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Abstract

When a product, performance or service is rated or a behavioural response is sought, the

alternatives typically do not have well-defined and universally understood demarcations. In this

research, we address validity or inaccuracies in basic statistical inference based on such fuzzy

data. In particular, we focus on inference on population mean and variance of single population

as well as two population one-sample and also address the proportion problem in the paired

test framework. In the testing of hypothesis framework, both the size and power of the tests

are looked at. The results are mixed, as we observe that fuzziness of data impacts the inference

substantially in some problems, while it has virtually no impact in some other problem domain.

Keywords: fuzzy, mean, one/two sample problem, power, proportion, scale, size, testing of hy-

pothesis, variance.
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1 Introduction

Many survey data is collected in Likert scale and hence most statistical analysis that routinely

treats the data as though in interval or ratio scale could be erroneous. Part of the problem often

lies with fuzziness of the data due to scale. In [4], a quantification of fuzziness in the measurement

scale device is obtained. The natural follow-up question is how such fuzziness in data impacts the

ensuing statistical inference, and if the above quantification can help in any way of making suitable

adjustments in the statistical analysis. In the current work we pursue that study with specific focus

to inference problems involving critical but basic parameters, such as population mean, variance

and proportion. There is increasing interest in research addressing these questions and beyond,

that is statistical analysis based on fuzzy data, [see e.g. [1], [3], [4], [5], [6], among others and the

references therein], although the approaches vary greatly.

Thus, of interest is θ = θ(=), a suitable parameter of =, the distribution of X. However X is not

observable. Corresponding to n (unobservable) are i.i.d. values X1, X2, . . . , Xn from the population

=, what we observe are Y1, Y2, . . . , Yn, which are i.i.d. observations, with Yi being fuzzy form of Xi,

as prompted by the measurement scale device. In our consideration, Xi’s are typically continuously

distributed unobservable quantities, while Yi’s are in a k-point Likert scale with different models

/forms of fuzziness. The resultant fuzziness of scale has been quantified in [4] as:

Ψ =
E[V ar(X|Y )]

V ar(X)
. (1)

The role of k in the above measureis de-emphasized here, although in the computational illus-

trations we experiment with few alternative values of k.

In the three inference problems of immediate interest, the parameter is

1. θ = µ = IE(X);

2. θ = σ2 = Var (X);

3. θ = πc = IP (X1 > X2).

Of critical importance and focus is the comparison of parameters between two populations and

study the extent by which relative values of the two characteristics (mean, proportion or variance

of two variables/ population) remain unaltered in light of the fuzziness of data.

To illustrate, we take two practical examples — i) an academic institution taking students’

feedback for courses and faculty ii) a hotel management collecting customer feedback on various

kinds of services it provides. In the following we draw upon some queries in the context of students’

feedback taken in a 5 point Likert scale for courses taught in multiple sections (same course by

same/different faculty in different section) or different courses taught in the same section:

1. Is there significant evidence that a faculty (who taught both Sections A and B) performed

worse in Section A as compared to Section B?
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2. Is the variability of course rating the same between the two sections?

3. Is the true average rating received in a course at least 2.5 out of 5?

4. Do the majority of the students find the course workload to be reasonable?

Similar questions from the second contextual example pertaining to the service at reception, room

service or drawing comparison between two competing restaurants in the Hotel compund.

2 Model of Fuzziness

We consider the following two structures or models of fuzziness.

1. Model 1: The crisp model under which the relationship between Y and X is unambiguous,

even though unknown.

Y = i⇔ αi−1 < X ≤ αi, i = 1, . . . , k

where α0 = −∞, αk+1 = ∞ and the remaining αi’s are either known/ specified parameters

in the model or are unknown parameters meant to be estimated from data.

2. Model 2: This is typical fuzzy-theoretic model under which,

P (Y = i|X = x] ∝

{
1 if (i = 1 and x < 1) or (i = k and x > k)

t(x−iβ ) otherwise
;

where t(·) is a suitably chosen function, e.g. t(y) = max(0, 1 − |y|), or t(y)II|y|<1 or t(y) =

exp(−t2), and β is a model parameter to be prefixed or estimated.

Consider the following illustration of Model 1, where X y N(µx, σ
2
x). Let ai = αi−µx

σx
. Then

pi = P (Y = i) = Φ(ai)− Φ(ai−1) and E(Y ) = µy =
∑k

i=1 i× pi, the conditional distribution of X

given Y = i is the (re-scaled) Normal distribution truncated between αi−1 and αi, i.e. the part of

the unconditional distribution, and hence

E(X|Y = i) = µx + σx ×
φ(ai−1)− φ(ai)

pi
,

where φ(·) and Φ(·) respectively denote the p.d.f. and C.D.F. of the standard normal distribution.

V ar(X|Y = i) = σ2x ×
[
1 +

ai−1φ(ai−1)− aiφ(ai)

pi
− {φ(ai−1)− φ(ai)}2

p2i

]
and hence the fuzziness measure is given by

E[V ar(X|Y )]

V ar(X)
=

k∑
i=1

pi ×
[
1 +

ai−1φ(ai−1)− aiφ(ai)

pi
− {φ(ai−1)− φ(ai)}2

p2i

]
= 1−

k∑
i=1

{φ(ai−1)− φ(ai)}2

pi
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We may note that σ2y 6= V ar[E(X|Y )] and indeed σy can be bigger than σx.

Figure 1: Fuzzy measure in Model 1 example

While the choice of scale is not the focus of this paper, Figure 1 suggests that unless the

characteristics is of extreme nature, Likert scale with 5 options may suffice.

Special Model of fuzziness

For some model of fuzziness, it is possible that:

E(X|Y ) ≡ Y. (2)

This implies that the fuzziness of the scale would not have any primary (direct) impact on the basic

inference for mean, since 2) implies µx = µy.

In the context of the above inference for mean, as well as in the case of independent focus

on inference for variance, θ = σ2(=), it is important to note the role of the measure of fuzziness,

through the relation:

σ2Y = σ2X(1−Ψ) (3)

We study the complete significance of (3), in the context of inference problems for both mean

and variance.

Some examples where (2) is valid are different mixtures of symmetric distributions as model for

X (with suitable cases of Model 1 and Model 2 are given in Figure 2.
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Figure 2: Few Examples where Assumption 1 is valid

However (2) does not hold good in many situations/models, including the simple case of X

following a Normal distribution. In such cases, we study the degree of difference in the two means,

leading to validity of the approximation.

3 Inference of Mean and Variance

3.1 One Sample Mean Problem

We next look at how the mean of the observed (fuzzy) changes with the true mean under Model 1.

In Figure 3a, we have plotted the observed mean (of Y ) vs. the true mean (of X), while in Figure

3b, we have plotted the difference in means (between the observed and the true) vs. the true mean.

In both the figures, plot is drawn for the different levels of variability in the true X, namely its

standard deviation being 0.4, 0.6, 0.8 and 1.0.
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Figure 3a: Observed vs. True Mean: Model 1 with 5 point Likert Scale

Figure 3b: Difference between Observed and True Mean: Model

1

Considering other scales and Model 2, the above comparison remains essentially the same. For

example, while considering Model 2 with t(u) = max(0, 1 − |u|), and the observed values being in

6 point Likert scale, we see the following comparison between the observed and the true means.
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Figure 4: Difference between Observed and True Mean:

Model 2 with t(u) = max(0, 1− |u|), and Y in 6 point Likert Scale

We summarize these by making the following observations with respect to inference of mean

from fuzzy data:

• The error in mean is more for extreme characteristics.

• When the true mean is extreme (either low or high), the observed mean under-represents the

extremities. That is, the mean from the fuzzy data is somewhat closer to the centre than the

true mean.

• For broadly average characteristics, the difference between the observed (fuzzy) and the true

mean is very nominal.

• The difference between the observed and the true mean increases with increase in true SD.

• The above difference is not very sensitive with respect to

– the choice of scale (k), the number of options in the Likert scale;

– the model of fuzziness, i.e. the crisp or fuzzy set approach in terms of Model 1 vis--vis

Model 2;

– the choice of membership function, when Model 2 is considered.

3.2 One Sample Variance Problem

Next we turn our attention to the comparison between the true and the observed fuzzy variance;

we do this by looking at the ratio of the two under the two models considered above and sample
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diagrams are given below:

Figure 5a: Ratio of Observed to True Variance: Model 1 with k = 5

Figure 5b: Ratio of Observed to True Variance: Model 2 with k = 6

To probe further how the ratio of observed to true ratio changes with true standard deviation,

we look at Figure 6.
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Figure 6: Ratio of Observed to True Variance: how it changes with true SD

Model 1 with k = 5, true mean = 3

To summarize the observations for comparison of variance, we note:

• When the true standard deviation is below a threshold value, as per our Model 1, there is

no variability due to fuzziness in the observed Y ; even in Model 1, this is much lower. This

explains the peculiarity in the observed Figures 5a and 5b (also confirmed in Figure 6) when

the true variance is very low.

• Otherwise the observations on the error is similar to the case when the characteristic is mean

in terms of being less for central characteristics and more for the extreme ones.

• Underestimation of the true variance because of fuzziness increase with increase in true vari-

ance.

• These observations appear not to be sensitive with respect to the choice of Model 1 or 2, or

membership function or the number of options in the Likert scale.

4 Two Sample Inference

Next we turn our attention to what extent, the fuzziness of the data impacts comparison of mean

between two populations. We assume the same model of fuzziness, as would be typically reasonable

in the context given the same scale being used. Certain empirical observations can be extended

from the one-sample study. For example, we empirically noted that given Model 1 and 7 point

Likert scale being used, if σX ≤ 0.6,

2 ≤ µX ≤ 6 ⇒ |µY − µX | ≤ 0.008.
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This can now be used to conclude that

σXi =≤ 0.6, and 2 ≤ µXi ≤ 6, i = 1, 2 ⇒ ||µY1 − µY2 | − |µX1 − µX2 || ≤ 0.016.

This empirically suggests that comparison of mean based on fuzzy observations would be reasonable

unless the attributes are very extreme.

Similarly, we have noted from one-sample study that unless the true variability is really small

(or to some extent, it is really large), the ratio between observed and true variance is essentially

constant with respect to change in mean. These observations from the one-sample study may be

judiciously used to suggest that any comparison of variance, even for average attribute and having

not very small volatility, inference from fuzzy observation may be misleading, but it would be

possibly to correct it.

4.1 Two Sample Testing of Hypothesis of Mean

We now move on to more objective study and now consider Testing of hypothesis framework of 2

sample mean comparison. Thus, the objective is to answer questions like: “Is the rating in Section

1 higher on average compared to Section 2?”, and inspect the consequence of inference from fuzzy

data as opposed to (unobservable) ideal data in that context. For convenience and illustration, we

consider the large sample situation only.

Thus the objective is to test H0 : µX1 = µX2(= µ) vs. Ha : µX1 > µX2 . However, the ideal

observations Xi,j , i = 1, 2; j = 1, . . . , ni, are not observed and instead if we observe the Yi,j ’s.

Hence, while the ideal critical region at level α would have been

X̄1 − X̄2

S2
x,1

n1
+

S2
x,2

n2

> zα

in practice, one may end up using:
Ȳ1 − Ȳ2

S2
y,1

n1
+

S2
y,2

n2

> zα

where

X̄i =
1

ni

ni∑
j=1

Xi,j ; Ȳi =
1

ni

ni∑
j=1

Yi,j ; i = 1, 2; zα = Φ−1(1− α).

S2
x,i =

1

ni − 1

ni∑
j=1

(Xi,j − X̄i)
2; S2

y,i =
1

ni − 1

ni∑
j=1

(Yi,j − Ȳi)2; i = 1, 2.

As an illustration, we consider Model 1 with observations being 5 point Likert scale. Both

the actual populations are Normal with standard deviation of 0.5. Sample sizes are respectively

60 and 65. Enclosed in Table 1 are comparison of actual (using fuzzy data Y ’s) and ideal (using

non-fuzzy X’s, which are unobservable) probability of committing type I error when α=0.05, using

a simulation size of 100,000.

11



Table 1: Probability of Type I error with Ideal and fuzzy data in Model 1 example:

µ

0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

Ideal data 0.051 0.050 0.052 0.049 0.051 0.050 0.053 0.050 0.052

fuzzy data 0.051 0.049 0.052 0.050 0.051 0.052 0.053 0.051 0.051

µ

2.75 3 3.25 3.5 3.75 4 4.25 4.5

Ideal data 0.052 0.052 0.051 0.051 0.051 0.051 0.051 0.051

fuzzy data 0.052 0.051 0.052 0.049 0.052 0.050 0.051 0.049

Table 1 shows that there is hardly any impact of data fuzziness on probability of Type I error.

Also the situation does not change with the true mean.

Next we look at the impact of fuzziness on the power of the above test. Table 2 shows that the

test with fuzzy data is lot less powerful. Also what matters is the difference in µ, not the values

themselves, as we know theoretically with ideal data.

Table 2: Comparison between Actual and Ideal Power in Model 1 example:

Power of the tests when µX2 − µX1=0.25

µ

0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

Ideal data 0.874 0.876 0.875 0.873 0.874 0.876 0.876 0.874 0.875

fuzzy data 0.780 0.780 0.778 0.782 0.781 0.781 0.782 0.781 0.782

µ

2.75 3 3.25 3.5 3.75 4 4.25 4.5

Ideal data 0.874 0.875 0.872 0.873 0.873 0.874 0.875 0.872

fuzzy data 0.778 0.779 0.779 0.782 0.778 0.778 0.781 0.782

We attempt to probe deeper by bringing out how this efficiency, (power with fuzzy data as a

percentage of power with ideal data), depends on difference of means via Table 3.

Diagrammatically this is represented in Figure 7, where we have two sets of tests corresponding

to the power comparison between tests with ideal data and fuzzy, once when the true (common)

standard deviation is 0.5, and the other when it is 1.0. This suggests that although the efficiency

of the test is smaller with higher variability both with ideal as well as fuzzy data, the relative loss

of efficiency with fuzzy data is somewhat smaller in the case of higher variability.
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Table 3: Actual and Ideal Power with changing µX2 − µX1 : Equal Variance

Power with Efficiency

µX1 µX2 Ideal data fuzzy data Percentage

3 3 0.051 0.051 99.69%

3.025 3 0.087 0.082 94.07%

3.05 3 0.142 0.124 87.66%

3.075 3 0.215 0.181 84.45%

3.1 3 0.300 0.250 83.24%

3.125 3 0.401 0.332 82.68%

3.15 3 0.515 0.424 82.40%

3.175 3 0.621 0.519 83.48%

3.2 3 0.721 0.613 85.03%

3.225 3 0.808 0.702 86.92%

3.25 3 0.872 0.778 89.14%

3.275 3 0.921 0.842 91.45%

3.3 3 0.955 0.894 93.63%

3.325 3 0.977 0.932 95.35%

3.35 3 0.989 0.959 96.96%

3.375 3 0.994 0.976 98.15%

3.4 3 0.997 0.986 98.85%

3.5 3 1.000 0.999 99.92%

Figure 7: Power comparison of 2 sample Mean test:

Fuzzy data vs. Ideal data. σX1
= σX2

= 0.5 or 1
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We then explore if relaxing equal standard deviation assumption changes the observations.

Towards that we modify the above example by taking σX1 = 0.5, and σX2 = 0.75. The power

comparisons are given in the following Table 4.

Table 4: Actual and Ideal Power with changing µX2 − µX1 : Unequal Variance

Power with Efficiency

µX1 µX2 Ideal data fuzzy data Percentage

3 3 0.051 0.051 99.71%

3.025 3 0.078 0.075 96.65%

3.05 3 0.119 0.110 92.49%

3.075 3 0.164 0.147 90.02%

3.1 3 0.228 0.201 88.31%

3.125 3 0.296 0.260 87.90%

3.15 3 0.376 0.330 87.59%

3.175 3 0.465 0.403 86.66%

3.2 3 0.548 0.479 87.52%

3.225 3 0.634 0.560 88.30%

3.25 3 0.714 0.638 89.29%

3.275 3 0.782 0.709 90.62%

3.3 3 0.842 0.773 91.86%

3.325 3 0.888 0.827 93.11%

3.35 3 0.925 0.874 94.56%

3.375 3 0.951 0.911 95.79%

3.4 3 0.970 0.939 96.85%

We conclude this subsection with a summary of observations in the two sample testing of

hypothesis of mean. Fuzzy data does make much of an impact on the Type I error, at least in the

large sample case. However, the power of the test is reduced with fuzzy data. Higher variability

leads to less power, however the inference from fuzzy data is closer to the case with full data. In this

context, it does not matter so much whether the true variability of the variables being compared

are equal or not. There is a need further extension of the conclusions in light of changing sample

size and robustness of the population.

4.2 Two Sample Variance Problem

Next we move on to two sample Variance Comparison. That is, we attempt to look at impact of

fuzziness in responses to queries like: “Is the variability of rating in Section 1 significantly higher

as compared to Section 2?”

The framework is similar to that in the two-sample variance problem — we now focus on testing
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H0 : σX1 = σX2 vs. Ha : σX1 > σX2 . The critical region for a test of size α with ideal data is:

S2
x,1

S2
x,2

> fn1−1,n2−1,α,

while with fuzzy data, we have to use:

S2
y,1

S2
y,2

> fn1−1,n2−1,α.

The size or actual probability of committing Type I error of the F-tests with fuzzy data for

the intended tests of size α=0.01, 0.025, 0.05 and 0.1 is depicted in Figure 8 for varying values of

σ (= σX1 = σX2). [With ideal data, naturally, there is no difference between intended and actual

size.]

Figure 8: Actual size of F test in two sample variance with fuzzy data

Next we compare the power of test using fuzzy data vis-a-vis ideal data in Table 5a and 5b.

Table 5a: Power of the F test in two sample variance TOH with ideal data

α k =
σX1
σX2

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.01 0.056 0.181 0.388 0.615 0.795 0.907 0.964 0.988 0.996 0.999

0.025 0.112 0.294 0.532 0.746 0.885 0.955 0.984 0.995 0.999 1.000

0.05 0.185 0.413 0.655 0.835 0.933 0.978 0.993 0.998 1.000 1.000

0.1 0.294 0.558 0.776 0.910 0.969 0.991 0.998 0.999 1.000 1.000
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Table 5b: Power of the F test in two sample variance TOH with fuzzy data

α k =
σX1
σX2

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.01 0.046 0.141 0.310 0.512 0.704 0.846 0.927 0.970 0.988 0.996

0.025 0.095 0.240 0.447 0.659 0.818 0.917 0.966 0.987 0.996 0.999

0.05 0.162 0.351 0.577 0.765 0.889 0.956 0.984 0.995 0.999 0.999

0.1 0.263 0.494 0.708 0.862 0.944 0.979 0.993 0.998 0.999 1.000

In Figure 9, we present comparison of powers, between tests with ideal data and fuzzy data, for

four sizes, namely with the Type of error α being 1%, 2.5%, 5%, and 10%.

Figure 9: Power of F tests in two sample variance TOH:

with ideal data and fuzzy data – for different sizes α

To summarize the case of testing of hypothesis in the two sample variance problem, we note

that the Type I error using fuzzy data is grossly under-represented, if the true variabilities are

very small. Of course, this is intuitively as well as theoretically justified. However, the inference

is reliable, if true variabilities are large (not so small). Power of the test using fuzzy data is less,

with the difference getting accentuated with relative increase in alternate variability, before finally

the two functions eventually merge (naturally, as they have to).

4.3 Paired Comparison of Proportion: Sign Test of Proportion

In this section, we inspect the impact of fuzziness on the sign test — namely, the paired comparison

of proportion. So for example, the relevant queries are: “Is the proportion of time Instructor 1

getting higher rating than Instruction 2 significantly higher than the other way round?” The rating
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(as usual in the Likert scale) are given by the same set of students, which is the basis of the paired

comparison. Thus, we wish to test

H0 : P (X1 > X2) = P (X1 < X2) vs. Ha : P (X1 > X2) > P (X1 < X2).

The random variables are paired, i.e. the observations are (Y1,i, Y2,i), i = 1, . . . , n which are

fuzzy versions of ideal observations (X1,i, X2,i), i = 1, . . . , n. Let f1x and f1y respectively denote the

number of X-pairs and Y -pairs, where the first element is higher, and similarly we define f2x and

f2y i.e.

f1x =

n∑
i=1

II{X1,i>X2,i}; f
2
x =

n∑
i=1

II{X1,i<X2,i}; f1y =

n∑
i=1

II{Y1,i>Y2,i}; f
2
y =

n∑
i=1

II{Y1,i<Y2,i}.

We also denote:

nx = f1x + f2x , px =
f1x
nx

; ny = f1y + f2y , py =
f1y
ny

;

noting that nx and ny can be different (and less than n) because of ties. For large n (consequently

large nx or ny) The critical region for a test of size α with ideal data is:

px − 0.5√
0.5×0.5
nx

=
√
nx(2px − 1) > z1−α,

while with fuzzy data, we have to use:

√
ny(2py − 1) > z1−α.

First we look at impact of fuzziness on the size of test. For initial exploration, we consider Model

1 with 5-point Likert scale observations while the true standard deviations are 0.5 and sample size

is 75. The comparison in terms of size (α) of the test is given in Table 6a below:

Table 6a: Comparison of size of Paired tests: Fuzzy data with ideal data

α=0.05 α=0.01

µ ideal data fuzzy data ideal data fuzzy data

0.5 0.051 0.050 0.010 0.009

1.5 0.053 0.051 0.009 0.010

2.5 0.053 0.049 0.010 0.010

3.5 0.052 0.049 0.010 0.010

4.5 0.054 0.049 0.010 0.010

Since the initial simulation suggests almost no less efficiency using the fuzzy data and in fact for

α = 0.05, it seems to be working better than even ideal data, we explore in greater depth, including

expanding the scope by changing standard deviations and considering two sample sizes, names 75

and 200. The results are given in Tables 6b and 6c.
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Table 6b: Comparison of size of Paired tests: sample size =75

P(type I error with actual data X’s) P(type I error with fuzzy data Y ’s)

n = 75 σX1 = σX2 = σ σX1 = σX2 = σ

α 0.4 0.6 0.8 1 0.4 0.6 0.8 1

0.01 0.010 0.010 0.010 0.010 0.009 0.010 0.010 0.010

0.025 0.032 0.032 0.034 0.033 0.026 0.024 0.026 0.025

0.05 0.053 0.053 0.052 0.053 0.049 0.048 0.049 0.050

0.1 0.082 0.082 0.082 0.084 0.098 0.101 0.103 0.101

Table 6c: Comparison of size of Paired tests: sample size =200

P(type I error with actual data X’s) P(type I error with fuzzy data Y ’s)

n = 200 σX1 = σX2 = σ σX1 = σX2 = σ

α 0.4 0.6 0.8 1 0.4 0.6 0.8 1

0.01 0.009 0.010 0.009 0.009 0.010 0.010 0.009 0.010

0.025 0.029 0.028 0.028 0.028 0.025 0.024 0.024 0.025

0.05 0.053 0.051 0.052 0.051 0.050 0.049 0.050 0.048

0.1 0.091 0.089 0.090 0.091 0.102 0.100 0.099 0.101

Next we compare the power of the paired test through Table 7.

Table 7: Comparison of power of the Paired test: Fuzzy data vs. Ideal data

Diff. in mean ideal data fuzzy data percentage

0 0.052 0.051 98.23%

0.025 0.086 0.083 96.12%

0.05 0.128 0.126 98.50%

0.075 0.188 0.185 98.48%

0.1 0.263 0.261 99.07%

0.125 0.346 0.350 101.17%

0.15 0.441 0.447 101.43%

0.175 0.537 0.548 102.07%

0.2 0.629 0.647 102.77%

0.225 0.714 0.734 102.82%

0.25 0.792 0.810 102.34%

0.275 0.854 0.869 101.83%

0.3 0.901 0.916 101.56%

0.325 0.939 0.951 101.25%

0.35 0.962 0.970 100.83%

0.375 0.978 0.983 100.56%

0.4 0.988 0.991 100.28%
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In summary, fuzziness does not hurt the paired Sign test. The observed (actual) Type I error,

as obtained from fuzzy data is as good as that from the ideal data. Even the power of the test with

fuzzy data is comparable with that with ideal data or even sometimes better. Of course a much

more extensive study is in order to investigate this finding which is somewhat puzzling.

5 Future Directions

In this preliminary work, the accuracies in basic statistical inferences involving mean, variances

and proportion, for single and two populations, have been investigated under few models and also

on the basis of certain simulation studies. Naturally there is a need and scope to broaden the

framework before more general conclusions can be arrived. Also it is necessary to move beyond not

only to multiple populations studies, e.g. in ANOVA, but also to multivariate analysis like principal

component analysis, cluster analysis etc. these are planned to be taken up in future.
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