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Abstract

Given a set of elements, each having a profit and cost associated with it, and a budget, the 0-1 knapsack
problem finds a subset of the elements with maximum possible combined profit subject to the combined
cost not exceeding the budget. In this paper we study a stochastic version of the problem in which the
budget is random. We propose two different formulations of this problem, based on different ways of
handling infeasibilities, and propose exact and heuristic algorithms to solve the problems represented by
these formulations. We also present the results from some computational experiments.
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Given a budget B and a set of elements E = (c i , . . . , cn) with a profit vector P = (pi , . . . , pn) e
JHJ and a cost vector C = (c i , . . . , cn) € 1H+, the 0-1 knapsack problem (refer Martello and Toth [10]
for a detailed introduction), denoted here by KNAP(P,CfB), is the problem of finding a subset
S C E which maximizes £ e € SPj while satisfying XLe.6sc) ^ ^. ^ w e identify a binary vector
x = (x i , . . . , x n ) ' with a set S C E by the relation xt = 1 4=£ ei e S, we can define KNAP(P, C, B)
as

K N A P ( P , C , B ) = a r g m a x { P x : C x < B , x € { 0 , 1 } n } . (1)

The vector x € {0, l } n is called a feasible solution to KNAP(P,C,B) (or simply, a solution) if it
satisfies the budget constraint Cx < B. An optimal or maximum-profit solution to KNAP(P, C, B)
is denoted by Xg.

Stochastic versions of KNAP(P,C,B) are of two forms, static and dynamic. Full information
regarding the randomness of the problem elements is assumed to be known before the start of the
solution process in the static version, while in the dynamic version, some of these parameters are
unknown when the solution process starts. Steinberg and Park [13], Sniedovich [11, 12], Henig [7],
Carraway et al. [4], and Yu [16] have studied static stochastic 0-1 knapsack problems in which the
P vector is random. Cohn and Barnhart [5] studied a special case of these problems in which
the P vector is a known linear function of the C vector and the C vector is random. Averbakh [1]
studied probabilistic properties of a heuristic algorithm to solve integer linear programs with multiple
knapsack constraints. Ghosh and Das [6] recently studied a general class of stochastic discrete
optimization problems (of which KNAP(P, C, B) with random P is a special case). Static stochastic
knapsack problems can also be seen as a special case of general stochastic integer programming
problems, especially in the literature on recourse-based approaches. Discussions on this topic can
be found in Birge and Louveaux [3], and Van der Vlerk [15]. Dynamic stochastic knapsack problems
have been studied by several authors, like Kleywegt and Papastavrou [8], Marchetti-Spaccamela and
Vercellis [9] and Szkatula [14].



1 Formulation of the Problem

In the current work we will study a static stochastic knapsack problem in which the budget is
random. In the next section, we will introduce the problem, expand the notion of feasibility, and
subsequently consider two different notions of optimality. In Section 2, we develop algorithms, both
exact and heuristic, to solve these problems, and report the results of preliminary computational
experimentations with these algorithms in Section 3. We conclude the work with a summary in
Section 4 and point out possible directions for future research in this area.

1 Formulation of the Problem

We consider a stochastic version of KNAP(P, C, B), denoted here by S-KNAP(P, C, B(F)), in which
the budget B is a random variable with a density function f(-) and a survival function F(«) defined
by

F(b)=Pr[B>b] .

We denote the support of B (equivalently F) by [BL,BU] , where BL is non-negative, and Bu is
not necessarily finite. The mean and upper a-th percentile of B are denoted by By. and B(a),
respectively, i.e

Pr[B > B ( a )] = a.

The stochasticity of the budget implies that (some) solutions will meet the budget requirements
only some of the time. This calls for appropriate modifications in the notion of feasibility, as well
as methods for dealing with the profits accrued from a solution when the random budget value falls
below the cost of the solution.

Redefining Feasibility: There are several alternative ways of defining a feasible solution to stochas-
tic knapsack problems with random budgets. Few obvious choices are to require that the budget
constraint be met

• for all values in the range of B,

• for some values in the range of B,

• for an average value of B

• at least with a specified probability.

Accordingly, we may define the following notions of feasibility in the current setup:

Definition 1: A solution x is said to be a strongly feasible solution to S-KNAP(P, C, B(F)) if Cx < BL,
or equivalently, F(Cx) = 1.

Definition 2: A solution x is said to be a weakly feasible solution to S-KNAP(P, C, B(F)), if Cx < B u .

Definition 3: A solution x is said to be a mean feasible solution to S-KNAP(P, C, B(F)), if Cx < BH.

Definition 4: A solution x is said to be feasible with a reliability coefficient a to S-KNAP(P, C, B(F)),
if Pr[Cx < B] > a, or equivalently, if Cx < B ( a ) . A feasible solution with a reliability coefficient
0.5 is called a median feasible solution.
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Remark 1: If Ts, Fw and T^. denote the class of strongly-, weakly-, and mean-feasible solutions
respectively, while J ( a ) stands for the class of feasible solutions with reliability coefficient a, it is
easy to see that

The concepts of mean and median feasibility coincide (i.e., T^ = .T^o.s)) in many cases, including
when B has a symmetric distribution.

Remark 2: A sufficient (and almost necessary) condition for a solution x to be weakly feasible is
F(Cx) > 0.

Remark 3: All the above-mentioned notions of feasibility in the stochastic knapsack problem reduce
to the notion of feasibility in the deterministic problem when B is degenerate. This justifies our
subsequent search for a suitably defined optimal solution to be restricted to one of the above defined
class of solutions.

Remark 4: A binary vector x is a strongly feasible solution to S-KNAP(P, C, B(F)) if and only if it
is a feasible solution of K N A P ( P , C , B L ) . Thus, the requirement of strong feasibility reduces the
problem to its deterministic counterpart. Hence, we will be mostly restricting ourselves to weakly
feasible solutions. However, the methodologies described here should be valid if one confines oneself
to the classes T^) or T^ with minor modifications.

Redefining Optimality: The definition of weak feasibility necessitates appropriate methods for
dealing with the profits accrued from a solution when the random budget value falls below its cost.
We use two approaches to deal with such situations. In the first approach, we discard any profit
accrued from a solution if it is infeasible in a given scenario (i.e., for a given value b of B). In order
to distinguish it from the profit in the non-stochastic problem, we will refer this profit

nT(x,b) = P x x Icx<b

as the truncated profit of the solution. (I is the usual indicator function.) In the second approach, we
accept profits accrued from solutions whose costs exceed the budget, (but not Bu), but also include
a penalty for the portion of the cost of the solution exceeding the budget. The profit value, thus
obtained,

nP(x,b) = Px - «(Cx - b) x Icx>b

is called the penalized profit of the solution, d(-) is called a penalty (or recourse) function. In this
work we restrict ourselves to linear penalty functions (i.e. -ft(t) = 0t), although some situations may
warrant more steep (viz. exponential) penalties. Note that both the truncated and penalized profits
of a solution, being functions of B, are themselves random variables.

The most direct way of defining optimality for static stochastic 0-1 knapsack problems is to
maximize the expected value of the truncated or penalized profits. The two profit criteria will, in
general, lead to different optimal solutions. Another common approach to optimization in stochastic
problems is in terms of the regret associated with a solution. Let us define the loss L(x|B = b)
associated with a solution x as L(TTf(x^,b) — FTj(x,b)), where x£ is the maximum profit solution
when the budget B equals to b, J = T or P, and L() is a non-decreasing function on (0,oo). An
optimal solution may be defined as the one having minimum expected loss or regret, the expectation
being taken over b. A third approach could be to find a solution with the minimum maxb L value.
This corresponds to the minmax regret solution studied in Averbakh [2].

We confine ourselves in this paper to the first two approaches to optimization. The following
lemma shows that the two are equivalent when L(-) is linear (i.e. L(t) = at, which is the most
common form of loss and adopted here).
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Lemma 1: In S-KNAP problems, maximizing the expected truncated (or penalized) profit is equiva-
lent to minimizing the regret associated with the truncated (or penalized) profit provided the regret
is defined through a linear loss function.

Proof: Let L(t) = at, where a is a positive constant. Then

where J is either T for the truncated profit case, or P for the penalized profit case.

Note that the regret of solution x is

Rj(x) = E ta(nj(x;,b) -nj (x ,b) ) ] = a(E [TTjCx^b)] - E

the expectation being taken over b values. Since E [Tlj(x^,b)] does not involve x, finding a member
of argmin{Rj(x)} is equivalent to finding a member of argmin{—E [TT;(x, b)] i.e., a member of
argmax{E[TTj(x,b)]}. •

We now obtain the general expressions for E [FTj(x, b)]. It is easy to see that the expected value
of the truncated profit is

E lTTT(x,b)] = f U Px x ICx<b(-dF(b)) = (Px) - F(Cx), (2)
JBL

which implies that if we adopt the policy of discarding the profit accrued from solutions when they
are infeasible in a scenario, then S-KNAP can be formulated as

T-KNAP(P,C,B(F)) =argmax{ZT(x) =Px-F(Cx) : C x < B u , x€{0 ,1} n } . (3)

Given a specific budget value b of B, the penalized profit, assuming a linear penalty d[t) = 8t,
of a weakly feasible solution x is

rx i u\ f P x i f C x < b , , .
nP(x,b) = | P x _ 0 t c x - b ] i f b < C x . (4>

Expression (4) implies that the expected penalized profit of a strongly feasible solution is the same
as its profit. For any other weakly feasible solution x

fCx

E[nP(x,b)] = Px-6 (Cx-b) (-dF(b))
JBL

where ^i(t) = JgL b (—dF(b)). So adopting the linear penalty approach, S-KNAP can be formulated
as

P-KNAP(P,C,B(F)) =

C x < B U ) x e { 0 , 1 } n } . (6)

Remark 5: In the T-KNAP(P,C,B(F)), there is no loss of generality in restricting the solution
space to Tw, because for Zy(x) = 0 for any x with Cx > Bu- That is not the case for P-
KNAP(P, C, B(F)), where for some problem instances with a low enough value of 9, there may exist
a xo with CXQ > Bu such that

ZP(x0)<max{Zp(x): Cx < Bu, x€{0,1}n}.

The justification of excluding such solutions in our consideration lies with the fact that the optimal (in
any formulation) of a stochastic knapsack problem should reduce to that of a maximum profit solution
of deterministic knapsack problem when the budget B has a degenerate (single-point) distribution.
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Remark 6: Literature on general stochastic integer programming problems suggests mainly two ap-
proaches to deal with randomness in constraint coefficients. The first is through recourse functions,
a special case of which is essentially our P-KNAP formulation. The second practice is to limit to
the feasible solution belonging to ^(a)? however without any alterations in the objective function
(unlike our P-KNAP or T-KNAP formulation).

We conclude this section with deriving the functional forms of ZT(X) and Zp(x) for some com-
mon probability distributions. Since Zy(x) = Zp(x) = Px for all strongly feasible solutions, the
expressions given below are valid for other weakly feasible solutions only.

Example 1: Suppose B has a Uniform distribution on [BL, Bu]. Then

I i f b < B L

fc£ ifBL<b<Bu
ifb>Bu

|*(b) = 1{\
2~X) if BL < b < BU. Thus,

and

Example 2: Suppose B is normally distributed with mean p. and variance a2, i.e. its density is given
by f(b) = £<!>(*=*), where

<|>{t) = - J = exp( - l - ) , and <D(t) = f d>(u)du = 1 - O(-t)
V27T 2 J_oo

are the density and the distribution of the standard Normal distribution. Note that the survival
function of B is F(b) = < D ( ^ ) , and n(b) = \i®(^) - c$>{^). Thus

(9)
u

and

nx-v.^ (1Q)

Example 3: Suppose B has a shifted exponential distribution on [BL,OO], i.e.

•{
Aexp[-A(b-BL)] if b > BL
0 otherwise.

Hence

exp[—A(b — BL)] otherwise,
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and

H(b) = f tAexp[-A(t - BL)] dt = (BL + 7) - (b + U exp[-A(b - BL)].
JBL

 A A

Thus,

ZT(x) = Px exp[-MCx - BL)], (11)

and

ZP(x) =Px-9Cx[ l + 2exp[-A(Cx-BL)]] + £[i -exp[-A(Cx-BL)]] + 6BL (12)

2 Solution Techniques

We devise exact algorithms for solving T-KNAP(P,C,B(F)) and P-KNAP(P,C,B(F)) in the Sub-
section 2.1. While the general version of the latter problems are well-studied in the literature, and
consequently several efficient exact algorithms exist, we also present an exact algorithm not only
for the sake of completeness, but also because a presented variation of this algorithm can be useful
when one has only limited knowledge of the probability distribution. We also experience the worth of
knowing the exact form of the distribution in terms of computational speed. We present a heuristic
of these problems in the Subsection 2.2.

2.1 The Exact Algorithm

The exact algorithm that we consider for solving both T-KNAP(P, C, B(F)) and R-KNAP(P, C, B(F))
is a depth first branch and bound algorithm (DFBB). The pseudocode for the general DFBB
procedure is provided in Figure 1. There are two problem-specific functions in the procedure,
CalculateObjective(-) and CalculateBound(-). The CalculateObjective(-) function is easily im-
plemented using expression (2) for T-KNAP(P, C, B(F)) and expression (5) for P-KNAP(P, C, B(F))
respectively. Therefore the remainder of this subsection is dedicated to the definition of the Calculate-
Bound(-) function for both the problems.

We will use the following notation in this subsection. A vector x = (xi ,X2,... ,xa), a < n, x €
{0, l} a is referred to as a partial solution. Any vector x = (xi ,X2,... ,xn) € {0,1}n such that Xi = xt
for i = 1,... , a is called a realization of x. We denote by pj the ratio £f for j = 1,... , n, assume
that pi > p2 > • • • > Pn> and define pn+i = 0. We also denote na = ££=1 V)% ba = 2ZjLi Pj*j>£=1 V)% ba = 2ZjLi
7rm = £ jL, PjXj + Ljla+i cj, and b m = ^TjLi *&) + L j ^ a + i Cj, for a + 1 < m < n. Notice that

b a , and b m are all functions of x.

Computing CalculateBound(x) for T-KNAP(P,C,B(F)): We will find an upper bound for
Zy(x) for all realizations x of x. Let x be a realization of x with cost b in the interval [bm,bm+i].
The objective function of a linear relaxation of KNAP(P, C, b) (see Martello and Toth [10]), when
b € [bm ,bm + i] , is:

ni(b) = 7tm + p m + 1 (b - bm) = Ai,mb + A2,m> (13)

where Ai,m = pm+i and A2,m = Ttm — Ai>mbm. Therefore an upper bound for the maximum value
of ZT(X) for all realizations x of x with Cx = b G [bm,bm+i] is given by (Ai,mb + A2,m)F(b), and
the overall upper bound for all weakly feasible solutions is given by

max f{(7 t m -p m + 1 b m ) + pm + ib}-(A l f mb + A2,m)F(b)] = max {¥(m)}, (14)
b<Bu Lv J a<m<r
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Note:
n is the size of the problem, i.e the cardinality o/E;
BestSoFor stores the best solution found, initialized to 0;
BestPsi stores the objective function value 0/BestSoFar, initialized to —00;

CalculateObjective(x) calculates the objective function value of a given solution x.
CalculateBound(x) calculates an upper bound to the objective function value achievable from a given
partial solution x.

procedure DFBB
Parameters

x : Solution;
a : Index up to which values have been assigned in x;

begin
if (a = n) then
begin

if CalculateObjective(x) > BestPsi) then
begin

BestSoFar :=x;
BestPsi := CalculateObjective(x);

end;
end;
XQ+I := 1;

if (Px < Bu) and (CalculateBound(x) > BestPsi)
BranchAndBound(xt a •+• 1);

xa+i :=0;
if (CalculateBound(x) > BestPsi)

BranchAndBound(x, a -f 1);
end;

Fig. 1: Pseudocode for a depth first branch and bound algorithm

where r = max{k : bjc < Bu} and

V ( m ) = max (Ai>mb + A2,m)F(b). (15)
b m <b<b m + i

Notice that X2,m is constant over the interval [bm, bm+i]. If one chooses to restrict oneself to mean
or median feasible solutions, only the Bu in the definition of r need to be suitably replaced.

Upper bounds to W(m) can be calculated fast if we know in advance that F(b) is either convex
or concave over a given interval. The shape of F(b) is known for all distributions. For instance, F(b)
is linear for Uniform distributions, while for Normal distributions, F(b) is concave over [BL,^] and
convex over [jx, Bu], where \i is the mean of the distribution.

Let us first consider the case when F(b) is convex over [bm, bm+i]. Refer to Figure 2. The dashed
line shows a linear approximation F^b) of F(b) such that T\[b) > F(b) in the interval of interest.
Using elementary geometry we can represent T\{b) with the equation

where A3 m = F ( b
b - ^ ) ^ ( b - ) and A4>m - F(bm) -
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bm+1

Fig. 2: Linear approximation (upper bound) of F(b) when F(b) is convex

The maxima of the function n t(b) • Ft(b) occurs at b m = -
bound Wx(m) of W(m) is

7tmF(bm) i f b ^ < b m

1". So an upper

(17)

Fig. 3: Linear approximation (upper bound) of F(b) when F(b) is concave

Next, let us assume that F(b) is concave over [b m ,b m + i ] . Refer to Figure 3. The dashed line
shows a linear approximation Fi(b) of F(b) such that Fi(b) > F(b) for b m < b < bm+i. Fi(b) is
tangential to F(b) at b = b m . So its equation can be written as

Fi(b) = A5 ,m

where A5,m = f (bm) and A6>m = F(bm) - A5,mbm.

(18)
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Using arguments similar to those used for developing (17) we get an upper bound Yi(m) for
W(m) when b m < b < bm+i given by

7*mF(bm) i fb |a<bm

(19)

where

bi=--

A pseudocode for the CalculateBound(-) function for T-KNAP(P,C,B(F)) using expressions
(17) and (19) is given in Figure 4.

function CalculateBound
Parameter

x : Partial Solution
begin

r := max{k : bk < Bu};
for i = a to r do
begin

if F(b) is convex over [bi,bt+i] then
use (17) to calculate MMi);

else if F(b) is concave over [bi,bi+i] then
use (19) to calculate ^i(i);

else
use (15) to calculate W\{i) = Y(i);

end;
return max MMi);

a<i<r

end;

Fig. 4: CalculateBound(-) function for T-KNAP(P,bC,B(F))

Computing CalculateBound (x) for P-KNAP(P, C, B(Fj): We will now find an upper bound for
Zp(x) for all realizations x of x. Let x be a realization of x with cost b in the interval [bm ,bm+i].
From the linear relaxation of KNAP(P, C, b)

Px < 7tm + pm + i (b - bm) <

Also since u(-) is non-decreasing and F(-) is non-increasing,

i f b m < B L < b m . f l

- bm[l - F(bm)] if BL < b m .

Therefore an upper bound for the maximum value of Zp(x), for all realizations x of x is given by

max{¥(m)}, (20)

where

7rm+1 if b m + 1 < B L

= <( 7 c m + i + 6 n ( b m + i ) i f b m < B L < b m + 1 (21)
7r m , 1 +e{^(b m + 1 ) -b m [ i -F(b m ) ]} B L <b m .
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and r = max{k : bk < Bu}.

Prom the discussion above we can construct the function CalculateBound(x) for P-KNAP(P, C,
B(F)). The pseudocode for this function is given in Figure 5.

function CalculateBound
Parameter

x : Partial Solution
begin

if Cx < BL then
l:=max{k:bk < BL},

else
14-a;

r = max{k: bk < Bu};
return max ¥ m (from (21));

end,

Fig. 5: CalculateBound(-) function for P-KNAP(P,C,B(F))

Notice that the bound calculation for P-KNAP(P,C, B(F)) described in this section does not
use any special structure of the survival function F(-). Therefore we would not expect it to output
good upper bounds. In practice, a better bound would be obtained by searching for the maximum
value of 7rm + p m + 1 (b - bm) + ^i(b) - b[1 - F(b)] in each of the relevant intervals [b m ,b m + i ] . This
is illustrated in the examples below.

Example 4: Suppose that B is uniformly distributed on [BL, BU] . Then using expression (8), an upper
bound for Zp(-) for any realization of x with a cost in the interval [bm,bm+ j], BL < b m is given by

"™ ~2 (Bu-B L )

This expression is concave in b and reaches a maximum value at

Thus, for the uniform distribution, we can modify the bound W{m) to

if bm+i < BL

?tm+1 + 8ju(bm+i) if b m < BL < bm+i
7tm + 9{n(bm) - b m [1 - F(bm)]} BL < b m and b ^ < b m

7tm + pm + i (b* - bm) + e{^(bJrl) - b^[1 - F(b^)]} BL < b m and b m < b ^ < b m + 1

7tm+1 + e { j u ( b m + 1 ) - b m + i [ i - F ( b m + 1 ) ] } B L < b m a n d b ^ > b m + i ,
(22)

using F(-) and fi(-) as defined in Example 1.

Example 5: Suppose that B follows a shifted exponential distribution supported on [BL,OO] with
parameter A. Then using expression (12), an upper bound for Zp(-) for any realization of x with a
cost in the interval [bm ,bm+i], BL < b m is given by

+2exp[-A(b-BL)]] + ^[l -exp[-A(b - BL)]]
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This expression reaches a maximum value at

where LambertW(x) satisfies LambertW(x) • exp[LambertW(x)] = x.

Thus, for the shifted exponential distribution, we can modify the bound Y(m) to

i f b m + i < B L

if b m < BL < b m + i
- b m [1 - F(bm)]} BL < b m and b ^ < b m

— b m ) + 8{n(b£J — b ^ [l — F(b^)]} BL < b m and b m < b ^ < bm+i
0{H(bm+i) - bm+i [1 - F(b m + i ) ]} BL < b m and b ^ > b m + 1 ,

(23)

using F(-) and fi(-) as defined in Example 3.

2.2 The Heuristic

The heuristic developed for both T-KNAP(P,C, B(F)) and P-KNAP(P,C, B(F)) is based on local
search using a 2-swap neighborhood structure. The initial solution for local search was obtained
following a greedy procedure.

The greedy procedure considers the elements of E one by one in a non-increasing order of profit
to cost ratios and adds them to the knapsack if such an addition improved the objective function
value (i.e. ZT(0 in the case of T-KNAP(P,C, B(F)) and ZP(«) in the case of P-KNAP(P,C, B(F))).
It stops when all the elements in E have been considered.

Once the greedy solution is obtained, the local search procedure is started using the greedy
solution as the current solution. The local search procedure performs iterations until a stopping
condition is reached, after which it outputs the current solution at that stage and terminates. In
each iterations, all 2-swap neighbors of the current solution, i.e. solutions obtained by either throwing
out one of the elements in the current solution, or adding one element into the current solution, or
both, are examined to see if any of them have a better objective function value than the current
solution (i.e. are better neighbors). If a better neighbor is found, then the neighbor with the best
objective function value is denoted the current solution and the iteration is over. If no neighbor
is better than the current solution, then the stopping condition is said to have been reached. A
pseudocode of our local search heuristic is presented in Figure 6.

In the next section, we report the results of computations using the algorithms developed in this
section.

3 Computational Experience

We performed some computational experiments to evaluate the performance of the algorithms de-
veloped in the previous section. We report our observations here. It should be noted that these
observations are preliminary in nature, and need to be validated by more extensive computational
experiments.

We generated ten problems, two each of sizes 15, 20, 25, 40, and 60. The cost values (CJ 's) for
each of the problems were chosen from a discrete uniform distribution supported on {1,2 , . . . , 100}.
In one set of problems, consisting of one problem of each size, the profit values (pj's) were generated
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Note:
The elements of E are assumed to be ordered in non-increasing order of £*• ratios;
n 15 the size of the problem, i.e the cardinality o /E ;

CalculateObjective(x) calculates the objective function value of a given solution x.

procedure DFBB
begin

/ * Greedy procedure */

for i:= 1 to n do
begin

x:=xgreedy U{ej};
if (CalculateObjective(x) > CalculateObjective(xgrCcdy) then

Xgrecdy • = = X;

end;

/ * Local Search */
XcuTTcnt • = = Xgrecdyj

Stopping Condition := FALSE;
while (StoppingCondition = FALSE) do
begin

Xbest := the best 2-swap neighbor of xcUrrent;
if (CalculateObjective(xbest) > CalculateObjective(xcurrcnt) then

XcuTTcnt * = XbestJ

else
StoppingCondition := TRUE;

end;
return xCUrrcnt;

end;

Fig. 6: Pseudocode for a local search heuristic

independently from a discrete uniform distribution supported on {1,2,... ,100}. The problems in
this set were called the uncorrelated problems. The £f ratios in these problems were observed to
vary between 0.02 and 50.0. In the remaining problems, referred to as strongly correlated problems,
the profit values were chosen so that the £f ratios were from a uniform distribution supported on
[0.9,1.1]. We label each of the problems using the nomenclature "xy" where x was V or "s"
depending on whether the problem was uncorrelated or strongly correlated, and y denoted the
problem size. For example, the problem "u25" refers to the uncorrelated problem with 25 elements.

In our computation, we considered two probability distributions to model the randomness of the
budget B, namely the Uniform and the Normal distribution. For the ease of comparison, the effective
supports of these distributions were taken to be [BL = bi Y-) ch ^u = b u £ \ Cj]. In the case of the
normal distribution we chose the mean (p,) and the variance (a2) such that p-±3a = (BL, BU).)
For each problem, we experimented with three sets of [bi, bu] values, viz. [0.2, 0.8], [0.3, 0.7], and
[0.4, 0.6], which were chosen to ensure that the means of B remained the same for all the problems.

The computations were conducted on a Pentium 200 MHz computer running the Linux operating
system. The maximum time allowed to solve a problem was set to 500 CPU seconds. If a run did not
complete in the time allotted, then the corresponding entry is marked with a '—' in our tables. The
CalculateBound(-) function for T-KNAP problems was implemented using expression (17) when
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B was uniformly distributed. For normally distributed B, expression (19) was used in the interval
[BL, £U+5L] and expression (17) in the interval (Bu^BL )Bu]. Preliminary experimentation with the
CalculateBound(-) function for P-KNAP problems showed that expression (21) did lead to upper
bounds of extremely poor quality. Therefore when B was uniformly distributed, expression (22) was
used. When B was normally distributed, the bound was obtained by using a search algorithm to
find the position of the maximum value of the relaxation of Zp(-) in the various intervals.

Characteristics of the Optimal Solution: The profit sums, costs, and the respective objective
function values of an optimal solution x* for T-KNAP problems and P-KNAP problems are presented
in Tables 1 and 2. Note that the optimal solution, in either approach, need not be unique, and there
may exist other optimal solutions with different profit and cost sums. In this part the optimal
solution that we refer to was generated by our algorithms described in the Subsection 2.1.

The costs of the optimal solutions were observed to be closer to BL in all cases than to By. This
closeness (to BL) was measured by computing the expression ^*~^ where C* was the cost of our
optimal solution. For P-KNAP problems, increasing the 9 value amounts to increasing the penalty
for infeasibility, and hence the costs of the optimal solutions were closer to BL at higher 9 values
than at lower 9 values as seen in Table 2. Disregarding profit accrued from an infeasible solution
is a way of (severely) penalizing infeasibility; hence the costs of the optimal solutions to T-KNAP
problems were even closer to BL. The closeness was also more pronounced for uniformly distributed
B than for normally distributed B, since the heavier left tail of the uniform distribution imposed a
stronger penalty for exceeding the budget. Similar behaviour is expected for all distributions with
a equal or heavier left tail. Not surprisingly, in a few of these problems, especially when the range
of the Uniform distribution was taken to be relatively small, the optimal solution was observed to
be even strongly feasible. Another interesting observation regarding the measure of closeness of
optimal solutions to BL values for P-KNAP problems was that it was not affected by the size of the
problems.

'The objective values of the optimal solutions were seen to increase with a decrease in the length
of the interval [bi, bu]- This is actually a direct effect of an increase in bi, which by our choice is
associated with the reduction in length of the [bi, bu] intervals.

Note that for all the problems that we considered, the optimal solutions output, for T-KNAP
as well as P-KNAP problems, were mean feasible (and consequently median feasible, since both the
uniform and the normal distributions are symmetric). Hence, we could have restricted ourselves
to solutions in T^ or T^o.s) for T-KNAP problems, as well as for P-KNAP problems with at least
moderately large 9 values. Such a restriction would have made the calculation of bounds faster. We
believe that this observation would be valid for many common distributions encountered in real-life
problems.

Performance of the Exact Algorithm: Table 3 presents the number of nodes expanded by the
DFBB algorithm and its execution time in CPU seconds for the case in which the budget B was
uniformly distributed. Table 4 presents the same observations for the case in which the budget B
followed a normal distribution.

In both tables we observe that the time taken to solve strongly correlated problems was much
higher than the time taken to solve an uncorrelated problem of the same size. This observation is in
line with similar observations for deterministic 0-1 knapsack problems (refer Martello and Toth [10]).

For P-KNAP problems, in general, the number of nodes expanded and the execution time of the
DFBB algorithm increased with increasing 9 value. We also saw that the execution time and the
number of nodes expanded in the DFBB tree increased with increasing length of the [bi, bu] interval
in case of T-KNAP problems but decreased in case of P-KNAP problems. Exceptions to this trend
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were noticed in strongly correlated T-KNAP problems in which B was uniformly distributed and in
P-KNAP problems with 8 = 10 and normally distributed B.

The time needed to expand a node was much higher for P-KNAP problems in which B was
normally distributed. This was because, in these problems, the calculation of upper bounds involved
a search procedure, which took more time. The bounds found in this manner are however seen
to be very effective, since the number of nodes expanded in these problems were much lower than
the number of nodes expanded in similar size problems in which B followed a uniform distribution
supported on the same interval.

Performance of the Heuristic: The local search heuristic developed in the previous section per-
formed very well, both in terms of solution quality as well as execution times. Our computational
experience with this heuristic is summarized in Tables 5 and 6. Notice that it took less than 0.05
CPU seconds on each of the T-KNAP problems, and less than 0.15 CPU seconds on each of the
P-KNAP problems. The average suboptimality was less than 0.07% for T-KNAP problems and
0.048% for R-KNAP problems. Local search performed better when B was normally distributed
than when it was uniformly distributed.

4 Summary and Directions of Future Research

In this paper we consider a static stochastic 0-1 knapsack problem in which the budget is random.
The relevant literature is very briefly surveyed in the introductory section. In Section 1, we formally
define the knapsack problems that we study here. We extend the concept of feasibility of a solution
for deterministic knapsack problems, to define strongly feasible solutions that are feasible for all
possible values that the budget may assume, and weakly feasible solutions that are feasible only
for a range of the possible values of the budget. We also define alternative concepts of solution
feasibility like mean feasibility and feasible with a reliability coefficient. We revise the expression
of the objective function value of the deterministic knapsack problem to incorporate two different
methods of penalizing infeasibilities. We show that maximizing the expected value of the objective
function is equivalent to minimizing the expected value of the regret associated with a solution
to the static stochastic knapsack problem under very reasonable assumptions. We conclude the
section by defining two problems, T-KNAP and P-KNAP, based on two different ways of handling
infeasibilities.

In Section 2 we devise an exact algorithm and a heuristic to solve T-KNAP and P-KNAP
problems. The exact algorithm is based on depth first branch and bound (DFBB), and the heuristic
is based on local search, starting with a greedy solution. Most of this section is devoted to methods
for computing upper bounds for the DFBB algorithm. We do not need to use the functional form of
the survival function to derive these bounds; consequently the bounds are useful even when the exact
functional form of the survival function is unknown. While the computed bounds (consequently the
algorithm) are meant explicitly for weakly feasible solutions, they can be improved (in terms of
computational speed) for smaller classes of feasible solutions (like Tn or J*(a)), by adjusting the
value of r in (14) and (21) appropriately.

Section 3 contains the results of preliminary computations with T-KNAP and P-KNAP problems.
We see that the costs of the optimal solutions to both T-KNAP and P-KNAP problems are almost
always very close to the lowest possible value of the budget. This shows that considering mean
or median feasible solutions instead of weakly feasible solutions does not affect the quality of the
output. We also see that the time taken by the exact algorithm almost always increases when the
extent of penalization of infeasibilities in P-KNAP problems increases. The execution times increase
for T-KNAP problems when the length of the support for the distribution of the budget increases,
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but decrease in case of P-KNAP problems- The local search heuristic is seen to output solutions
with objectives within 2% of that of the optimal solution within 0.15 CPU seconds.

We believe that there is need for much more elaborate computational experiments with T-KNAP
and P-KNAP problems. The results that we report in Section 3 are based on ten problems. These
results need to be verified for a much larger data set — containing problems in which the profit
and cost values come from distributions other than uniform, and ones in which the budget follows
distributions other than uniform and normal. These results can be used, for example, to examine
whether our observation regarding the exceptional hardness of strongly correlated problems in which
the budget follows a uniform distribution with b u = 0.3 and b\ = 0.7, and the easy solvability of
P-KNAP problems in which the budget follows a normal distribution with b u = 0.3 and bi = 0.7 is
really valid, or whether it appears so due to our small sample size of observations.

Note that both T-KNAP and P-KNAP problems penalize infeasibilities. An interesting question
is whether there exists a 6 value for P-KNAP problems, for which an optimal solution to the T-
KNAP problem is also an optimal solution to the P-KNAP problem? Intuitively, it seems that such
a 6 value should exist, since for very low valus of 0, the costs of optimal solutions to P-KNAP
problems should be very close to x | u , the maximum profit solution to KNAP(P,C,Bu), while for
very high valus of G, the optimal solutions to P-KNAP problems are strongly feasible. Assuming that
such a 8 value exists, questions regarding how it depends on the size of the problem, the distribution
of the profit and cost variables, and the randomness of the budget arise. We could not answer
these questions with our limited experimentation, but we think that more elaborate computational
experiments would help.

Another possible direction of future research in these problems is in the area of algorithm de-
velopment. In this paper, we have used a DFBB algorithm with rather simplistic bounds. More
complex, and possibly distribution specific bounds can markedly reduce the execution times for ex-
act algorithms. Development of such bounds promises to be interesting. Apart from development of
new bounds for DFBB, one can also look for ways to adapt other specialized algorithms for deter-
ministic knapsack problems to solve the stochastic version of the problem. Another possible avenue
of research in algorithm development could be to develop algorithms to solve dynamic stochastic
knapsack problems with random budgets.

A third direction of research would be to analyze these problems under non-linear penalty as-
sumptions. One could also analyze related problems, like the integer knapsack problem, and the
bin-packing problem, under similar budget or capacity variations. It follows from Ghosh and Das [6]
that if the profit vector, in addition to the budget, is random, then the optimization process is
unaffected if the random elements in P are replaced by their expected values. In future, we plan
to generalize the study by Cohn and Barnhart [5] and analyze a more general class of 0-1 knapsack
problems with random cost elements.
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Problem
ul5

u20

u25

u40

u60

sl5

s20

s25

s40

s60

[bi,bu]
[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

BL
142.4
213.6
284.8

156.6
234.9
313.2

234.6
351.9
469.2

390.4
585.6
780.8

579.6
869.4
1159.2

4 148.0
222.0
296.0

217.0
325.5
434.0

242.2
363.3
484.4

404.8
607.2
809.6

540.0
810.0
1080.0

Bu
569.6
498.4
427.2

626.4
548.1
469.8

938.4
821.1
703.8

1561.6
1366.4
1171.2

2318.4
2028.6
1738.8

592.0
518.0
444.0

868.0
759.5
651.0

968.8
847.7
726.6

1619.2
1416.8
1214.4

2160.0
1890.0
1620.0

Px*
511
575
607

607
706
767

892
965
1060

1244
1278
1449

1919
2149
2419

304
269
313

451
390
457

502
455
518

829
727
850

1147
981
1151

T-KNAP
Cx* Objective
177
228
266

159
245
309

291
355
465

542
586
776

643
866
1150

285
251
294

429
370
435

467
422
483

789
689
810

1077
916
1081

469.61
545.93
607.00

603.9
683.23
767.00

820.52
958.62
1060.00

1082.98
1277.35
1449.00

1849.03
2149.00
2419.00

210.20
242.65
313.00

304.13
350.01
454.89

346.69
399.86
518.00

566.73
653.55
849.16

766.79
884.72
1148.87

P-KNAP
Px* Cx*
511
575
627

662
723
777

892
1025
1083

1244
1343

2064

218
269
334

300
388
477

342
443
545

571

757

177
228
293

202
266
324

291
416
491

542
649

772

202
215
314

281
368
456

316
411
509

537

702

(6-10)
Objective
496.99
571.36
624.64

640.06
707.56
773.28

869.4
981.21
1072.87

1145.88
1317.26

1957.55

185.16
254.79
323.05

268.54
367.19
465.85

303.52
419.51
532.51

499.04

676.00

P-KNAP
Px* Cx*
452
575
627

612
706
767

838
965
1060

1086

167
240
321

249
353
457

279
402
523

E
—

149
228
293

164
245
309

258
355
465

423

E
154
224
302

231
333
435

257
372
489

E
—

(9 = 50)
Objective
449.45
556.8
615.2

609.09
697.86
767.00

818.55
964.49
1060.00

1063.31

—

164.97
239.66
314.92

241.47
349.76
456.89

271.46
398.09
520.82

E
—

P-KNAP
Px* Cx*
452
543
607

607
706
767

815
965
1060

—

—

167
240
314

241
347
457

270
398
522

E
—

149
215
266

159
245
309

232
355
465

_

—

154
224
296

223
327
435

248
368
487

—

—

( 9 - 100)
Objective
446.9
542.66
607.00

606.39
689.71
767.00

815.00
963.98
1060.00

—

—

162.95
239.32
314.00

238.23
346.74
456.77

267.69
395.72
520.60

—-

—

Tab. 1: Characteristics of thn Optimal Solution. Uniform Distribution
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ul5

u20

u25

u40

u60

sl5

s20

s25

s40

s60

[bubu]
[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

BL
142.4
213.6
284.8

156.6
234.9
313.2

234.6
351.9
469.2

390.4
585.6
780.8

579.6
869.4
1159.2

148.0
222.0
296.0

217.0
325.5
434.0

242.2
363.3
484.4

404.8
607.2
809.6

540.0
810.0
1080.0

Bu
569.6
498.4
427.2

626.4
548.1
469.8

938.4
821.1
703.8

1561.6
1366.4
1171.2

2318.4
2028.6
1738.8

592.0
518.0
444.0

868.0
759.5
651.0

968.8
847.7
726.6

1619.2
1416.8
1214.4

2160.0
1890.0
1620.0

Px*
575
607
627

711
762
777

1025
1048
1083

1393
1425
1502

2277
2355
2473

304
326
343

451
457
495

502
528
567

823
863

1114
1168
1260

T-KNAP
Cx* Objective
228
266
293

250
304
324

416
442
491

703
741
831

993
1076
1230

285
306
323

429
435*
474

467
493
531

783
823

1045
1098
1188

554.22
589.03
624.44

685.79
725.72
773.19

949.35
1013.65
1074.93

1280.16
1374.35
1482.34

2144.39
2290.66
2443.35

265.62
293.93
333.06

383.98
425.21
480.28

438.07
484.77
548.33

716.00
793.38

968.73
1073.68
1214.73

P-KNAP
Px* Cx*
607
627
636

762
767
797

1025
1083
1102

1393
1470
1540

2355
2419
2523

291
326
356

423
469
516

482
539
598

789
877

1077
1188
1307

266
293
320

304
309
354

416
491
522

703
793
882

1076
1150
1298

272
306
336

402
449
494

449
503
560

750
837

1009
1117
1234

(9-10)
Objective
572.55
606.99
629.46

710.94
754.42
788.28

987.40
1041.25
1094.06

1321.25
1423.03
1518.68

2221.83
2369.24
2498.91

259.62
303.83
346.60

373.99
436.16
501.18

426.99
500.43
572.17

697.49
816.32

946.04
1106.61
1265.81

P-KNAP
Px* Cx*
575
595
627

706
733
787

965
1025
1083

1264
1393

2124
2332

232
291
343

337
417
488

392
471
561

635
771

860
1042

228
255
293

245
281
339

355
416
491

569
703

833
1050

216
272
323

317
396
467

362
438
525

599
732

800
976

(9=50)
Objective
523.97
581.28
625.59

660.51
717.45
776.31

912.49
1005.11
1078.44

1200.30
1352.10

2039.74
2265.08

207.57
269.5
329.96

300.88
388.65
476.29

342.30
443.83
543.67

559.35
725.64

757.98
981.97

P-KNAP
Px* Cx*
511
575
627

667
723
777

915
1025
1083

1244
1357

2064

218
269
334

306
396
479

358
455
549

577

781

177
228
293

207
266
324

317
416
491

542
675

772

202
251
314

287
376
458

331
422
513

543

725

(9 = 100)
Objective
497.97
570.16
624.18

643.52
709.02
773.07

873.41
985.23
1073.87

1155.82
1312.98

1972.29

189.39
256.16
324.46

273.34
370.69
467.56

310.63
424.05
534.41

509.38

690.16

Tab. 2: Characteristics of the Optimal Solution. Normal Distribution



Problem
ul5

u20

u25

u40

u60

sl5

s20

s25

s40

s60

[b l fbu]
[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

T-KNAP
Nodes Time

67
53
33

169
109
62

161
126
89

761
657
406

1381
1097
558

127
142
169

168
2182
148

1078
2691
1120

4227
643354
4381

13165
314623
12564

<0.01
<0.01
<0.01

0.01
0.01
0.01

0.01
<0.01
<0.0l

0.07
0.05
0.03

0.18
0.12
0.04

0.01
<0.01
<0.01

<0.01
0.14
0.01

0.07
0.20
0.05

0.08
78.29
0.27

1.73
65.20
1.17

P-KNAP
Nodes

62
718
3833

162
2573
83227

556
6659

854320

176
863127

82

676
3528
7583

2528
38864
166893

5659
197615

2237358

848

9701

(9 -10)
Time
0.01
0.03
0.11

0.01
0.10
2.80

0.03
0.32
33.61

0.02
70.37

0.01

0.02
0.11
0.21

0.11
1.44
5.53

0.29
8.56
87.86

0.11

1.94

P-KNAP
Nodes
1269
5547
11612

8627
33008
233950

59850
152176

6919235

5200212

—

1201
4202
7777

12567
79208
190361

151410
1046595
3308797

—

—

(9 = 50)
Time
0.04
0.17
0.31

0.33
1.16
7.51

2.99
6.26

257.93

424.41

E
0.04
0.12
0.22

0.49
2.68
6.24

6.55
43.02
129.00

—

—

P-KNAP
Nodes
2039
6567
12103

19063
41301
265364

168840
695996

8886362

—

—

1226
4211
7805

16844
90505
190361

185191
1194176
3308794

—

—

( 9 = 100)
Time
0.06
0.18
0.32

0.74
1.39
8.42

7.97
28.02
327.35

—

—

0.03
0.13
0.21

0.62
3.14
6.28

7.91
48.39
129.36

—

—

Tab. 3: Performance of the Exact Algorithm. Uniform Distribution



Problem
ul5

u20

u25

u40

u60

sl5

s20

s25

s40

s60

[bubu]
[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

T-KNAP
Nodes Time

56
43
24

112
110
55

123
94
68

619
541
312

964
741
536

995
2892
92

4223
14367
2376

1265
7160
9123

72532
1218899

33245
35705

357683

0.01
0.01

<0.01

0.01
0.01

<0.01

0.02
<0.01
0.01

0.08
0.06
0.03

0.18
0.12
0.06

0.01
0.24
0.01

0.54
1.43
0.18

0.15
0.93
0.83

18.88
245.81

12.12
11.06
73.08

P-KNAP
Nodes

30
24

1043

56
110

3789

80
65

493

378
304
1163

552
503
742

67
63

1435

112
124

5621

743
675
985

3110
2773

11169
9874
7558

( 9 - 1 0 )
Time
0.04
0.03
0.79

0.08
0.20
3.71

0.19
0.15
1.07

1.00
0.74
4.10

2.60
2.11
4.17

0.07
0.05
0.78

0.17
0.21
4.45

1.09
0.90
1.32

8.41
7.36

40.27
32.82
22.47

P-KNAP
Nodes

39
36

2504

70
908

29819

87
420

61640

358
1308

527
1634

110
2078
6824

180
5232

90494

536
3716

460812

2182
83253

7486
19040

(0 = 50)
Time
0.06
0.07
1.50

0.13
1.32

19.31

0.26
1.22

75.23

1.15
7.64

2.94
15.07

0.16
1.25
2.56

0.53
5.86

42.94

0.87
5.17

204.91

5.99
279.27

28.25
136.72

P-KNAP
Nodes

87
315

3759

161
1276

61986

274
2692

433406

536
94995

539

537
3063
7373

1181
21703
145536

601
41489
770976

2046

6593

(0 = 100)
Time
0.19
0.36
2.05

0.35
1.56

33.35

1.18
6.51

406.94

2.97
412.40

3.39

0.49
1.74
2.69

2.40
18.11
68.27

1.32
36.33
304.98

5.88

25.36

Tab 4: Performance of the Exact Algorithm. Normal Distribution



Problem
ul5

u20

u25

u40

116O

si 5

s20

s25

s40

s60

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

T-KNAP
Objective Time

469.61
545.93
607.00

603.90
683.23
767.00

820.52
958.62
1060.00

1082.98
1275.00
1436.00

1849.03
2149.00
2419.00

210 20
242.65
306.80

304.13
350.00
454.89

346.69
399.86
518.00

566.73
653.45
848.16

766.79
884.72
1148.00

<0.01
<0.01
<0.01

0.01
<0.01
<0.01

<0.01
<0.01
0.01

0.01
0.01
0.02

0.02
0.02
0.02

<().() 1
0.01

<0.01

<0.01
<0.01
<0.01

<0.01
<0.01
<0.01

0.02
0.01
0.01

0.02
0.02
0.04

P-KNAP (9
Objective

496.99
571.36
624.64

640.06
707.56
773.28

869.40
981.21
1072.87

1145.88
1317.26
1470.32

1957.55
2212.59
2440.33

185.16
254.79
323.05

267.55
367.19
465.42

303.52
419.43
532.51

499.04
684.68
870.84

676.00
929.00
1177.00

= 10)
Time
<0.01
<0.01
<0.01

<0.01
0.01
0.01

<0.01
<0.01
<0.01

0.01
0.01
0.02

0.03
0.03
0.03

<0.01
<0.01
<0.01

<0.01
0.01
0.01

0.01
<0.01
<0.01

0.01
0.05
0.02

0.05
0.03
0.06

P-KNAP (9
Objective

449.45
556.80
615.20

609.09
697.86
767.00

818.55
964.49
1060.00

1063.31
1290.34
1460.47

1866.68
2169.85
2422.79

164.97
239.66
312.78

241.47
349.76
456.89

271.46
398.09
520.82

444.94
651.28
852.54

603.19
881.80
1154.40

= 50)
Time
0.01

<0.01
0.01

0.01
0.01
0.01

0.01
<0.01
0.01

0.01
0.02
0.01

0.03
0.04
0.06

<0.01
0.01
0.01

0.01
0.01
0.01

<0.01
0.01
0.01

0.02
0.03
0.03

0.05
0.06
0.06

P-KNAP (9
Objective

446.9
542.66
607.00

606.39
689.71
767.00

815.00
963.98
1060.00

1049.10
1276.26
1451.08

1844.36
2160.70
2419.00

162.95
237.32
311.00

238.23
346.74
456.77

267.67
395.72
519.63

438.87
647.22
847.57

593.39
875.40
1152.47

= 100)
Time
0.01
0.01
0.01

0.01
<0.01
0.01

0.01
0.01
0.02

0.01
0.02
0.02

0.04
0.03
0.03

<0.01
0.01
0.01

0.01
0.01

<0.01

0.01
0.01
0.01

0.01
0.01
0.04

0.04
0.05
0.03

Tab 5: Performance of Local Search. Uniform Distribution



Problem
ul5

u20

u25

u40

u60

sl5

s20

s25

s40

s60

[bubj
[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

[0.2,0.8]
[0.3,0.7]
[0.4,0.6]

T-KNAP
Objective Time

554.22
589.03
624.44

685.79
725.72
773.19

949.35
1013.65
1074.93

1280.16
1374.35
1482.34

2144.39
2290.66
2443.35

265.62
293.93
331.96

383.98
425.21
480.28

438.07
483.85
547.22

716.00
793.29
898.00

968.10
1072.76
1214.73

0.01
0.01

<0.0l

<0.01
<0.01
<0.01

0.01
<0.01
0.01

0.01
0.01
0.01

0.05
0.02
0.05

<0.01
0.01

<0.01

<0.01
<0.01
<0.01

0.01
0.01
0.01

0.01
0.01
0.01

0.05
0.05
0.05

P-KNAP (9
Objective

572.55
606.99
626.72

710.94
754.42
788.28

987.40
1041.25
1090.21

1321.25
1423.03
1518.68

2221.83
2369.24
2498.91

259.62
303.83
346.60

373.97
436.14
501.18

426.99
500.43
572.17

697.49
816.32
936.15

946.04
1106.61
1265.81

= 10)
Time
<0.01
<0.01
<0.01

<0.01
<0.01
<0,01

0.01
<0.01
<0.01

0.02
0.02
0.03

0.04
0.04
0.04

0.01
<0.01
<0.01

0.01
<0.01
<0.01

<0.01
<0.01
<0.01

0.04
0.04
0.04

0.03
0.08
0.04

P-KNAP
Objective

523.97
581.28
625.59

660.51
717.45
775.52

912.49
1005.11
1078.44

1200.30
1352.10
1487.55

2039.74
2265.08
2450.65

207.57
269.50
329.96

300.88
388.34
475.29

342.30
443.83
543.67

559.35
725.64
889.30

757.98
981.97
1204.99

(9 -50)
Time
<0.01
<0.01
<0.01

<0.01
<0.01
<0.01

<0.01
<0.01
<0.01

0.03
0.02
0.01

0.04
0.04
0.07

<0.01
<0.01
<0.01

0.01
0.01

<0.01

0.01
0.01

<0.01

0.01
0.01
0.03

0.03
0.15
0.04

P-KNAP (9
Objective

497.97
570.16
624.18

643.52
707.95
773.07

873.41
985.23
1073.87

1155.82
1312.98
1473.11

1972.29
2219.56
2439.51

189.39
256.16
324.46

273.34
370.68
467.50

308.56
424.05
534.41

509.38
692.25
874.13

690.16
936.77
1181.38

= 100)
Time
<0.01
<0.01
<0.01

<0.01
<0.01
<0.01

<0.01
<0.01
<0.01

0.01
0.01
0.01

0.05
0.05
0.04

<0.01
<0.01
<0.01

<0.01
0.01

<0.01

0.01
<0.01
<0.01

0.02
0.03
0.01

0.07
0.07
0.08

Tab. 6: Performance of Local Search. Normal Distribution


