a separate Dirichlet process prior. We propose a novel alternative approach

to flexibly model the inefficiencies using the hierarchical extension of our simultaneous

quantile modeling approach. We use the same model as above except that we formu-

late the model for inefficiency term Vi as a function of firm characteristics (Xi) using

quantiles as follows.

Q(Xi, τ) = XT
i β(τ)
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A particular advantage of our approach apart from computational simplicity is that it

can easily incorporate firm characteristics that are continuous without having to group

or segment the population. In our particular example however, the firm characteristics

happen to be binary variables indicating whether the firm is “for profit”, “non profit”

or “government run”. Consistent with the afore mentioned papers, we define efficiency

as exp(−Vi). The MCMC scheme used here is same as given for model 3 in Appendix

C. Figure 5 shows the estimated pdf of efficiency for the three types of firms in the

hospital data. Consistent with the results in Griffin and Steel (2004), the modes of the

distributions are around 0.7. Also, we see that profit firms show more variation than

non profit firms and the distribution of government run firms is supported more on the

higher values of efficiency compared to the other two firm types. Although the modes

of the efficiency distributions for the three groups are not exactly the same as that

in Griffin and Steel (2004), our analysis is in agreement with their observation that

the non-profit and government run hospitals have modes that are close to each other

and higher than that of for-profit group. Notwithstanding some minor differences from

prior studies, this example does help demonstrate that our method is a novel approach

to flexibly model random effects in regression models and in particular can be used in

stochastic frontier efficiency studies.

5 Conclusion

The problem of simultaneously modeling multiple quantiles is a topic of active research.

We propose a new Bayesian approach to address this issue and develop a novel extension

to hierarchical models. Theoretically, we derive the posterior consistency property of

our method. We further illustrate it’s usefulness through simulations and empirical

examples. There can be several applications of our methodology to other econometric

problems particularly those involving flexible modeling of distributions.
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Figure 4: Workers Compensation Claims: Conditional Quantile Curves
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Figure 5: Efficiency: Hospital Cost Data. The pdf of efficiencies estimated for three different types of firms

(viz. non-profit, profit and government run) in the hospital cost data
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Appendix A Proof Sketch of Theorem 1

The proof of our theorem 1 is an extension of the single quantile case in Sriram et al.

(2012). The key is in adapting the lemmas and propositions in their result to ac-

comodate multiple quantiles. Hence, we sketch the proof by highlighting only those

areas requiring special attention while accomodate multiple quantiles. The result is

established by writing

Π (U c|(Y1,X1), (Y2,X2), ..., (Yn,Xn))

=

∫

Uc

∏n
i=1

∏K
j=1

f(i,ατj
,βτj

,στj
,τj)

(Yi)

f(i,α0τj
,β0τj

,σ0τj
,τj )

(Yi)
dΠ(α, β, σ)

∫

Θ×Θσ

∏n
i=1

∏K
j=1

f(i,ατj
,βτj

,στj
,τj )

(Yi)

f(i,α0τj
,β0τj

,σ0τj
,τj)

(Yi)
dΠ(α, β, σ)

=
I1n
I2n

(15)

and showing that ∃ d0 > 0 such that end0I1n → 0 a.s.[P ] and ∀ d > 0 endI2n →

∞ a.s.[P ]

Lemma 1 gives some basic equalities and inequalities for the log ratio of ALD

likelihoods, that are useful for the proof. Lemma 2, proposition 2 and lemma 3 help

show that ∀ d > 0 endI2n → ∞ a.s.[P ], which takes care of the denominator in

the posterior probability. Proposition 1 is an interesting observation. Typically, in

misspecified models posterior consistency holds at parameter values that minimize the

Kullback-Liebler(KL) divergence of the specified model from the true model. However,

here the specified model is a pseudo likelihood and hence the expectation in proposition

1 given by E
{

log
(

p0i(Yi)
f(i,ατ ,βτ ,στ ,τ)(Yi)

)}

is not exactly a KL divergence. Nevertheless, the

property that (α0τ , β0τ ) minimize this “KL-divergence-like” expectation is useful to

establish our result. Similarly, in proposition 2, the set Vδ is similar to but not exactly

a KL-neighborhood.
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Lemma 1. The following identities and inequalities hold true.

(a) log
(

f(i,ατ ,βτ ,στ ,τ)(Yi)

f(i,α0τ ,β0τ ,στ ,τ)(Yi)

)

= 1
στ
.











































−biτ (1− τ), if Yi ≤ min(ατ +XT
i βτ , α0τ +XT

i β0τ )

(Yi − α0τ −XT
i β0τ )− biτ (1− τ), if α0τ +XT

i β0τ < Yi ≤ ατ +XT
i βτ

biττ − (Yi − α0τ −XT
i β0τ ), if ατ +XT

i βτ < Yi ≤ α0τ +XT
i β0τ

biττ, if Yi ≥ max(ατ +XT
i βτ , α0τ +XT

i β0τ )

(b)
∣

∣

∣log
(

f(i,ατ ,βτ ,στ ,τ)(Yi)

f(i,α0τ ,β0τ ,στ ,τ)(Yi)

)∣

∣

∣ ≤
max(τ,1−τ)

στ
(|ατ−α0τ |+|β1τ−β10τ ||X1i|+|β2τ−β20τ ||X2i|)

(c) log
(

f(i,ατ ,βτ ,στ ,τ)(Yi)

f(i,α0τ ,β0τ ,στ ,τ)(Yi)

)

≤ |Yi − α0τ −XT
i β0τ |/στ

(d) If E|Xi| <= M then E
{

log
(

f(i,ατ ,βτ ,στ ,τ)(Yi)

f(i,α0τ ,β0τ ,στ ,τ)(Yi)

)}

≤ max(τ, 1 − τ).(|ατ − α0τ | +

|β1τ − β10τ |M + |β2τ − β20τ |M)/στ

(e) log
(

f(i,ατ ,βτ ,στ ,τ)(Yi)

f(i,α0τ ,β0τ ,στ ,τ)(Yi)

)

= 1
σ .











−biτ (1− τ) + min(Z+
iτ , biτ ), if biτ > 0

biττ +min(Z−
iτ ,−biτ ), if biτ ≤ 0

(f)
∣

∣

∣log
(

f(i,ατ ,βτ ,στ ,τ)(Yi)

f(i,α0τ ,β0τ ,σ0τ ,τ)(Yi)

)∣

∣

∣ ≤ |log(στ )− log(σ0τ )|+ |Ziτ |.
∣

∣

∣

1
στ

− 1
σ0τ

∣

∣

∣

where biτ = (ατ −α0τ )+XT
i (βτ −β0τ ), Ziτ = Yi−α0τ −XT

i β0τ , Z
+
iτ = max(Ziτ , 0)

and Z−
iτ = max(−Ziτ , 0).

Proof. The lemma follows easily with a bit of algebra and hence the proof is omitted.

Lemma 2. The following identities and inequalities hold true.

(a) E
{

log
(

f(i,ατ ,βτ ,στ ,τ)(Yi)

f(i,α0τ ,β0τ ,στ ,τ)(Yi)

)}

= E
{

(Yi−ατ−X
T
i βτ )

στ
.I(α0τ+XT

i β0τ<Y <ατ+XT
i βτ )

}

+ E
{

(ατ+XT
i βτ−Yi)
στ

.I(ατ+XT
i βτ<Yi<α0τ+XT

i β0τ )

}

(b) E
{

log
(

f(i,ατ ,βτ ,στ )(Yi)

f(i,α0τ ,β0τ ,στ )(Yi)

)}

≤ 0

Further, in (b) equality is achieved if α = α0τ and β = β0τ .
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Proof. The lemma follows by a little algebra and by noting that (α0τ +XT
i β0τ ) is the

true τ th quantile of Yi given Xi.

Proposition 1. If assumption 5 holds then,

inf
(α,β)∈Θ, στ∈Θστ

E

{

log

(

p0i(Yi)

f(i,ατ ,βτ ,στ ,τ)(Yi)

)}

≥ E

{

log

(

p0i(Yi)

f(i,α0τ ,β0τ ,σ0τi,τ)(Yi)

)}

where σ0τi = arg max
στ∈Θστ

E
{

f(i,α0τ ,β0τ ,στ ,τ)(Yi)
}

Proof. This proposition is a consequence of lemma 2.

Proposition 2. Suppose Θσ = [σ1, σ2] such that 0 < σ1 ≤ σ2 < ∞ and ∀ δ >

0, Π(Vδ) > 0 , where,

Vδ =







(α, β, σ) ∈ Θ×Θσ : lim sup
n→∞

1

n

n
∑

i=1

E





K
∑

j=1

{

log

(

f(i,α0τj
,β0τj

,σ0τj
,τj)(Yi)

f(i,ατj
,βτj

,στj
,τj)(Yi)

)}



 < δ







⋂







(α, β, σ) ∈ Θ×Θσ :

∞
∑

i=1

1

i2
E











K
∑

j=1

{

log

(

f(i,α0τj
,β0τj

,σ0τj
,τj)(Yi)

f(i,ατj
,βτj

,στj
,τj)(Yi)

)}







2

 < ∞







then ∀ d > 0, endI2n → ∞ a.s [P ]

Proof. The proof of the proposition is in the same lines as theorem 4.4.1 of Ghosh and

Ramamoorthi (2003).

Lemma 3. Suppose Θσ = [σ1, σ2] with 0 < σ1 ≤ σ2 < ∞ . If assumptions 1 and 2

hold, then ∀ d > 0, endI2n → ∞ a.s [P ]

Proof. The idea is to verify that conditions of proposition 2 are satisfied. This follows

by using parts (b), (d) and (f) of lemma 1 along with assumptions 1 and 2.

The above lemma helps take care of the denominator in the posterior probability.

In order to handle the numerator, without loss of generality consider neighborhood
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around true parameter of the form U = W × V where,

W = {|(ατ1 − α0τ1 | < ∆1τ1 , |β1τ1 − β01τ1 | < ∆2τ1 , |β2τ1 − β02τ1 | < ∆3τ1)

|(ατ2 − α0τ2 | < ∆1τ2 , |β1τ2 − β01τ2 | < ∆2τ2 , |β2τ3 − β02τ3 | < ∆3τ2)}

V = {|στ1 − σ0τ1 | < ∆4τ1 , ..., |στK − σ0τK | < ∆4τK}

Now, it is convenient to split the complement of the neighbourhood W c into number

of subregions each part of a separate quadrant in the euclidean space with dimension

equal to the number of parameters. More precisely,

W c =
J
⋃

j=1

Wj

where J is the total number of quadrants and the sets Wj are of following form.

W1 = {(ατ1 , β1τ1 , β2τ1 , ατ2 , β1τ2 , β2τ2) :

ατ1 − α0τ1 ≥ ∆1τ1 , β1τj ≥ β10τ1 , β2τ1 ≥ β20τ1

ατ2 ≥ α0τ1 , β1τ2 ≥ β10τ2 , β2τ2 ≥ β20τ2}

W2 = {(ατ1 , β1τ1 , β2τ1 , ατ2 , β1τ2 , β2τ2) :

ατ1 − α0τ1 ≥ ∆1τ1 , β1τj ≥ β10τ1 , β2τ1 ≥ β20τ1

ατ2 ≥ α0τ1 , β1τ2 ≥ β10τ2 , β2τ2 < β20τ2}

:

and so on

:

We handle the numerator by splitting the parameter space of (α, β) into two parts

as Θ = G ∪ Gc, where G is a compact set such that the integral over Gc decays in a

exponential manner. The proposition below is analogous to theorem 1.3.3 in Ghosh and

Ramamoorthi (2003) and gives a uniform strong law for independent non-identically

distributed random variables.

Proposition 3.

Let Yi ∼ P0i, i = 1, 2, ..., be a sequence of independent random variables and P denote

the corresponding product measure. Let
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(i) Θ be a compact parameter space

(ii) Ti(θ, Yi) be measurable and for any compact set B ⊂ Θ, ∃ M > 0 such that

E
(

supθ∈B |Ti(θ, y)|
2
)

≤ M

(iii) For any θ0 ∈ Θ,

lim
δ→0

sup
n≥1

E

[

1

n

n
∑

i=1

sup
{θ:‖θ−θ0‖<δ}

|Ti(θ, Yi)− E {Ti(θ, Yi)}

− Ti(θ0, Yi) + E {Ti(θ0, Yi)} |

]

= 0

Then,

lim
n→∞

sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Ti(θ, Yi)−
1

n

n
∑

i=1

E {Ti(θ, Yi)}

∣

∣

∣

∣

∣

= 0 a.s.[P ]

Proof. Proof of the proposition is in the lines of theorem 1.3.3 in Ghosh and Ra-

mamoorthi (2003).

Lemma 4. If assumption 2 holds, then for any compact set G ⊂ Θ,

sup
(α,β)∈ G

∣

∣

∣

∣

∣

1

n

n
∑

i=1

K
∑

l=1

[

log

(

f(i,ατl
,βτl

,στl
,τl)(Yi)

f(i,α0τl
,β0τl

,στl
,τl)(Yi)

)

− E

{

log

(

f(i,ατl
,βτl

,στl
,τl)(Yi)

f(i,α0τl
,β0τl

,στl
)(Yi)

)}]∣

∣

∣

∣

∣

→ 0 a.s [P ]( uniformly in σ)

Proof. The result follows by first noting the inequality below and then applying the

same argument as in lemma A.1 of Sriram et al. (2012)

sup
(α,β)∈ G

∣

∣

∣

∣

∣

1

n

n
∑

i=1

K
∑

l=1

[

log

(

f(i,ατl
,βτl

,στl
,τl)(Yi)

f(i,α0τl
,β0τl

,στl
,τl)(Yi)

)

− E

{

log

(

f(i,ατl
,βτl

,στl
,τl)(Yi)

f(i,α0τl
,β0τl

,στl
)(Yi)

)}]∣

∣

∣

∣

∣

≤

K
∑

l=1

sup
(α,β)∈ G

∣

∣

∣

∣

∣

1

n

n
∑

i=1

[

log

(

f(i,ατl
,βτl

,στl
,τl)(Yi)

f(i,α0τl
,β0τl

,στl
,τl)(Yi)

)

− E

{

log

(

f(i,ατl
,βτl

,στl
,τl)(Yi)

f(i,α0τl
,β0τl

,στl
)(Yi)

)}]∣

∣

∣

∣

∣
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Lemma 5. Let assumptions 1 and 3 hold. Then, for any compact set G and for

j = 1, 2, .., J , there exists N∗
j and Kj > 0 (independent of σ) such that for n > N∗

j ,

Ij1n(σ) < e
−n

Kj

2max{στ1 ,..,στK
}

where,

Ij1n(σ) =

∫

Wj

⋂

G
e

∑n
i=1

∑K
l=1 log

(

f(i,ατl
,βτl

,στl
)(Yi)

f(i,α0τl
,β0τl

,στl
)(Yi)

)

dΠ(α, β|σ)

Proof. The proof of the result is similar for each Wj . For the case of W1, first lemma 4

essentially helps replace the log likelihood ratio within the integral with it’s expectation

and then using lemma 2, we note that

E

{

log

(

f(i,ατ1 ,βτ1 ,στ1 )
(Yi)

f(i,α0τ1 ,β0τ1 ,στ1)
(Yi)

)}

≤ E

{

(Yi − ατ1 −XT
i βτ1)

σ
I(α0τ1+XT

i β0τ1<Yi<ατ1+XT
i βτ1 )

.I{X1i>ǫ0,X2i>ǫ0}

}

≤ −
∆1τ1

2στ1
E

{

I(
0<Yi−α0τ1−β0τ1Xi<

∆1τ1
2

).I{X1i>ǫ0,X2i>ǫ0}

}

Also, for other l 6= 1, E

{

log

(

f(i,ατl
,βτl

,στ1)(Yi)

f(i,α0τl
,β0τl

,στl
)(Yi)

)}

≤ 0. Now result follows by taking

K1 = ∆1τ1 . lim inf
m→∞

1

m

m
∑

i=1

E

{

I(
0<Yi−α0τ1−β0τ1Xi<

∆1τ1
2

).I{X1i>ǫ0,X2i>ǫ0}

}

The next proposition essentially establishes the result in theorem 1 when the pa-

rameter space is compact.

Proposition 4. Let assumptions 1, 3 and 4 hold. Suppose G ⊂ Θ is compact and

Θσ = [σ1, σ2]
K with 0 < σ1 ≤ σ2 < ∞. Then, ∃ C ′ > 0, δ1 > 0 and N∗∗ such that

∀n ≥ N∗∗

∫

(W×V )c∩(G×Θσ)
e

∑n
i=1

∑K
j=1 log

(

f(i,ατj
,βτj

,στj
)(Yi)

f(i,α0τj
,β0τj

,σ0τj
)(Yi)

)

dΠ(α, β, σ) ≤ C ′e−nδ1
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Proof. First, we note that uniform SLLN holds for the log likelihood ratio, for every

j ∈ {1, 2, ...,K}.

1

n

n
∑

i=1

log

(

f(i,ατj
,βτj

,στj
)(Yi)

f(i,α0τj
,β0τj

,σ0τj
)(Yi)

)

=
1

n

n
∑

i=1

log

(

f(i,ατj
,βτj

,στj
)(Yi)

f(i,α0τj
,β0τj

,στj
)(Yi)

)

+
1

n

n
∑

i=1

log

(

f(i,α0τj
,β0τj

,στj
)(Yi)

f(i,α0τj
,β0τj

,σ0τj
)(Yi)

)

For the first term, uniform SLLN is implied by lemma 4. For second term it follows by

noting that it is = log
(

σ0τj

στj

)

+
(

1
σ0τj

− 1
στj

)

Ziτj (τj − IZiτj
<0). This would essentially

help replace the exponent in the integrand with it’s expectation. Then the integral

over the set (W × V )c ∩ (G × Θσ) can be bounded by a sum of two terms, first term

being an integral over the set ((W c ∩G)×Θσ) and second term over the set (G× V c).

For the first integral, the result follows using lemma 5 and result for the second integral

follows by using the definition of σ0τ and arguing that for any τ ∈ {τ1, ..., τK} with

|στ − σ0τ | > ∆4τ , lim
∑n

i=1
1
nE
(

log
fi,α0τ ,β0τ ,στ (Yi)

fi,α0τ ,β0τ ,σ0τ
(Yi)

)

< −δ1 for some δ1 > 0.

Lemma 6. If assumptions 1, 3 and 4 hold, then for j = 1, 2, .., J, ∃ a compact set

Gj ⊂ Wj, bj > 0 and N∗∗
j (all not depending on σ) such that

∫

Gc
j∩Wj

e

∑n
i=1

∑K
l=1 log

f(i,ατl
,βτl

,στl
)(Yi)

f(i,α0τl
,β0τl

,στl
)(Yi)dΠ(α, β|σ) ≤ e−nbj/max{στ1 ,...,στK

}

∀ n ≥ N∗∗
j

Proof. We will prove the result for the set W1 and for the case of two quantiles (i.e

K=2). The argument is similar for other sets Wj for j=2,...,8 and for K ≥ 3. Let ǫ0

be as in assumption 3 and Ziτ = Yi − α0τ −Xiβ0τ . For j=1,2, define

C0 =
2 lim supm→∞

1
m

∑m
i=1 E(|Ziτ1 |) + 2 lim supm→∞

1
m

∑m
i=1E(|Ziτ2 |)

lim infm→∞
1
m

∑m
i=1 E {IXi1>ǫ0,Xi2>ǫ0}

Note that assumption 3 in particular implies that the denominator is well defined

and assumption 4 ensures that the numerator is well defined. Now let Aj = Bjǫ0 =
2C0στj

(1−τj)min(στ1 ,στ2)
and define

G1 = ∩2
j=1{(α, β) ∈ W1 : ατj − α0τj ≤ Aj , β1τj − β10τj ≤ Bj , β2τj − β20τj ≤ Bj}
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Clearly G1 is compact. Now if (α, β) ∈ Gc
1 ∩W1 then either (ατj − α0τj ) > Aj or

(β1τj − β10τj ) > Bj or (β2τj − β20τj ) > Bj for some j ∈ {1, 2}. Further if Xi1 > ǫ0 and

Xi2 > ǫ0 then in the first case we have biτj = (ατj −α0τj ) + (β1τj − β10τj )X1i + (β2τj −

β20τj )X2i > Aj for some j and in the other two cases, we would have biτj > Bjǫ0 for

some j. So, in any case when X1i > ǫ0 and X2i > ǫ0, we have biτj >
2C0στj

(1−τj )min(στ1 ,στ2 )

for some j ∈ {1, 2}. So, without loss of generality assume biτ1 >
2C0στ1

(1−τ1)min(στ1 ,στ2 )
when

X1i > ǫ0 holds and X2i > ǫ0, in which case we also have biτ2 ≥ 0. Now, we can write

n
∑

i=1

2
∑

j=1

log

(

f(i,ατj
,βτj

,στj
,τj)(Yi)

f(i,α0τj
,β0τj

,στj
,τj)(Yi)

)

=

2
∑

j=1

n
∑

i=1

log

(

f(i,ατj
,βτj

,στj
,τj)(Yi)

f(i,α0τj
,β0τj

,στj
,τj)(Yi)

)

I{X1i>ǫ0,X2i>ǫ0}

+

2
∑

j=1

n
∑

i=1

log

(

f(i,ατj
,βτj

,στj
,τj)(Yi)

f(i,α0τj
,β0τj

,στj
,τj)(Yi)

)

I{X1i>ǫ0,X2i>ǫ0}c

Now, applying part(e) of lemma 1 to the first term in R.H.S and part (d) to the

second term (for (α, β) ∈ Gc
1 ∩W1 ), for sufficiently large n (say ∀ n ≥ N∗∗

1 ) we have,

n
∑

i=1

log

(

f(i,α,β,σ)(Yi)

f(i,α0,β0,σ)(Yi)

)

≤ −
2C0στ1

(1− τ1)min(στ1 , στ2)
(1− τ1)

∑n
i=1 I{X1i>ǫ0,X2i>ǫ0}

στ1

+

2
∑

j=1

∑n
i=1 Z

+
iτj

I{X1i>ǫ0,X2i>ǫ0}

στj
+

2
∑

j=1

∑n
i=1 |Ziτj |I{X1i>ǫ0,X2i>ǫ0}c

στj

≤ −
2nC0

min(στ1 , στ2)
lim inf
m→∞

1

m

m
∑

i=1

E
{

I{X1i>ǫ0,X2i>ǫ0}

}

+ n
2
∑

j=1

lim supm→∞
1
m

∑n
i=1 E|Ziτj |

στj

≤ −
nC0

min(στ1 , στ2)
lim inf
m→∞

1

m

m
∑

i=1

E
{

I{X1i>ǫ0,X2i>ǫ0}

}

≤ −
nC0

max(στ1 , στ2)
lim inf
m→∞

1

m

m
∑

i=1

E
{

I{X1i>ǫ0,X2i>ǫ0}

}

The steps in the inequality above use assumption 4, which allows the application of

SLLN on the sequence {|Ziτj |}. Now, the result follows by using propriety of prior

from assumption 1 and taking b1 = C0 lim infm→∞
1
m

∑m
i=1E

{

I{X1i>ǫ0,X2i>ǫ0}

}
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Proof. (of theorem 1). Theorem 1 is a direct consequence of the lemmas and proposi-

tions discussed above. Lemma 3 helps handle the denominator in the posterior proba-

bility showing that endI2n → ∞ a.s. [P ]∀ d > 0. For numerator, it needs to be shows

that ∃ d0 > 0 such that end0I1n → 0 a.s [P ]. The integral in the numerator is split

over (G×Θσ) and (Gc×Θσ) where G = ∩J
j=1Gj with Gj as in lemma 6. Proposition 4

helps establish the result for the first term. Lemma 6 helps establish the convergence

of second term, thus completing the proof.

The next lemma helps extend theorem 1 to the case when Θσ = (0,∞)K .

Lemma 7. If assumptions 1, 3 and 4 hold, then for ∃ C ′ > 0, d0 > 0, N0(ω) (all

not depending on σ) such that ∀ n ≥ N0, σ ∈ Θσ,

I1n(σ) =

∫

W c

n
∏

i=1

K
∏

l=1

f(i,ατl
,βτl

,στl
)(Yi)

f(i,α0τl
,β0τl

,στl
)(Yi)

dΠ(α, β|σ) ≤ C ′e−2nd0/max{στ1 ,...,στK
}

Proof. The lemma is an immediate consequence of lemma 5 and 6.

Without delving into the details which would be similar to that in Sriram et al.

(2012), we just note that lemma 7 is particularly useful in the proof of remark 1.
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Appendix B Normalizing constant

The normalizing constant for the pseudo density in equation (3)for y ∈ X = (−∞,∞)

is given by

C =

∫ ∞

−∞

K
∏

j=1

1

στj
exp







−
K
∑

j=1

ρτj (y − µτj )

στj







dy (16)

=
K
∑

l=1

(AlBl − log(στj ))

where,

Al =











(

exp
{

−blµ(l)

}

− exp
{

−blµ(l−1)

})

/bl , if bl 6= 0

µ(l) − µ(l−1) , if bl = 0

bl =

l−1
∑

j=1

τj
σj

+

K
∑

j=l

(τj − 1)

σj

Bl = exp







l−1
∑

j=1

µ(j) × τj

σj
+

K
∑

j=l

µ(j) × (τj − 1)

σj







(µ(1), ..., µ(K)) are ordered values of (µτ1 , ..., µτK ) and µ(0) = 0, µ(K+1) = ∞

Appendix C Details of MCMC algorithms

MCMC for Simulated Model 1

• Data: (Yi,Xi, Zi, Pi), i = 1, 2, ...N

• Model Specification Q(Xi, τ) = XT
i β(τ) + ZT

i γ + P T
i νSi

(τk)

• Model estimation is done by considering a dense grid τ1, ..., τK

• Using the scale mixture representation of ALD(,XT
i β(τk)+ZT

i γ+P T
i νSi

(τk), σk, τk)
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for each k = 1, 2..,K, the likelihood becomes

L(Y |X,β(·))

=

N
∏

i=1

K
∏

k=1

(

√

2πσkWik ǫk

)−1

×exp

{

−

K
∑

k=1

N
∑

i=1

(Yi −XT
i β(τk)− ZT

i γ − P T
i νSi

(τk)− ξkWik)
2/(2ǫ2kσkWik)

}

W1k,W2k, ...,WNk
iid
∼ exponential (mean=σk) and independent for k=1,2,..,K

ξk = (1− 2τk)/(τk(1− τk)) and ǫ2 = 2/(τk(1− τk))

• Let β = (β(τ1), ....,β(τK)), ν = (ν1, .., νs)

• Priors

β|Σ0 ∼ N(β0, Σ0)

γ|Σγ∼N(γ0,Σγ)

σ−1
1 , ..., σ−1

K
iid
∼ Gamma(a, b) with densityg(s) ∝ sa−1e−bs

ν1, ...,νs|Σnu
iid
∼ Multi−N(ν0,Σnu)

Σ−1

ν ∼ Wishart(Dν , dν)
[

Vp×p ∼ Wishart(D0, d0) has the density
|V |(d0−p−1)/2)

|D0|(d0/2)
e−Tr(D−1

0 V )/2

]

• Posterior distribution of β

β|Y, ... ∼ N(A−1
β Mβ, A

−1
β )

Aβ = diagonal

[

N
∑

i=1

XiX
T
i

ǫ2kσkWik
, k = 1, 2..,K

]

+Σ−1
0

Mβ = column vector

[

N
∑

i=1

(

Yi − ξkWik − ZT
i γ − P T

i νSi
(τk)

ǫ2kσkWik
Xi

)

, k = 1, 2..,K

]

+Σ−1
0 β0

• Posterior distribution of γ

γ|Y, ... ∼ N(A−1
γ Mγ , A

−1
γ )

Aγ =

K
∑

k=1

N
∑

i=1

ZiZ
T
i

ǫ2kσkWik
+Σ−1

γ

Mγ =

K
∑

k=1

N
∑

i=1

(

Yi − ξkWik −XT
i β(τk)− P T

i νSi
(τk)

ǫ2kσkWik
Zi

)

+Σ−1
γ γ0
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• For each j=1,..,s, posterior distribution of νj

νj |Y, ... ∼ N(A−1
νj Mνj , A

−1
νj )

Aνj =

K
∑

k=1

∑

i:Si=j

PiP
T
i

ǫ2kσkWik
+Σ−1

ν

Mνj =

K
∑

k=1

∑

i:Si=j

(

Yi − ξkWik −XT
i β(τk)− ZT

i γ

ǫ2kσkWik
Zi

)

+Σ−1
ν ν0

• For a given k, posterior distribution of σk

σ−1
k |Y, ... ∼ Gamma(aσk

, bσk
)

aσk
= a+N +N/2

bσk
= b+

N
∑

i=1

(Yi −XT
i β(τk)− ZT

i γ − P T
i νSi

(τk)− ξkWik)
2/(2ǫ2kWik) +

N
∑

i=1

Wik

• Posterior distribution of W−1
ik for each i, k is inverse gaussian. The inverse gaus-

sian density with parameters (λ′, µ′)is given by

f(x) =

√

λ′

2π
x−3/2exp

(

−
λ′(x− µ′)2

2(µ′)2x

)

;x > 0

It can be seen that

W−1
ik |Y, ... ∼ Inverse gaussian(λ′, µ′)

where,

λ′ = (ξ2k + 2ǫ2k)/(σkǫk)

µ′ =

√

(ξ2k + 2ǫ2k)/
(

Yi −XT
i β(τk)− ZT

i γ − P T
i νSi

(τk)
)2

• Posterior for Σ0, Σγ and Σν

Σ−1
ν |Y, ... ∼ Wishart







D−1
ν +

s
∑

j=1

νjν
T
j





−1

, dν + s




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MCMC for Simulated Model 2

The MCMC scheme for the simulation model 2 proceeds on the same lines that of

model 1 except for a couple of changes.

Firstly, we replace the P T
i νS[i](τk) by RT

iτk
νS[i](τk), where Riτk = (1, Vi, (Vi −

η1)
+, ...., (Vi−ηD)

+), where Vi is the i
th element of the vector V = (X2×ω1+P×ω2) and

(η1, ..., ηD) are D equally spaced quantiles of the element of the vector V (essentially

the knots for the spline). Then the simulation of ν proceeds as in model 1.

Secondly, we add a step for simulating ω(τk) = (ω1(τk), ω2(τk)) for k = 1, 2, ...,K in

the lines of Karabatsos (2009) using an Adaptive Random-Walk Metropolis (ARWM)

algorithm. This uses a Metropolis-Hastings procedure with a symmetric distribution

on the unit sphere as the proposal distribution and modifies the proposal distribution

by introducing a scalar parameters λ so as to optimize the acceptance rate of the

algorithm. Hence, we also introduce the parameter λ in our sampling. Suppose ωs is

the current value. Then ω(s+1)(τk) is obtained after generating a proposal ω∗(τk) as

follows

• For each k, compute ω(τk) ∼ Nv

(

ω(s)(τk)× 2× λ(s)2, I
)

, where I is the identity

matrix of appropriate order and ω∗(τk) = ω(τk)/(ω(τk)
Tω(τk)). Denote (ω) =

(ω(τ1), ...,ω(τK)) and (ω∗) = (ω∗(τ1), ...,ω
∗(τK)).

• Compute ρ = min
(

1, L(Y|X, ...,ω∗, ...)/L(Y|X, ...,ω(s), ...)
)

, where parameters

other than ω in computing likelihood L(·) are held fixed at the values obtained

at the sth step.

• ω(s+1) = ω∗ with probability ρ and ω(s+1) = ω(s) with probability (1− ρ).

• λ(s+1) = max
(

0, λ(s) + (s+ 1)−1/2(.234 − ρ)
)

.
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MCMC for Simulated Model 3

• Recall that the model is as follows.

Data: (Cij , Zij ,Xi), i = 1, 2, .., s. j = 1, 2, .., Ti

Cij |Vi ∼ Normal(ZT
ijγ + Vi, ν2)

Q(Vi|Xi, τ) = XT
i βτ

j = 1, ..., Ti i = 1, 2, ..., s

The MCMC scheme becomes simpler when we also simulate the latent variable

Vi at every step along with the parameters βτ and γ

• Let β = (β(τ1), ....,β(τK))

• Priors

β|Σ0 ∼ Truncated N(β0, Σ0)I{β>0}

γ|Σγ∼N(γ0,Σγ)

ν2 ∼ Inverge Gamma(aν , bν)

σ−1
1 , ..., σ−1

K
iid
∼ Gamma(a, b) with densityg(s) ∝ sa−1e−bs

• The posterior for σk and Wij are obtained in the same manner as in model 1.

• Posterior distribution of β

β|C, ... ∼ N(A−1
β Mβ, A

−1
β )

Aβ = diagonal

[

s
∑

i=1

XiX
T
i

ǫ2kσkWik
, k = 1, 2..,K

]

+Σ−1
0

Mβ = column vector

[

s
∑

i=1

(

Vi − ξkWik

ǫ2kσkWik
Xi

)

, k = 1, 2..,K

]

+Σ−1
0 β0

• Posterior distribution of γ

γ|C, ... ∼ N(A−1
γ Mγ , A

−1
γ )

Aγ = ZTZ/ν2 +Σ−1
γ

Mγ = ZT (C − V ) + Σ−1
γ γ0

where the elements of the vector (C-V) are given by Cij − Vi
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• Posterior distribution of V = (V1, .., Vs)

Vi ∼ Truncated N

(

MVi

AVi
,

1

AVi

)

AVi =
Ti

ν2
+

K
∑

l=1

1

ǫ2lWilσl

MVi =

Ti
∑

j=1

Cij −XT
ijγ

ν2
+

K
∑

l=1

XT
i β + ξlWil

ǫ2lWilσl

• Posterior for ν2

ν2 ∼ Inverse Gamma



aν +

s
∑

i=1

Ti, bν +

s
∑

i=1

Ti
∑

j=1

(Cij − Vi − ZT
ijγ)

2/2




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