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Abstract

In a general class of discrete optimization problems with min-sum ob-
jective function, some of the elements may have random costs associated
with them. In such a situation, the notion of optimality needs to be suit-
ably modified. We define an optimal solution to be a feasible solution
with the minimum risk. It is shown that the knowledge of the means of
these random costs is enough to reduce such a problem into one with no
random costs.

1 Introduction

In discrete optimization problems (DOPs), it is more of a norm than exception

that the costs of some of the problem elements are not fixed. The practical solu-

tion in most of such cases is to assume some "good" approximation of the data

and solve the problem. Once an optimal solution is obtained, post-optimality

analysis techniques like sensitivity analysis is typically used to gain insight into

the robustness of the solution obtained. In many situations, however, the de-

cision maker has a fairly good idea about the distribution of these random

elements. In this work, we try to find out how information about the distribu-

tion of the random valued data can be used to aid decision making. In general,
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such a study can be considered as a part of stochastic integer programming, but
we consider discrete optimization problems as a special case of general integer
programming and try to obtain results that are elegant.

We consider a discrete optimization problem fj as a collection of problem in-
stances 7T s= (G, S, z), where G is the ground set consisting of n elements, with
each element e € G having an associated cost ce* The set S, (C 2 |Gi), is usually
not described explicitly, but rather by a set of rules that each S € S must satisfy;
thus, S is collection of all feasible solutions. The function, z: S -4 91 is referred
to as the objective function (or the cost function)* In this paper, we limit our-
selves with min-sum objective functions, i.e. cases where z(S) = £ c € S

 c«* Such
a generic framework covers a wide variety of discrete optimization problems as
shown in the following examples.

Example 1 (Minimum Spanning Tree Problem) In this problem we ore
given an undirected graph G = ( V , E ) , where each edge e € E has a cost
associated with it, and we have to find a minimum cost spanning tree in ike
graph. In our notation, an dement refers to an edge in the graph, G is the set
E , ce is the edge-length of edge e for all e € E , S is the set of all spanning
trees in G , andz{S) ^ H e s S C e f o r o l l S e S .

Example 2 (0/1 Knapsack Problem) In this problem we are given a set of
n elements E = {ei r..., Cn}, each element ej having an associated profit p j
and an associated weight Wj, and a capacity B, and we are to determine the
combination of elements that would maximize the profit and not exceed the ca-
pacity* In our notation, an element refers to an dement in E (G is the set IS,),
cCj = p 5 for all e£ E , S is the set of all S C E such that Hef€S1Cj < B, and

for aUS € S .

Example 3 (Symmetric Traveling Salesperson Problem) In this problem
we are given an undirected graph G = (V, E) , where each edge e € E has a
cost associated with it, and we have to find a minimum cost HamUtonian cycle
in the graph. In our notation, an dement refers to an edge in the graph, G is
the set R , ce is the edge-length of edge c for all c € E , S is the set of all
HamUtonian cycles in G, and z{S) = ]T€€$ ce for all S e S.

We are concerned with the situation where the costs associated with certain
elements are random variables.



We first formalize our problem through the following definitions and set up.
Since several of the elements in the problems we consider do not have constant
values, we will classify the problem elements using the following notation:

Definition 4 An element e € G in n = (G, S, z) is called fixedfrandom,) if ce

is constant (random valued).

Definition 5 Given any fixed set of values for ce % the loss associated with a
solution S € S is defined by

L(S) = [z(S)-Z*],

where Z* is the minimum possible value of the objective function for given values

of ce 's (and hence is a function of these cc
 fs).

Obviously, with some of the ce's being random, the loss of any feasible solution
S is also a random variable. In practice it would not be desirable to compute a
new course of action with every alteration of the ce 's, especially if we deal with
AfP-haxd problems. So we need to find a solution which would be good overall.
With this in mind, we define the risk associated with a solution in the following
manner:

Definition 6 The risk associated with a solution S€ S is given by

R(S)=E[z(S)-Z*]

where the expectation is taken w.r.t the z-values of the random edges.

We define the optimization problem for DOPs with random elements as the
problem of finding a feasible solution with minimum risk. Notice that if all the
elements of the instance are fixed, the minimum risk solution corresponds to the
traditional concept of an optimal solution, i.e., one that minimizes the objective
function value.

In the next section we analyse the simplest case of DOPs with one random
element. We show that knowledge of the mean of the distribution function for
this element is sufficient to obtain an optimal solution in this situation. We



generalize the result for DOPs with an arbitrary number of random elements

in Section 3. We conclude the paper with Section 4, where we summarize our

results and propose directions for further research.

2 DOPs with Single Random Element

Let us assume that we have a DOP with a single random element e € G First we

study the objective value (Z*) of an optimal solution (in the least cost sense) as

a function of ce . We then use this function to obtain decision rules to calculate

optimal tours. Let X represent a random variable denoting the cost of the

element e, H(x) denote P(X < x) — the distribution function of c e , and \i

denote its mean value.

We can partition S into S e consisting of all solution containing the element

e and S e of all solution not containing e. Let Se be a least cost solution in

S e and Sc be a least cost solution in S e . Notice that Se and Sc need not be

unique, and that they remain least cost solutions in their respective partitions

regardless of the value of ce . Also notice that for low values of ce, x(Se) < z(Se).

Let 8 denote the value of c€ for which z(Sc) = z(Se). Using 6 we can describe

Z*(ce) as follows.

Lemma 7 Z*(ce) is a continuous function with a slope of 1 when c c < 8 and

a slope of 0 when c c > 8.

Proof: For low values of cc , z{Se) < z(Se). When c c increases, the cost of all

solutions in S c increase while the cast of all solution in S e remain the same. So

Se remains optimal until c e increases to become larger than 9. If ce increases

further, z{Se) > z(Se), and S e becomes a new optimal solution. Clearly, no

further increase in c c will make Sc suboptimal.

The next lemma shows that int( S c ) and int( S e) are disjoint although S e and

S e are not.

Lemma 8 The following statements are true

(a) When c e < 8 every optimal solution contains e.

(b) When 8 < c e no optimal solution contains e.

(c) At ce = 8, both Se and S e are optimal.



Proof: (a) Assume to the contrary that there exists an optimal solution So not
containing e. Let T : ce -» cc + 5, 0 < b < 0 — cc. Since c £ So, z(So) remains
unchanged after the transformation, Le. the optimal objective value does not
increase after T. But this contradicts Lemma 7.

(b) Can be proved using arguments similar to those in (a).

(c) Follows from the fact that Z* is continuous (Lemma 7).

Prom Lemma 8 and the discussion proceeding Lemma 7, we get the following
result.

Lemma 0 For any value of ce, at least one of Sc and Se is an optimal optimal
solution.

We are now in a position to prove the key theorem for this section.

Theorem 10 // ce has a finite mean \i, then the optimal solution is the least
cost solution when ce = |i.

Proof: From Lemma 9, we know that either Se or Se is optimal. The expected
loss for Sc, EL(Se) = H°(* ~ 8)dH(x) while that of Sc is EL(SC) = / ^ ( O -
x)dH(x).

Now Se is optimal if EL(SC) - EL(SC) > 0, otherwise Sc is optimal. But

EL(Se)-EL(Sc)

= f (6-x)dH(x)~ f°°(x~e)dH(x)
J -oo J e

j>OO rOO

= 9 dH(x) - xdH(x)
J —oo •» —oo

= e-n (i)

which means that Se will be an optimal solution if and only if ^ < 0, the only
interval where Se is a least cost solution. The theorem follows.



Remark 11 It is easy to see that, ifX has a finite support ([a,\>]), then

fb

R(Se) = ( b - 0 ) - H(x)dx (2)
J e

fe

R(Se) = H(x)dx (3)
J a

Thus,

R(S«) < R(Se) <F=> (b - 6 ) < f H(x)dx,
J a

and the right hand side of the above equation reduces to b — \i, using integration

by parts. This presents an alternative (equivalent) proof of the Theorem 10 for

this special case.

Theorem 10 implies that knowledge of the mean of the distribution function is

enough to compute an optimal soution for a DOP with one random element. In

the next section we generalize this result to DOPs with more than one random

elements.

3 DOPs with general Number of Random Ele-
ments

In this section we consider the case where k of the elements are random. Ac-

cordingly, we partition G into GR = { e i , . . . , e i j of random elements, and

GF = {eic+1, •. . , en} of fixed dements. Let X\,..., Xk be the random vari-

ables denoting the values of c e i . . . ,ce i t and H(xi , . . . ,x n ) denote Pr(Xi <

x i , . . . , Xk < Xfc). We represent the objective function value of any solution S

as

z(S)=F(S)+ Y_ Xt (4)
t:eteSnGR

where F(S) = Y" ce & the fixed component of the cost z($).



Let Ki. . ,K2k be the 2 k subsets of K = { 1 , . . . >Ic}. For i*=1 , . . , ,2 k , l e t

S t = { S : S € S; e * € S V j € K « e , * S V j e K X K U (5)

constitute a partition of S .

l emma 12 / / S1 ,S2 € S i, for some i, then z{$*) — z(S2) is non-random.

Proof: By construction (5), S1 and S2 have the same set of random elements
and hence by (4) fc(S1} - z(S2) « FfS1) - F(S2) which is non-random-

For any fixed set of costs (xi,. •. ,x*), let Si denote a least cost solution within
S i. While St need not be unique, by Lemma 12, it remains a least cost solution
among the ones in S i regardless of values of the cost variables Xi's.

The following lemma is useful for restricting our search for optimal solutions.

Lemma IS For any solution S € S, R(S) > minj{R(S;)}.

Proof: Since S = U?^ St, 3j 3 S € S5. Then

R(S) = Efc(S)-Z*] *E[r(S)-z(S,)+z(S,)-Z^ *z(S)^z(Sj)+R(S,) > R(S,),

following Lemma 12 and choice of Sj.

An immediate implication of Lemma 13 is the fact that at least one among Si
through S2v is an optimal solution in the minimum risk sense.

Let us introduce the sets {Hi\ 1 < i < 2k} in the k-dimensional Euclidean space
(JRk) through

Hi ss {{x\,.. .xjc): Si is a least cost solution at (xi, •. .Xk}}. (6)

Let us also introduce a partition of the same space through {Pi; 1 < i < 2k} such
that

Pi « Hu
Pt = k



Notice that for all i = 1 , . . . ,2* ,

Pi Q Hi (7)

If Si is a least cost solution at (xi,. ..xy,), then for this set of costs, z(St) <

), Vj = 1 2\ Now

z(Si)-z(Sj) = F(Si)+ £ Xm-[F(Sj)+ 21 X

= [ X x™~ X ^mJ+FlStJ-FtSj). (8)

Therefore an alternative diaracterization of *R\ is

0)

and of Pi is

TTV€K,\K,

j = 1 2*}

x k ) : Y. %™
m€Ki\K,

(10)

We are now in a position to prove the main theorem in this section.

Theorem 14 1/Xi,. •. , Xk are random variables having finite means \i\,... |ik

respectively, then the least cost tour, corresponding to the costs of c C l , . . . , cClc

fixed at m , . . . , \i\i, will be optimal in the least risk sense.



Proof: The risk associated with the solution St can be written as

2*

R(S0 = 21 f WSi)-z(Sj)}dH(.) (11)

So,

R(St)-R(Sj)

f {z(SO-z(S})}dH{.)+ f {z(Si)-z(S,)}dH(.)
m,H,

- [ {z(S,)-z(Si)JdH(.)

= | {z(SO-z(Sj)}dH(.)

= f f Y * m - T •x-m-{nSi)-?[Si))]dH{.), by (8)

•F(Si)). (12)

Hence for any i,

R(Si) = Kmmk R(Sj) 4^ R(St) < R(Sj)VJ 4* ( w , . . . ,^k) € Kt, by (9) and (12).

Theorem 14 tells us that knowledge of the means of the random elements is

adequate to obtain an optimal tour for a generic DOP with a min-sum objective

function.

4 Conclusions

In this paper we considered the problem of solving a general class of discrete

optimization problems with min-sum objective functions and having random

cost elements where the distribution of the costs of the random elements are

known. We defined the risk associated with feasible solutions as their expected

suboptimality values. In Section 2 we showed that if there was only one random

cost element in the problem, then the optimal solution in the least risk sense is a
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least cost solution when the cost of the random element is fixed at its mean value.

In Section 3 we generalized this result to discrete optimization problems with

an arbitrary number of random cost elements. In order to do so, we partitioned

the set of all feasible solutions and created a corresponding partition of the

Euclidean space of possible values of the random cost elements. Computing

the risks of the least cost solution in each set of the partition of solutions, we

showed that a minimum risk solution can be obtained by pegging the costs of

each random cost element to the mean of the corresponding distribution and

computing a least cost solution for this instance.

A direct extension of this work would be to consider general discrete optimiza-

tion problems with min-max objectives. Analysis of such problems are more

complicated due to the fact that the objective function values of such problems

depend only on the cost of a single element in a solution. One can also consider

the connections between our result and the sensitivity analysis and stability

analysis results for general discrete optimization problems.
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