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Abstract

In this article we explore the testing of non-inferiority and equivalence hypotheses

arising from multiple centers when the assumption of normality is violated. In a multi-

center study, the trials are typically conducted at different centers which vary in terms

of location, environment, demographics among others, leading to substantial amount of

heterogeneity in the patient population. This unexplained variation in a multi-center

clinical study is usually modeled using a random effects model, where the centers are

assumed to be a random sample from the population of centers. Most research in this

direction uses a parametric normal distribution which can be restrictive and may lead

to biased result if the actual distribution is nonnormal. In this article, we overcome this

parametric assumption by considering a broader class of random effects distribution

for the centers. In particular, we develop a novel nested Dirichlet process (nDP) model

to explore the sensitivity of the fixed treatment effects under various hypotheses, in

the presence of nonnormality. Additional advantage of our proposed method is that

it facilitates a hierarchical clustering structure. At one hand it clusters the centers

according to their effects, and hence outlying centers can be identified. Simultaneously,

subjects from the clustered centers are again clustered together enabling a borrowing

of information across similar centers. Further, we present the methodology to test

between the models with nDP versus a normal random center effects models. We

discuss the results of our proposed methodology in a real example of a multi-center

clinical trial on Scleroderma lung study. The results of the analysis along with the

extensive simulation study show the advantage of our method when the center effects

distribution is not normal.

Keywords: treatment effect; nested Dirichlet process; multi-center; Scleroderma lung

study;
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1 Introduction

A common goal in clinical trial is to compare several treatments conducted quite often at dif-

ferent centers. Generally, multi-center trials are designed with the objective of demonstrating

an overall treatment effect from the combined contributions of all centers. Multi-center trials

are thus very common in the field of drug development. The ICH E9 (1998) guidance outlines

two main reason for the popularity of multi-center trials. First, it helps to enroll required

number of patients in a time bound fashion. Second, multi-center trials provide a better basis

for the generalization of the findings as it represents a broader class of patient populations.

As noted by Freeman (1998) multi-center trials consist of many sources of variability due to

various factors, viz, location, environment, demographics, etc. Due to this heterogeneity in

multi-center trials there are two major sources of variation in treatment response that can

be accounted for (Anello et al., 2005): the variation within and between centers. To account

for these variability several researchers assumed a random center effects model to capture

the heterogeneity inherent among different centers. Traditionally, a parametric normal dis-

tribution are assumed for these random center effects. Since the particular distributions

of these latent effect measures can have an impact on conclusions of the trial, routine use

of normal distribution would be rather a strong assumption (Higgins et al., 2009). In this

article, we review and illustrate the danger of using a normal distribution in the absence of

proper justification. To protect the model from distributional misspecifications, we develop

a broader class of flexible nonparametric distribution using the recently developed nested

Dirichlet Process (nDP; Rodŕıguez et al., 2008).

There has been a wide amount of literature of the mixed model approach to multi-center

clinical trials with fixed treatment effects and random center effects. See Patel (2002) for

a review. Some other work in a similar direction are in Khatri and Patel (1992), Rashid

(2003), Thompson (1994) and Gould (2005). Most of the existing methods assumes a normal

distribution. While this rather strong assumption makes the model easy to apply in widely

used softwares such as SAS, the accuracy of this assumptions is difficult to check and the

routine use of normality in mixed model is routinely questioned by many authors (Rashid,

2003; Ohlssen et al., 2007; Branscum et al., 2008; Higgins et al., 2009). Normality assump-
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tion is too restrictive as it suffers from the lack of robustness particularly when the effects

across centers show multi-modality and/or skewness, and thus may not provide an accurate

estimation of between–center variation. Furthermore, inference on individual center effects

can be misleading when the random center effects distribution deviates from normality. The

ICH E9 addresses the issue and possible effects of having outliers in multi-center trials. Thus,

it is of practical interest to develop statistical model with considerable flexibility in the dis-

tributional assumptions of the random effects as well as measurement error. Rashid (2003)

developed a rank-based procedure for testing a non-inferiority and equivalence hypothesis for

multi-center trials using mixed model. The R estimates are obtained by minimizing a sum

of Jackel (1972) type dispersion functions based on intra-center ranks of residuals. However,

this method has too much reliance on the central limit theorem and thus may not be realistic

when there are fewer studies. Recently Lee and Thompson (2007) used a skewed distribution

to reduce the effects of outlying centers, and a mixture distribution have been advocated to

account for studies belonging to unknown groupings (Bohning, 2000). Although the use of

a heavier-tailed distribution such as t-distribution provides some robustness, it may not be

sufficient to represent the actual distribution of effects. For example, even a heavy-tailed

distribution, such as the t, has a unimodal and a symmetric shape and restrictive in the

sense that it fails to allow multi-modality, which may arise due to latent sub-populations.

Bayesian semiparametric approach offers a useful alternative in this direction. There have

been few work (Burr et al., 2003; Burr and Doss, 2005; Ohlssen, et al., 2007) on using a

Dirichlet process (DP) prior in a multi-center clinical trials. A Dirichlet process consists

of a control parameter and a baseline distribution which can be normal. A discrete mass

points are drawn from this baseline distribution and how close the discrete distribution is to

the baseline depends on the value of the control parameter. Thus the fitted random effects

distribution using DP is flexible enough and has the potential to be robust to departures

from a normal distribution while having good performance if the actual distribution is nor-

mal. Recently, Branscum et al. (2007) developed a Pólya tree method in a meta-analytic

framework.

We consider a broader class of random effects distribution for the centers. In particular,

we develop a novel nested Dirichlet process (nDP) model to explore the sensitivity of the
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fixed treatment effects under various hypotheses, in the presence of non-normality. Addi-

tional advantage of our proposed method is that it allows a hierarchical clustering structure,

whereby the centers clusters according to similarity of their effects, and hence outlying cen-

ters can be identified, and at the same time subjects from the clustered centers are also

cluster borrowing information from similar centers. Further, we present the methodology

to test nDP model versus a normal random center effects model. As mentioned, although

semiparametric Bayesian models have been previously used in multi-center clinical trial data,

to our knowledge this is the first systematic attempt to use the nDP for this kind of mixed

model.

1.1 Motivating Data: Scleroderma Lung study

Our method is primarily motivated by the Scleroderma lung study (Tashkin et al., 2006),

which is a double blinded, randomized clinical trial. The aim of the trial was to evaluate

effectiveness of oral cyclophosphamide (CYC) versus placebo in the treatment of lung disease

due to scleroderma. Scleroderma is an autoimmune connective-tissue disorder that is charac-

terized by microvascular injury, excessive fibrosis of the skin, and distinctive visceral changes

that can involve the lungs, heart, kidneys, and gastrointestinal tract. A number of agents

have been evaluated as treatments for scleroderma-related interstitial lung disease, but none

have been proven effective. Only CYC has shown promise in slowing down the decrease or

even improve the forced vital capacity (FVC) over time. In this study our primary outcome

is forced vital capacity (FVC), as percentage predicted) determined a 3-month intervals from

baseline. At 13 clinical centers throughout the United States, the study enrolled 158 patients

with scleroderma, restrictive lung physiology, dyspnea, and evidence of inflammatory inter-

stitial lung disease on examination of bronchoalveolar-lavage fluid, thoracic high resolution

computed tomography, or both. Patients received oral CYC (≤ 2 mg per kilogram of body

weight per day) or matching placebo for one year and were followed for an additional one

year. Pulmonary function was assessed in every three months.

We are interested in evaluating whether oral CYC can either improve %FVC scores.

The study enrolled 158 patients with scleroderma-related interstitial lung disease, who were

randomized to receive either CYC (2mg/kg) or identical-appearing placebo for 18 months.
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Since the study was conducted across 13 centers, it is important to assess the treatment effect

when adjusted for the random center effects. Thus, in this paper we develop a model to test

the effectiveness of the treatment CYC over placebo and assume a nDP for the random

center effects. One of the scientific interest is to find the centers whose patients populations

behave similarly. Out of the 153 patients, 145 completed at least six months of treatment

and were included in the analysis.

The rest of the paper is organized as follows. In Section 2, we present the basic model,

normal random center effects, the nDP preliminaries and state the hypothesis of interest.

Section 3, gives the nDP model as a generalization of the basic random effects model, and

Section 4 gives the posterior distributions of the parameters. Section 4 describes the simu-

lation study and Section 5 described the analysis of the data from Scleroderma Lung Study.

Section 6 have the discussion.

2 Background

2.1 Basic Model

In the following we describe the basic model with the existing normality assumption to put

our new model in perspective. Let Yijt be the response of the i-th subject from j-th center

under t-th treatment; i = (1, 2, · · · , nj), j = (1, 2, · · · , C), t = (1, 2, · · · , T ). Rashid et

al. (2003) assume the following normal random center effects model (without covariate) for

multi-center clinical trials:

Yijt = θt + βj + eijt (1)

where θt is the fixed t-th treatment effect, βj is the j-th center effect, γ = (γ1, . . . , γr)
⊤

is a r × 1 dimensional vector of coefficients associated with r × 1 dimensional vector of

covariates wij = (wij1, wij2, . . . , wijr)
⊤ and eijt are the random measurement errors. The

basic assumptions in (1) is that the random center effects and the errors are independent,

and are both normally distributed with zero means.

Although in model (1), the basic assumption of the random center effects is Gaussian,

as we discussed this assumption is questionable and inference can be biased under possible
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misspecification of this normality assumption. Thus, the problem we address in this article

is to broaden the class of distribution of the random center effects. In particular, we assume

that the center effects come from some unspecified distributions. This allows more flexibility

and robustness in the modeling of the observations from different centers when they do

not seem to have come from a common distribution, but may have come from a mixture

of normal distributions, a distribution with heavier tails, or from some other distributions

which cannot be easily specified. Use of nDP is a robust generalization as it has the potential

to capture these departures from a normal distribution while having good performance if the

actual distribution is normal.

Based on the above model (1) an important question is to assess the efficacy of the

treatment effect by pooling the data across the centers. There are some comments in this

regard in the ICH E9 guidance (1999) which is described in detail and Annello et al. (2005).

Based on these documents, there are two main categories of hypotheses in assessing treatment

efficacy: one is testing equivalence between treatments, where the null hypothesis is that the

difference between the active comparator and new drug is within a pre-specified limit; while

the other one is testing for non-inferiority where the aim is to show that the new drug is not

less effective than the control by more than a defined margin.

Although not exhaustive, we list the following three potential hypotheses:

a) H0 : θ1 = θ2 = · · · = θT = 0 ⇒ Equality

This is a general hypothesis in multi-center trials. Accepting H0 in this hypothesis

implies that there is no significant treatment effect in the study and thus treatments

are not heterogeneous.

b) H0t : −∆ < θt − θt′ < ∆ ⇒ Equivalence

This hypothesis assesses the equivalence of any two treatment (including placebo)

within a given range.

c) H0t : θt ≤ θt+1 −∆0 ⇒ Non-inferiority

Accepting this hypothesis demonstrates a new treatment is not worse than an active

control by more than a specified margin.
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2.2 The nested Dirichlet process

Since Ferguson (1973) described the Dirichlet process (DP) as a random probability measure

that can be viewed as a distribution on distributions, use of DP has become popular in the

literature of nonparametric Bayes estimation (see, for example, Antoniak 1974; Lo 1978,

1984; Escobar 1988, 1994; Escobar and West 1995, Ghosh et al., 2009). Let DP(αH) denote a

DP with base measureH and precision α > 0. ReplacingH by another DP, Rodŕıguez (2007)

and Rodŕıguez et al. (2008) introduced the nested Dirichlet process (nDP), which, from a

similar perspective, can be characterized as a distribution on the space of distributions on

distributions. The nDP provides a framework to model collections of dependent distributions

utilizing clustering features of the DP. A collection {Fj, j = 1, . . . , C} of distributions on any

complete and separable metric space Θ such that Fj ∼ Q withQ ≡ DP(αDP(ρH)), for α, ρ > 0

and H being a probability measure on Θ, is said to follow a nDP. Write {F1, . . . , FC} ∼

nDP(α, ρ,H). The stick-breaking characterization of the DP (Sethuraman 1994; Sethuraman

and Tiwari 1982) implies that

Fj(·) ∼ Q ≡
∞∑
k=1

π∗
kδF ∗

k (·) (2)

and

F ∗
k (·) ≡

∞∑
l=1

ω∗
lkδβ∗

lk
(·), (3)

where β∗
lk

iid∼ H,

ω∗
lk = u∗

lk

l−1∏
s=1

(1− u∗
sk), u∗

lk ∼ beta(1, ρ)

and

π∗
k = v∗k

k−1∏
s=1

(1− v∗s), v∗k ∼ beta(1, α),

with beta(a, b) representing a beta probability distribution with parameters a and b on

the (0, 1) interval. The nDP naturally induces clustering in the space of distributions as a

consequence of the almost surely discreteness feature of Q, illustrated by (2). Specifically,

there is a non-zero probability P(Fj = Fj′ |H) = 1/(1 + α) that two distributions Fj and

Fj′ follow the same random distribution F ∗
k defined by (3). Furthermore, the nDP enables

clustering between samples from the distributions in the collection. That is, samples from
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one single Fj, or from Fj and Fj′ , j ̸= j′, are correlated, and possibly identical. As F ∗
k

is almost surely discrete as defined in (3), samples βij and βi′j from Fj may be identical

to some β∗
lk if Fj = F ∗

k , while the correlation is given by corr(βij, βi′j) = 1/(1 + ρ). In

analogy, respective samples βij and βi′j′ from two different distributions Fj and Fj′ , j ̸= j′,

may be identical to some β∗
lk if Fj = Fj′ = F ∗

k , while the correlation can be shown to

be corr(βij, βi′j′) = 1/[(1 + α)(1 + ρ)], which is always less than the correlation 1/(1 + ρ)

between two samples from the same Fj. See more discussion on nDP in Rodŕıguez (2007)

and Rodŕıguez et al. (2008).

3 nDP Model and Methods

Here we generalize the model as described in (1) with covariates and use nDP to better

model the heterogeneity among centers. We assume that

Yijt = θt + βij +w⊤
ijγ + eijt, (4)

where βij denotes the effect of the i-th subject at the j-th center, thus allowing for a nested

subject effect, and eijt
iid∼ N(0, τ−1). Generalizing the normality assumption for the center

effects in (1), we assume that

(βij|Fj)
ind∼ Fj, j = 1, . . . , C, i = 1, . . . , nj, (5)

({F1, · · · , FC}|α, ρ,H) ∼ nDP(α, ρ,H), with H = N(0, σ2
β). (6)

This formulation for the center effects has the following interpretations:

(i) (Heteroscedasticity) Different subjects i in different centers j may be influenced by

different center effects.

(ii) (Exchangeability) For different subject i in the same center j, the center effects βij are

independent and identically distributed for all treatments t = 1, . . . , T .

(iii) Centers are clustered according to their effects on the response, and hence, outlying

centers can be identified.
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(iv) Simultaneously, subjects from similar centers are clustered together according to the

effects attributed by centers. That is, being clustered together this allows borrowing

information across centers that are similar.

We assumed standard choices for the prior distributions. Hence, given the covariates

(w11, . . . ,wn11, . . . ,w1C , . . . ,wnCC), the observed dataY = (Y11t, . . . , Yn11t, . . . , Y1Ct, . . . , YnCCt)

are assumed to satisfy the following hierarchical model hereafter referred to as the nDP model.

(Yijt|θt, βij,γ, τ)
ind∼ N(θt + βij +w⊤

ijγ, τ
−1), j = 1, . . . , C, i = 1, . . . , nj,

θt
iid∼ N(0, σ2

θ), t = 1, . . . , T,

(βij|Fj)
iid∼ Fj, i = 1, . . . , nj

({F1, · · · , FC}|α, ρ,H) ∼ nDP(α, ρ,H) with H = N(0, σ2
β),

α ∼ gamma(aα, bα),

ρ ∼ gamma(aρ, bρ),

γ ∼ MNr(0,Σγ),

τ ∼ gamma(aτ , bτ ),

(7)

where σθ, σβ, aα, bα, aρ, bρ, aτ , bτ are fixed positive constants, and Σγ is a known r×r variance-

covariance matrix MNr(0,Σγ) represents an r-variate normal distribution with zero mean

vector and covariance matrix Σγ , and gamma(a, b) denotes a gamma distribution with shape

parameter a and scale parameter b such that its mean is a/b.

As a consequence of the unique characterization of a DP in terms of the Pólya urn

distribution of Blackwell and MacQueen (1983) the posterior distribution of the above nDP

model can be represented in the form of a hierarchy of two layers, in which there is a Pólya

urn distribution in each layer and the Pólya urn distribution at the top layer depends on that

at the bottom layer. Though there exist explicit expressions for the two Pólya urns, handling

of two such nested Pólya urns turns out to be quite cumbersome due to their complicated

dependence structure, resulting in extreme difficulties implementing the Pólya urn Gibbs

sampler in Escobar (1988, 1994), which is one of the most popular Markov chain Monte

Carlo method for sampling from the posteriors in nonparametric models involving DP, for

computations of posterior quantities in this model. For the explicit expressions of the Pólya

urns for a nDP, one may refer to Rodŕıguez (2007).
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4 Posteriors

Following Rodŕıguez (2007) and Rodŕıguez et al. (2008), we replace the stick-breaking rep-

resentations of the DP priors for both Fj and F ∗
k given in (2) and (3) by their almost sure

truncation approximations which are finite sums of K and L elements, respectively. That is,

Fj(·) ≈
K∑
k=1

π∗
kδF ∗

k (·), (8)

where π∗
k = v∗k

∏k−1
s=1(1 − v∗s) with v∗k ∼ beta(1, α), for k = 1, . . . , K − 1, and v∗K = 1, and,

for k = 1, . . . , K,

F ∗
k (·) ≈

L∑
l=1

ω∗
lkδβ∗

lk
(·), (9)

where β∗
lk

iid∼ H, ω∗
lk = u∗

lk

∏l−1
s=1(1 − u∗

sk) with u∗
lk ∼ beta(1, ρ), for l = 1, . . . , L − 1, and

u∗
Lk = 1. Write π∗ = (π∗

1, . . . , π
∗
K), ω∗ = (ω∗

11, . . . , ω
∗
L1, . . . , ω

∗
1K , . . . , ω

∗
LK), and β∗ =

(β∗
11, . . . , β

∗
L1, . . . , β

∗
1K , . . . , β

∗
LK).

The finite dimensionalities of (8) and (9) allow us to express the Bayesian semiparametric

model (7) entirely in terms of a finite number of random variables. Because of the nature

of their prior distributions, these random variables can be drawn from some standard multi-

variate distributions. We assign them into the following four groups or blocks of parameters,

namely, (ζ, ξ,π∗,ω∗,β∗, α, ρ), γ, τ , and (θ1, . . . , θT ), where ζ and ξ are two vectors of clas-

sification variables describing clustering behavior of the center effects defined as follows. Let

ζ = (ζ1, . . . , ζC) denote a classification vector describing the center effects by setting ζj = k,

for k = 1, . . . , K, if and only if the center effect for the j-th center, for j = 1, . . . , C, βij

is distributed as Fj = F ∗
k . Furthermore, define classification variables ξij, for j = 1, . . . , C

and i = 1, . . . , nj, and set ξij = l, for l = 1, . . . , L, if and only if the center effect for the

observation Yijt is given by βij = β∗
lζj
. As shown below, the knowledge of these two vectors

of classification variables provide an equivalent expression of the likelihood of the observed

data. According to model (7), the likelihood of the observed response Yijt = yijt from the

i-th subject, receiving t-th treatment in j-th center, which is associated with a covariate

vector wij, is denoted by

f(yijt|θt, βij,γ, τ,wij) =

√
τ

2π
exp

[
−τ

2
(yijt − θt − βij −w⊤

ijγ)
2
]
. (10)
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It can be equivalently expressed as

f(yijt|θt, β∗
ξij ,ζj

,γ, τ,wij) =

√
τ

2π
exp

[
−τ

2
(yijt − θt − β∗

ξij ,ζj
−w⊤

ijγ)
2
]
. (11)

Generalizing the idea of the blocked Gibbs algorithm of Ishwaran and James (2001), based

on this equivalence relation of the likelihood, an iterative algorithm (discussed in Appendix)

cycling through four steps, in which each step draws one of the four desirable blocks of

parameters conditioning on all the other variables, can be derived for sampling random

variates of the four blocks of parameters from their joint posterior distribution for evaluating

posterior estimates of any quantity of interest in the problem.

Implementation of the iterative algorithm for M , some large number, cycles results in a

Markov chain of realizations of the four blocks of parameters. Suppose that a Markov se-

quence (θ
(1)
1 , . . . , θ

(1)
T ), . . . , (θ

(M)
1 , . . . , θ

(M)
T ) is generated for the treatment effects (θ1, . . . , θT ).

The posterior probabilities for different hypotheses about any relationship between the treat-

ments, equality, equivalence, or non-inferiority, can be approximated by sample probabilities

of the events of interest obtained from the posterior samples. For instance, the probabil-

ity of equivalence of any two treatment P(−∆ < θt − θt′ < ∆), for some small ∆ > 0, is

approximated by

1

M

M∑
i=1

I{−∆<θ
(i)
t −θ

(i)

t′ <∆},

and the probability of non-inferiority of the t′-th treatment effect θt′ to the t-th treatment

effect θt, denoted by P(θt ≤ θt′ −∆), is approximated by

1

M

M∑
i=1

I{(θ(i)t ≤θ
(i)

t′ −∆)}.

For purpose of investigation of accuracy in the estimation or drawing prediction of any

new observation, one can make use of density estimates of any observation y associated with

t-th treatment in the j-th center and covariate vector w, that are in general computed as

1

M

M∑
k=1

f
(k)
t (y|w), (12)

where f
(k)
t is defined as in (10) according to posterior samples of the unknown parameters in

the k-th iteration, denoted by θ
(k)
t , β

(k)
ij ,γ(k), and τ (k), for subjects associated with the t-th
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treatment from the same center j. In particular, for the nDP model, suppose that in the

k-iteration, {β∗
ξ
(k)
ij ,ζ

(k)
j

}(k) denotes the posterior draw of the center effect βij for the i-th ob-

servation in the j-th center according to classification variables ξ
(k)
ij and ζ

(k)
j in the same

iteration, f
(k)
t (y|w) is given by

1

Nj(t)

√
τ (k)

2π

nj∑
i=1

exp

{
−τ (k)

2

(
y − θ

(k)
t − {β∗

ξ
(k)
ij ,ζ

(k)
j

}(k) −w⊤γ(k)

)2
}
I{At(i,j)},

where I{At(i,j)} is an indicator function for the event that the i-th observation in j-th center

is associated with t-th treatment, and Nj(t) ≡
∑nj

i=1 I{At(i,j)} ≤ nj is the total number of

observations associated with t-th treatment among all nj observations in j-th center. For

the normal model, β
(k)
ij for all i = 1, . . . , nj are identical, say, denoted by β

(k)
j , then f

(k)
t (y|w)

equals

1

Nj(t)

√
τ (k)

2π

nj∑
i=1

exp

{
−τ (k)

2
(y − θ

(k)
t − β

(k)
j −w⊤γ(k))2

}
I{At(i,j)},

which reduces to f(y|θ(k)t , β
(k)
j ,γ(k), τ (k),w) as the summand is constant for any i and the

total number of summands equals Nj(t).

4.1 Model Comparison

To our knowledge, the random effects model (7) is the only direct generalization of the

normal/Gaussian model considered in the literature, defined as in (1), using nDP. Thus,

it is important to formally test the utility of nDP over simple normal model. However,

developing a formal Bayes factor for this purpose can be tough as in general, it is difficult to

compute a Bayes factor in any Bayesian nonparametric mixture model involving DP since

exact evaluation of the marginal likelihood/density of the observations requires performing

a multi-fold integration with respect to the Pólya urn distribution or calculation of a finite

sum with total number of summands roughly of magnitude of the Bell’s number. Basu and

Chib (2003) proposed a non-iterative algorithm based on the collapsed sequential importance

sampler developed in MacEachern et al. (1999), which is also discussed in the context of

weighted Chinese restaurant processes by Lo et al. (1996), to approximate the latter sum.

See also Hayakawa et al. (2002) who applied the same algorithm to evaluate a Bayes factor

in Bayesian mixture hazard models involving gamma and weighted gamma processes. To

13



the best of our knowledge, no one has proposed any iterative algorithm for these proposes.

Furthermore, since an extension of such an non-iterative algorithm for posterior inference

of models involving nDP is not available yet, it is practically impossible to approximate the

marginal likelihood of the nDP model (7), and thus, in turn, to evaluate a Bayes factor in

the model.

However, the Bayes factor has several other potential problems (Gelfand and Dey, 1994),

the most significant being numerical instability. Therefore we consider an alternative predic-

tive measure of model performance, introduced by Geisser and Eddy (1979) as a predictive

criterion termed the log pseudo marginal likelihood (LPML). LPML has been used exten-

sively in problems of Bayesian model selection (see, for example, Chen et al. 2000, Chapter

10; Brown and Ibrahim 2003, Ghosh et al. 2009) as a useful summary statistic for comparing

model fits. Models with greater LPML values represent a better fit. The LPML is defined

based on estimates of the conditional predictive ordinate (CPO; Gelfand et al. 1992; Chen

et al. 2000) for all observations

LPML =
C∑

j=1

nj∑
i=1

log
(
ĈPOij

)
, (13)

where

ĈPOij =

[
1

M

M∑
k=1

1

f(yijt|θ(k)t , β
(k)
ij ,γ(k), τ (k),wij)

]−1

,

with f defined in (10), is the estimate of the CPO for the i-th observation from j-th center.

Specifically, for the nDP model,

ĈPO
nDP

ij =

 1

M

M∑
k=1

1

f(yijt|θ(k)t , {β∗
ξ
(k)
ij ,ζ

(k)
j

}(k),γ(k), τ (k),wij)


−1

=
M√
2π

[
M∑
k=1

1√
τ (k)

exp

{
τ (k)

2
(yijt − θ

(k)
t − {β∗

ξ
(k)
ij ,ζ

(k)
j

}(k) −w⊤
ijγ

(k))2
}]−1

.

For the normal model, it takes the same form as ĈPO
nDP

ij with {β∗
ξ
(k)
ij ,ζ

(k)
j

}(k) replaced by β
(k)
j .
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5 Simulation Study

In this section, we present numerical examples designed to demonstrate the ability of the

nDP model in providing accurate estimates for all of the fixed treatment effects, the random

center effects, and the covariate effects. Simulation results based on the nDP model are

obtained by implementing the introduced iterative algorithm with truncation levels in (8)

and (9) set as K = 35 and L = 55, respectively. Posterior estimates of parameters and

other quantities of interest are computed based on M = 10, 000 samples taken from the

Markov chain once every 5 iterations after discarding 50000 burn-in samples. Hyperprior

parameters in (7) are set as follows unless otherwise stated: To deflate the priors, we set

σθ = σβ = σγ = 100, and aτ = bτ = 0.001. Furthermore, we set aα = bα = aρ = bρ = 3,

implying that E(α) = E(ρ) = 1, which is a common choice in the literature, and P (α >

3) = P (ρ > 3) ≈ 0.006.

5.1 Simulated Data

Six different sets of simulated data are generated according to (4) based on the following

set-up. There are T = 2 different treatments with known effects θ1 = −θ2, 4 different centers

with random effects βij distributed according to different mixtures of known distributions,

and the error term eijt follows a normal, or a Student’s t distribution, or their mixtures.

Except the last dataset, the number of independent observations from each center is given

by nj = 50, and hence, the sample sizes of all datasets are 200. For purpose of comparison,

these datasets are also analyzed by the normal random center effects model, which differs

from (7) with βij replaced by βj, for i = 1, . . . , nj, and Fj = H = N(0, σ2
β). This alternative

model is referred here as the normal model.

In the first dataset, θ1 = −θ2 = 0.5, there are no covariates, and both βij and eijt follow

mixtures of normals, where

βi1 ∼ 0.6N(0, 22) + 0.4N(3, 1), i = 1, . . . , n1,

βi2 ∼ 0.5N(0, 22) + 0.5N(3, 1), i = 1, . . . , n2,

βi3 ∼ 0.8N(5, 1) + 0.2N(10, 1), i = 1, . . . , n3,

βi4 ∼ 0.8N(5, 1) + 0.18N(10, 1) + 0.02N(−1, 2), i = 1, . . . , n4,

(14)
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with all nj = 50, and eijt ∼ 0.3N(−2, 1) + 0.4N(0, 1) + 0.3N(2, 1).

First, the posterior probability of equivalence of the two treatments, that is, θ1 = θ2, is

approximated by the nDP model as

1

M

M∑
k=1

I{−∆<2θ
(k)
1 <∆} =

 0.0005, ∆ = 0.01,

0.0039, ∆ = 0.05,

providing strong evidence that the two treatments are not equivalent, where θ
(1)
1 , . . . , θ

(M)
1

are posterior draws of the treatment effect θ1 generated by the iterative algorithm. Second,

the non-inferiority of θ1 to θ2 is justified by the posterior probability, approximated by

1

M

M∑
k=1

I{∆<2θ
(k)
1 } =

 0.9906, ∆ = 0.01,

0.9886, ∆ = 0.05.

These posterior probabilities are comparable with their corresponding probabilities approx-

imated by the normal model, which are not reported here. In short, the nDP model seems

to be working fine in estimating the treatment effects in this scenario when the errors have

a mixture of normal distribution.

Based on the second and the third simulated datasets, we aim at providing an in-depth

study of the performance of the nDP model and at demonstrating the superiority of the

nDP model over the normal model when dealing with data involving probably some extreme

values. In these two datasets, the treatment effect θ1 remains as 0.5, there are again no

covariates, and βij are distributed as in the first dataset except with zero standard deviations

in all the components of the mixture distributions defined in (14) (that is, for instance, βi1 is

distributed as a two-point mixture at 0 and 3 with respective weights 0.6 and 0.4). The error

distributions in the two datasets from which eij are generated are chosen to be the Student t

distributions with 5 degrees of freedom and 1 degree of freedom, respectively, which possess

thicker tails than the mixture of normals in the case of the previous dataset. Estimates

of posterior probability of equivalence of the two treatments by both methodologies, not

reported here, are all close to zero. Table 1 summarizes the posterior probability estimates of

the non-inferiority of θ1 to θ2, for some ∆ > 0, from the two methodologies. The probability

estimates, produced by the proposed nDP model for the center effects distributions, roughly

equal to 99% in all cases and, are always larger than those produced by the normal model.
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Moreover, it seems that the normal model fails to provide as strong evidence as the nDP

model in supporting the non-inferiority of θ1 to θ2, as the resulting probability estimates

are only ≈ 86% when the error distribution is a thick-tailed Cauchy distribution (i.e., for

the third dataset). Figure 1 displays boxplots of posterior samples of θ1 from which the

reported probability estimates are computed. When the error distribution is the Student

t distribution with 5 degrees of freedom (in the upper graph of Figure 1), the median of

the posterior samples from the nDP model (given by 0.447) is closer to the true value of

θ1 = 0.5, compared with the median based on the normal model (given by 0.358). Based

on the third dataset ( with Cauchy error), the lower graph of Figure 1 depicts that the

median of the posterior samples from the nDP model is 0.794, which is close to the true

value 0.5, and the range of the samples is comparable to those in the upper plot taking into

account that the Cauchy distribution has a thicker tail than the Student t distribution with

degrees of freedom greater than 1. On the contrary, corresponding posterior samples from

the normal model are totally non-sensible, with median as 1.659 and a much larger range

than all the other cases in the same figure. In summary, the flexible nDP model seems to

be more powerful in estimating the treatment effects than the normal model when the data

are generated from distributions with thicker tails than normal.

[Table 1 about here.]

[Figure 1 about here.]

The superiority of the nDP model over the normal model can be further demonstrated

in Figures 2 and 3 constructed based on the second dataset (with error distributed as the

Student t distribution with 5 degrees of freedom). Figure 2 depicts empirical distributions

of posterior samples of both τ and the center effects βij from the two methodologies, of

which the latter graphs of βij provide estimates of the center effects distributions Fj. The

top two graphs of Figure 2 show that posterior estimates of τ from the nDP model are more

likely to take larger values closer to 1, compared with those from the normal model that

cluster between 0.1 and 0.3. We argue that the magnitude of τ can serve as an indicator of

accuracy in estimation of the treatment effects, as variances of the full conditionals of θ1 or

θs, displayed in (17) or (16) in Appendix, are roughly inversely proportional to τ through B1
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or Bs. That is, θ1 or θs is less variable when τ is large. Furthermore, histograms for the 4

center effects are much closer to the true center effects distributions from the nDP model (left

column) compared with those from the normal model (right column). For instance, the lower

two graphs at the left column clearly show two modes at 5 and 10, respectively.

[Figure 2 about here.]

Figure 3 shows density estimates of any observation associated with the two treat-

ments (left to right) in the four centers (top to bottom) based on the second dataset, wherein

solid and dashed lines represent estimates from the nDP and the normal models, respectively,

and histograms of the simulated data are displayed in the respective settings according to

treatments and centers (roughly 25 observations in each histogram). All solid and dashed

lines in the four upper plots, which display roughly unimodal-shaped histograms, are closer

to each other. However, in the four lower plots wherein the histograms of the data are some-

how bimodal, all the dashed lines fail to capture either the major mode or the small mode,

while the solid lines not only capture the small mode to the right more clearly but also em-

phasize the major mode more precisely. Hence, the nDP model, but not the normal model,

is flexible enough in dealing with data that exhibit multimodality together with probably

extreme observations.

[Figure 3 about here.]

Next, we look at the performance of the nDP model when the data depend on some

covariates. The fourth and fifth datasets differ from the third dataset, which has a Cauchy

error distribution, in two aspects. First, there is one covariate from which the observations

are generated according to (4) with coefficient γ = −5. The covariates wij follow a uniform

distribution on (−1, 1) and a normal distribution N(0, 1.52), respectively, in the two datasets.

Second, the center effects βij follow the distributions in (14). Figure 4 presents the empirical

distributions of posterior samples of θ1 and γ based on both datasets from the two method-

ologies. Histograms of the samples from the nDP model are displayed. Their corresponding

density estimates by kernel smoothing techniques are represented by solid lines. Dashed

lines are kernel density estimates based on posterior samples from the normal model. The
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four histograms, produced by the nDP model, are well-centered and concentrated at the true

values of θ1 = 0.5 and γ = −5, respectively. However, kernel density estimates produced by

the normal model (dashed lines) either do not peak at the true values or spread over a larger

range than the histograms in every graph. In addition, we computed the LPML for the

two models. Values of LPML for the nDP model and the normal model are −655.126 and

−934.999 based on the fourth dataset (with uniform covariates), and −628.022 and −744.6

based on the fifth dataset (with normal covariates), respectively. The irrefutable conclusion

that the nDP model outperforms the normal model can be further consolidated by the mag-

nitudes of posterior estimates of τ by the two methods, of which those from the nDP model

range from 0 to 0.4 but those from the normal model range from 0 to 0.02 only.

[Figure 4 about here.]

To better differentiate the two methods, we take a closer look at the simulation results

based on the fifth dataset wherein the covariates are normally distributed, as results from

the normal model shown in the right column of Figure 4 seem more comparable with those

from the nDP model. In the top right plot there, 95% posterior interval estimates of θ1

are given by (0.001, 0.982) for the nDP model and (−0.308, 1.825) for the normal model.

We simulated more data based on the same settings such that there are 200, instead of 50,

observations from each of the 4 centers, and obtained 95% posterior interval estimates of θ1

as (0.295, 0.710) for the nDP model and (0.126, 5.732) for the normal model. This shows

that the nDP model leads to less variable estimate of θ1 which is closer to the true value of

θ1 = 0.5 than the normal model, as sample sizes increase.

Finally, we scrutinize for how the special clustering features of the nDP model benefit

inference in this context of meta-analysis with the aid of the last simulated dataset, which

is a variant of the second dataset. This sixth dataset is identical to the second one in

terms of involving no covariate, and same distributions of βij and of the errors eij, but the

treatment effects are chosen to be smaller as θ1 = 0.05 in a way to illustrate the ability of the

methods in estimating treatment effects of negligible magnitudes compared with magnitudes

of the center effects and the errors. Furthermore, the sample size nj from each center is

increased from 50 to 400. According to the probability estimates of both the equivalence
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of the two treatments and the non-inferiority of θ1 to θ2 defined with ∆ = 0.01, given in

Table 2, it seems that the nDP model outperforms the normal model by a small margin.

However, medians (resp. means) of the posterior samples of θ1 from the nDP model and

the normal model are 0.0316 (resp. 0.0304) and −0.0005 (resp. −0.0005), respectively,

wherein the former estimates are much closer to the true value θ1 = 0.05 than the latter

ones. Further, similar empirical distributions of posterior samples of the center effects βij

from the two methodologies to those given in Figure 2, are observed ( not included here).

That is, estimates of individual center effect from the normal model spread over a small

range of values in different iterations. For instance, posterior samples drawn from F1 for the

normal model concentrate over the interval (0, 2.5). On the contrary, for the nDP model,

there are different values of estimates of center effects over a much larger range for different

observations from the same center in each iteration, wherein some of them may be identical to

each other and some of them are substantially larger or smaller than the others, as displayed

in the left column of Figure 2. For example, in each iteration, there are two major clusters

of center effects with values roughly equalling 5 and 10, respectively, for both centers 3 and

4. Indeed, inherited from the distinct clustering features of nDP, center effects of some

particular observations are often estimated to take the same value as center effects of other

observations from the same center or different centers throughout different iterations of the

proposed algorithm. Among all different M iterations, with possibly different collections of

estimates of the center effects, we selected the “best”, or the most representative, iteration

that corresponds to the largest value of a proxy of LPML, denoted by LPML(k), which is

defined as in (13) with ĈPOij replaced by

C̃PO
(k)

ij ≡ f(yijt|θ(k)t , β
(k)
ij ,γ(k), τ (k),wij).

From the resulting “best” iteration, the estimate of θ1 equals 0.032, which is close to either

the median (0.0316) or the mean (0.0304) given above. Eight histograms of center effects

estimates are constructed in Figure 5 with respect to both the center they belong to and

their true values, 0, 3, 5, and 10 (from top row to bottom row), during the generation of the

dataset. Class widths for these histograms are chosen as small as 0.1 such that estimates

of center effects for different observations are stacked into the same bar if and only if their
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values are identical. Consequently, for instance, the two longest bars from both graphs at the

top row contain only duplicates of center effects estimates as −0.511 and 0.553, respectively,

from centers 1 and 2. This shows that the center effects distributions for centers 1 and 2, F1

and F2, are clustered together by the nDP prior, which justifies that the two center effects

distributions, or equivalently, the two centers, are similar according to definition of this

last dataset. Moreover, most (> 95% of) center effects with true values as 0 are estimated

to cluster with one another into two major clusters, and their estimates are either of the

two above values that are close to 0. That is, a large number of observations in center 1

are estimated to have the same center effects estimate, either −0.511 or 0.553, as many

observations in center 2, demonstrating borrowing of information both within center and

across centers that are similar. Analogous interpretations based on the other six histograms

at the other 3 rows of Figure 5 can be made. For instance, most individual center effects for

different observations are estimated to be close to the true values, 3, 5, and 10, as displayed

in the 3 respective rows. In summary, this demonstrates that the special clustering features

of the nDP result in accurate estimations of both the treatment effects and the random

center effects.

[Table 2 about here.]

[Figure 5 about here.]

5.2 Application to Scleroderma Lung Data

We analyze the Scleroderma lung study as described in Section 1.1. Our main goal here is

to assess the efficacy of the oral CYC treatment over the placebo while accounting for the

center effects. We take the difference of FVC at baseline from FVC values at week 18th as

the endpoint here, and fit the following model without any covariate (Inclusion of covariate

can be done in a straightforward way),

FVCijt = θt + βij + eijt; i = 1, 2, · · · , 145; j = 1, 2, · · · , 13; t = oral CYC, placebo. (15)

Analogous to Figures 4 and 2, Figure 6 presents the empirical distributions of posterior

samples of the treatment effect θ1, τ , and the 13 center effects from both the nDP model
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and the normal model. Histograms of the samples from the nDP model are displayed, with

their corresponding density estimates by kernel smoothing techniques represented by solid

lines. Dashed lines are kernel density estimates based on posterior samples from the normal

model. First of all, in the plot of estimates of τ , the dashed line centers on the interval

(0.005, 0.01), while the solid line spreads over a wider range on (0.005, 0.03). Based on our

argument justified with respect to Figure 2, that large magnitude of τ indicates high accuracy

in estimation of the treatment effects, this suggests that inference by the nDP model is more

accurate than that by the normal model. This is further supported by values of LPML of

the two models given as −637.024 and −643.326, respectively. In addition, more than half of

the 13 plots of the estimated center effects distributions reveal that the dashed line spreads

over a smaller range of values compared with the solid line on the same plot. That is, the

normal model tends to result in estimated center effects distributions on a smaller range of

values, compared with the nDP model. Such a phenomenon that also appears when the

second simulated dataset is analyzed (referred to the right column of Figure 2) may not be

desirable as this implies that the center effects distributions are not estimated properly.

[Figure 6 about here.]

From the nDP model, the treatment effect θ1 is estimated to be 1.365, and τ is estimated

to be 0.014. The posterior probability of equivalence of the two treatments, that is, θ1 = θ2,

is approximated as

1

M

M∑
k=1

I{−∆<2θ
(k)
1 <∆} =


0.0006, ∆ = 0.005,

0.0019, ∆ = 0.01,

0.0088, ∆ = 0.05,

providing strong evidence that the two treatments are not equivalent. Non-inferiority of θ1

to θ2 is also well supported by the posterior probability, which is approximated as

1

M

M∑
k=1

I{∆<−2θ
(k)
1 } =


0.9003, ∆ = 0.005,

0.8998, ∆ = 0.01,

0.8965, ∆ = 0.05.
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However, these posterior probabilities approximated by the normal model is around 0.85,

giving not as strong evidence as the nDP model. In addition, the normal model results in a

smaller estimated treatment effect as 1.152.

Lastly, we demonstrate that the nDP model gives a good fit of the FVC data with the

aid of density estimates of new observations based on the “best” iteration selected according

to LPML(k), the previously introduced proxy of LPML. Some of histograms of the FVC

data with respect to the two treatments (left to right) and the 13 centers (left to right;

top to bottom) except center 9 as there is no observation collected based on treatment 2,

shown in Figure 7, suggest that the FVC data exhibit multimodality together with probably

some extreme observations. Similar to what are displayed in Figure 3, all density estimates

from the normal model (not presented here) are unimodal bell-shaped curves, failing in

capturing either multi-modes or possibly outlying observations. Most density estimates

from the nDP model plotted in Figure 7 seem fitting the corresponding histograms quite

well, demonstrating good account of capturing multimodality and dealing with outlying

observations by the proposed methodology. Parameter estimates from this “best” iteration,

say, k∗-th iteration, include θ(k
∗) = 1.309 and τ (k

∗) = 0.058. All center effects distributions

are clustered together, except centers 2 and 10. Most estimated individual center effects in

the major cluster are among a list of values given as −24.405,−9.298,−1.173, 0.331, 14.922

and 26.505. Center effects from centers 2 and 10 are estimated to be among −22.229,−10.19

and −1.334.

[Figure 7 about here.]

6 Conclusion

Multi-center clinical trial has become a popular and useful tool for quantitative synthesizing

and summarizing information in the medical literature. Given the availability of reliable data,

a multi-center trial should employ robust methods. However, there is empirical evidence to

suggest that the use of robust methods is low. The random effects multi-center model is

a parsimonious way of accounting for within-center and between-center variation. In this

research, we have provided a general modeling framework to analyze the multi-center clinical
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trial in a mixed model framework. This mixed model framework provides a useful way of

describing typical data from multi-center trials. While it is argued that the routine use of

normal distribution may bias the inference on treatment effects, it was also of interest to

cluster the centers behaving similarly interms of patient population. To achieve this goal, we

developed a novel Bayesian semiparametric model where we account for the nested center

effects using the nDP.

Using a thorough simulation study, and application to a real dataset, we have demonstrate

the ability of the nDP model in providing accurate estimates of the parameters of interest

particularly when the random center effects is not coming from normal. Since our model

can provide a way to evaluate the treatment effects correctly even under the distributional

misspecification, our research can serve as a useful tool for deriving better analysis of multi-

center clinical trials. The insensitivity to outliers and the nice clustering behavior of the

center effects make our nDP approach an important tool in detecting outlying centers and

a robust alternative to the traditional parametric analysis.
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7 Appendix

An iterative algorithm for sampling random variates of (ζ, ξ,π∗,ω∗,β∗, α, ρ), γ, τ , and

(θ1, . . . , θT ) from their joint posterior distribution cycles through the following four steps.

1. Sampling of (ζ, ξ,π∗,ω∗,β∗, α, ρ) for the center effects are carried out through the

following ste4ps:

(a) Sample the classification variables ζj for j = 1, . . . , C from a multinomial distri-

bution with probabilities

P(ζj = k| · · · ) ∝ π∗
k

nj∏
i=1

L∑
l=1

f(yijt|θt, β∗
lk,γ, τ ,wij), k = 1, . . . , K.

(b) Sample the classification variables ξij for j = 1, . . . , C and i = 1, . . . , nj from a

multinomial distribution with probabilities

P(ξij = l| · · · ) ∝ ω∗
lζj
f(yijt|θt, β∗

lζj
,γ, τ ,wij), l = 1, . . . , L.

(c) Sample π∗ by generating

(u∗
k| · · · )

ind∼ beta

(
1 +mk, α +

K∑
s=k+1

ms

)
, k = 1, . . . , K − 1,

u∗
K = 1,

where mk =
∑C

j=1 I{ζj=k} is the number of distributions among F1, . . . , FC as-

signed to component k in (8), and constructing π∗
k = u∗

k

∏k−1
s=1(1 − u∗

s) for k =

1, . . . , K.

(d) Sample ω∗ by generating, for k = 1, . . . , K,

(v∗lk| · · · )
ind∼ beta

(
1 + nlk, ρ+

L∑
s=l+1

nlk

)
, l = 1, . . . , L− 1,

v∗Lk = 1,

where nlk =
∑C

j=1

∑nj

i=1 I{ζj=k,ξij=l} is the number of center effects assigned to

atom l of distribution k in (9), and constructing ω∗
lk = v∗lk

∏l−1
s=1(1 − v∗sk) for

l = 1, . . . , L.
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(e) Sample β∗
lk, for k = 1, . . . , K and l = 1, . . . , L, according to

(β∗
lk| · · · ) ∼ N


τ

∑
{i,j|ζj=k,ξij=l}

(yijt − θt −w⊤
ijγ)

nlkτ + σ−2
β

,
1

nlkτ + σ−2
β

 .

(f) Sample

(α| · · · ) ∼ gamma

(
aα + (K − 1), bα −

K−1∑
k=1

log(1− u∗
k)

)
and

(ρ| · · · ) ∼ gamma

(
aρ +K(L− 1), bρ −

L−1∑
l=1

K∑
k=1

log(1− v∗lk)

)
,

where gamma(a, b) represents a gamma random variable X with density h(x|a, b) ∝

xa−1e−bx, x > 0.

2. Sample γ from its full conditional distribution,

p(γ| · · · ) ∝

[
C∏

j=1

nj∏
i=1

f(yijt|θt, β∗
ξij ,ζj

,γ, τ ,wij )

]
ϕr(γ|0,Σγ).

where ϕr(·|0,Σγ) is a r-variate normal density with mean vector 0 and variance-

covariance matrix Σγ . For instance, when γ = γ is univariate and is distributed as

N(0, σ2
γ),

(γ| · · · ) ∼ N


τ

C∑
j=1

nj∑
i=1

wij(yijt − θt − β∗
ξij ,ζj

)

τ
C∑

j=1

nj∑
i=1

w2
ij + σ−2

γ

,
1

τ
C∑

j=1

nj∑
i=1

w2
ij + σ−2

γ

 ,

where wij is the covariate for i-th subject from j-th center.

3. Sample τ from its full conditional distribution,

p(τ | · · · ) ∝

[
C∏

j=1

nj∏
i=1

f(yijt|θt, β∗
ξij ,ζj

,γ, τ ,wij )

]
h(τ |aτ , bτ ).

That is,

(τ | · · · ) ∼ gamma

(
aτ +

1

2

C∑
j=1

nj, bτ +
1

2

C∑
j=1

nj∑
i=1

(yijt − θt − β∗
ξij ,ζj

−w⊤
ijγ)

2

)
.
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4. For identifiability issue, assume that sum of all θi’s equals zero, that is, θT = −
∑T−1

i=1 θi.

For s = 1, . . . , T − 1, let θ̃s =
∑T−1

i=1,i̸=s θi. Sample θs for s = 1, . . . , T − 1 from its full

conditional distribution,

(θs| · · · ) ∼ N

(
Bsσ

2
θm̃s

Bsσ2
θ + 1

,
σ2
θ

Bsσ2
θ + 1

)
, (16)

where Bs = τ [
∑C

j=1

∑nj

i=1 I{t=s} +
∑C

j=1

∑nj

i=1 I{t=T}] ≡ Mτ with M being the total

number of observations among N =
∑C

j=1 nj satisfying the events {t = s} or {t = T},

and

m̃s =
τ

Bs

[
C∑

j=1

nj∑
i=1

(yijt − β∗
ξij ,ζj

−w⊤
ijγ)I{t=s} +

C∑
j=1

nj∑
i=1

(−yijt − θ̃s + β∗
ξij ,ζj

+w⊤
ijγ)I{t=T}

]
.

4∗ When there are T = 2 treatments, we assume that θ1 = −θ2 ≡ θ for identifiability

issue. We sample θ1 from its full conditional distribution,

(θ1| · · · ) ∼ N

(
B1σ

2
θm̃1

B1σ2
θ + 1

,
σ2
θ

B1σ2
θ + 1

)
, (17)

where B1 = (
∑C

j=1 nj)τ = Nτ , and

m̃1 =
1

N

[
C∑

j=1

nj∑
i=1

(yijt − β∗
ξij ,ζj

−w⊤
ijγ)I{t=1} +

C∑
j=1

nj∑
i=1

(−yijt + β∗
ξij ,ζj

+w⊤
ijγ)I{t=2}

]
.
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Figure 1: Boxplots of posterior samples of θ1 based on the
second and the third simulated datasets with respective error
distributions as t with 5 degrees of freedom (upper graph) and
Cauchy distribution (lower graph) assuming nDP and normal
distributions on center effect distributions.
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Figure 2: Empirical distributions of posterior samples of τ ,
and βij for j = 1, . . . , 4 (from top to bottom) based on the
second simulated dataset with error distribution as Student’s t
distribution with 5 degrees of freedom assuming nDP (left) and
normal (right) distributions on center effect distributions.
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Figure 3: Density estimates (solid lines: from the nDP model;
dashed lines: from the normal model) of observations associated
with the 2 treatments (left to right) in the 4 centers (top to
bottom) based on the second simulated dataset with error dis-
tribution as Student’s t distribution with 5 degrees of freedom.
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Figure 4: Empirical distributions of posterior samples of
θ1 (top row) and γ (bottom row) based on the fourth and the
fifth simulated dataset with respective uniform (left column) and
normal (right column) covariates assuming nDP (histograms and
solid lines) and normal (dashed lines) distributions on center ef-
fects distributions.
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Figure 5: Frequency histograms of center effects from the
“best” iteration based on the sixth simulated dataset. True
values of the center effects are 0, 3, 5, and 10 from top row to
bottom row.

34



theta_1

−4 −2 0 2 4

0.
0

0.
2

0.
4

tau

0.01 0.02 0.03 0.04 0.05

0
20

0
40

0
60

0

F_1

−40 −20 0 20 40

0.
00

0.
10

0.
20

F_2

−40 −20 0 20 40

0.
00

0.
10

0.
20

F_3

−40 −20 0 20 40

0.
00

0.
10

0.
20

F_4

−40 −20 0 20 40

0.
00

0.
10

0.
20

F_5

−40 −20 0 20 40

0.
00

0.
10

0.
20

F_6

−40 −20 0 20 40

0.
00

0.
10

0.
20

F_7

−40 −20 0 20 40

0.
00

0.
10

0.
20

F_8

−40 −20 0 20 40

0.
00

0.
10

0.
20

F_9

−40 −20 0 20 40

0.
00

0.
10

0.
20

F_10

−40 −20 0 20 40

0.
00

0.
10

0.
20

F_11

−40 −20 0 20 40

0.
00

0.
10

0.
20

F_12

−40 −20 0 20 40

0.
00

0.
10

0.
20

F_13

−40 −20 0 20 40

0.
00

0.
10

0.
20

Figure 6: Empirical distributions of posterior samples of θ1,
τ , and the center effects based on the FVC data assuming
nDP (histograms and solid lines) and normal (dashed lines) dis-
tributions on center effects distributions.
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Figure 7: The FVC data (histograms) and density esti-
mates (solid lines) of observations associated with the 2 treat-
ments (left to right) in the 13 centers except center 9 (left to
right; top to bottom) based on estimates from the “best” itera-
tion by assuming nDP on center effects distributions.
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Table 1: Probability estimates of non-inferiority of θ1 to
θ2 based on the second and the third simulated datasets
with respective error distributions as t and Cauchy distri-
butions assuming nDP and normal distributions on cen-
ter effect distributions.

Center Effects
Distribution

Error distribution ∆ nDP Normal

t with 5 df
0.01 0.991 0.983
0.05 0.989 0.977

Cauchy
0.01 0.997 0.870
0.05 0.996 0.866
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Table 2: Probability estimates of equivalence of treat-
ments and non-inferiority of θ1 to θ2 (with ∆ = 0.01)
based on the sixth simulated dataset.

Center Effects
Distribution

Probability estimates nDP Normal
Equivalence of θ1 and θ2 0.052 0.072
Non-inferiority of θ1 to θ2 0.675 0.461
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