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Abstract

In this paper, we initiate the study of the protein folding problem from an integer

linear programming perspective. The particular variant of protein folding that we ex-

amine is known as the hydrophobic-hydrophilic (HP) model of protein folding on the

integer lattice. This problem is known to be NP-hard and also maxSNP-hard. We ex-

amine various alternate formulations for the planar version of this problem and present

some preliminary computational results. Hopefully, this sets the stage for a polyhedral

combinatorics assault on this important problem.

1 Introduction

Proteins are biological molecules that are responsible for implementing various functions in

all living organisms. Each protein has well defined functions, which range from building up

DNA and RNA molecules to controlling different parameters in living cells. It is amazing that

proteins are built of very simple building blocks, known as amino acids [4]. There are twenty

different amino acids. Amino acids are linked to each other by means of peptide bonds.

Determining the structure of proteins is a very important problem. The three dimensional

structure of a protein is believed to be a very important determinant of the properties of

the protein. This becomes crucial in drug design where the aim is to obtain proteins with

specific functionalities. A remarkable discovery was made by Christian Anfinsen and his
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colleagues in the 1950s when they found that many simple proteins had a unique native

structure, which just seems to depend on the sequence. This has been subsequently verified

for a large number of proteins and it is now believed that the native structure is a minimum

energy configuration (The Thermodynamic Hypothesis). This has led to an enormous interest

in trying to develop methods to predict the three dimensional structure from the sequence

information via optimization techniques. Determining a protein sequence has become feasible

with current technology, but determining the exact three dimensional structure is still a very

slow and expensive process that requires crystallization of the protein and a majority of

proteins cannot be crystallized.

In principle, it should be possible to predict the fold of a protein into its native con-

formation, once we are given the sequence of the constituent amino acids. This is known

as the protein structure prediction problem and is sometimes referred to as deciphering the

second half of the genetic code. While large proteins fold in nature in seconds, computational

chemists and biologists have found it to be a huge challenge to compute the minimum energy

conformations using various formulations of this optimization problem. Recent work by the-

oretical computer scientists on this problem [8] has shown that the problems are NP-hard (cf.

[13]) and even the very simple lattice model examined in this paper is known to be max-SNP

hard and therefore unlikely to admit polynomial-time approximation schemes as well.

The difficulty of working with the detailed atomic level model has motivated biologists

to work on simple discrete models. One way to discretize this problem is to only consider

embeddings on a lattice. The energy function also has to be defined appropriately in this new

setting. The resulting minimum energy conformation problems are essentially combinatorial

optimization problems.

Broadly, three optimization modeling strategies have been proposed for protein folding.

The Protein Structure Prediction Model (PSP model). This model is a general

nondiscrete model defined formally by Ngo and Marks [19], who also give a NP-hardness

result for this model. In this model, the protein is described by the complete list of the

atoms in the molecules, their connectivities, bond lengths and angles and force constants

between all pairs of atoms. The energy of a conformation is a nonconvex function obtained

by summing the contributions of different kinds of interactions. The NP-hardness is shown

by a reduction from the partition problem.



The Lattice Polymer Embedding Model (LPE model). The LPE model was studied

by Unger and Moult [27]. The protein is modelled as a chain of beads. The space is the

collection of embeddings in the 3D cubic lattice. An embedding means that each bead must

be placed at some lattice site, and successive beads must be adjacent on the lattice. In addi-

tion, the embedding must be not self-intersecting. The energy is defined as a weighted sum

of pairwise interaction energies (functions that depend on the lattice distance between pairs

of beads). The objective is to find the conformation that minimizes this energy. Unger and

Moult show that this problem is NP-hard, by a reduction from the optimal linear arrange-

ment. The HP model that we discuss later is a special case of this model.

The Charged Graph Embedding Model (CGE model). This model also describes

the protein as a sequence of beads. A charge of -1, 0 or +1 is associated with each bead.

For each pair of beads, the interaction energy is defined to be the product of the charges

divided by the distance separating the beads (provided the distance is within a cutoff). The

total energy is simply the sum of pairwise energies. One important condition is that bonds

are allowed to cross, as long as there is at most one bead per site. Praenkel [12] showed that

this problem is also NP-hard by reduction from 3D matching. The CGE model incorporates

charges on the residues, which is a realistic feature; but the bonds permitted are too general.

We now consider a popular model of protein folding called the Hydrophobic-Hydrophilic

model.

The Hydrophobic-Hydrophilic Model (HP model). This model was introduced by

Dill [10] as a special case of the LPE model and has been studied extensively in [11,16,17,18,

28,29] and is the simplest possible abstraction of the folding problem, which is still nontrivial

and retains the hardness features of the original problem.

The model starts with classifying the twenty amino acids as H (Hydrophobic or nonpo-

lar) and P (Hydrophilic or polar). This classification is known from experimental results.

A protein is modelled as a sequence of H's and P's. The conformations allowed are not

self-intersecting embeddings on a two or three dimensional cubic lattice. A pair of amino

acids that occur in successive positions in the chain are called connected neighbours, while a

pair of nonsuccessive amino acids that are adjacent in the embedding are called topological

neighbours. The energy of any folding is proportional to the negative of the number of pairs



of H's that are topological neighbours. Therefore, the aim is to maximise the number of

topological neighbours.

Even this simple model is NP-hard to solve, and proving this was an open question for a

long time (see [1,2,3,8,9,15,20,22,26]). Even before hardness results were known, Hart and

Istrail [14] gave a simple approximation algorithm, which achieves a worst-case ratio of 1/4

for 2D lattices and 3/8 for the 3D case. Very recently, Alantha Newman [21] has improved

the 1/4 bound for the 2D case to a 1/3 bound with a linear-time approximation algorithm.

A lot of empirical work has also been done on this model. Dill et al. [11] have extensively

studied the biological properties of this model by actual enumeration of all conformations

for small length sequences. Unger and Moult [28,29] looked at this problem from a genetic

algorithm viewpoint and they were able to obtain compact foldings of fairly long sequences,

but they were not able to give any guaranteed bounds on their algorithms.

In this paper we focus on the HP model and in particular on the 2D lattice embedding

of the main chain. The next five sections describe integer programming formulations of this

problem. We report some very preliminary computational experiments carried out on these

formulations in Section 7 and conclude with a brief agenda for research on folding proteins

using integer programming.

2 Formulation

The 2D - HP protein folding model on a rectangular lattice is formulated as an integer linear

programming problem. A protein is a chain of amino acid residues. The sequence of amino

acids in the chain to be folded on the two-dimensional grid is denoted as s^, k = 1,2, • • • ,n.

Each amino acid Sk is either hydrophobic or hydrophilic. The set of amino acids that are

hydrophobic is denoted as H. Amino acids st and st+i, 1 < t < n — 1 are adjacent on the

chain.

In this formulation, a (2n — 1) x (2n - 1) grid is used. Each lattice point or vertex is

denoted as (i,j), 1 < i, j < 2n — 1. Two vertices (i, j) and (u,v) are said to be neighbours

on the grid if one of the following holds.

• u — i and v = j + 1 or v = j — 1

• v = j and u = i + l or u = i — 1



The set of vertices adjacent to vertex (i,j) is denoted as JVy. Note that if (u,v) G N{j,

then (i,j) G Nuv, We define the grid graph G = (F, # ) , where every edge e is of the form

((t,jf), (u,v)) where (tx,v) G JVjj and 1 < i, j < 2 n - 1. The first amino acid, si , is assumed to

be anchored at the centre of the grid, i.e, at the lattice point (n, n). In Section 4, it is shown

that the size of the grid can be reduced considerably, thereby eliminating a large number of

variables.

The protein folding problem on a two-dimensional grid involves placing the amino acids

Sk, I < k < n &t the vertices (i , j) , 1 < i,j < 2n — 1 such that the following constraints are

satisfied.

(i) Each amino acid is placed at precisely one vertex,

(ii) Each vertex has at most one amino acid,

(iii) Amino acids that are adjacent on the chain must be placed at adjacent vertices.

The objective is to place the amino acids on the vertices so that a maximum number of

amino acids in the set H that are nonadjacent on the chain are adjacent on the grid, i.e., are

topologically adjacent.

The variables are defined as follows: for 1 < z, j < 2n — 1 and 1 < k < n,

• x^j is 1 if amino acid s^ is placed at the grid point (i,j) and 0 otherwise.

• yf? is 1 if some sa G H and s^ G H are placed at the vertices (i, j) and {u,v) which are

neighbours, i.e., (u,v) G A^j, and 0 otherwise

The integer programming formulation is as follows:

(P) max £ y%

subject to

= 1 (1)

< 1 for 1 < i,j < 2 n - 1 (2)

= 1 for 1 < fc < n (3)



Vij ^ £4foralledges((i,j),(u,t;)) (5)

Vij ^ £ * L for all edges ((i,j),(u,t;)) (6)

x*j == 0 or 1 for 1 < ij < In - 1 and 1 < k < n (7)

y?v > 0 for all edges ((t,i),(u,v)) (8)

The first constraint anchors the first amino acid, si, in the chain. The second set of constraints

ensures that at most one amino acid is placed at any vertex. The requirement that each amino

acid is placed at some vertex is ensured by the constraint set (3).

The first amino acid is anchored at the vertex (n, n) and the constraint in (4) for i = n,

j = n and k = 1 ensures that the second amino acid is placed at a vertex, say (a, b) E Nnn

. Next the constraint in (4) for % = a, j = b and k = 2 ensures that the third amino acid

is placed at a vertex in N^ Repeating this argument, it follows that all amino acids are

placed at some vertex. However constraint set (3) ensures that no amino acid is placed at

more than one vertex.

The constraint sets (5) and (6) imply that y^ may be set to 1 only if an amino acid

sa E H is placed at vertex (i, j) and another amino acid s^ E H is placed at the neighbouring

vertex (u, v). Because of the objective function, it follows that y™ is set to 1 if and only if two

hydrophobic amino acids are placed at neighbouring vertices (i, j) and (u,v). The constraint

sets (5) and (6) are written in a convenient form. Clearly, some constraints are duplicated

since (w, v) E N{j implies (i,j) E Nuv. It is understood that such duplicates are eliminated,

i.e., for any pair (i,j) and (u^v) of neighboring vertices only one constraint in (5) and one

constraint in (6) are required.

Constraint set (7) ensures integrality of the variables x\y The variables y™ are restricted

to be nonnegative variables in (8). It is not necessary to require that the variables yf? are 0

or 1. This is because of the integrality restriction on x\^ and the objective function involves

maximizing the sum of the variables y™.

The objective function maximizes the number of hydrophobic amino acids that are placed

at adjacent vertices. The optimal objective function value includes a constant which is the

number of hydrophobic amino acids that are adjacent in the chain. This is because the true

objective is to maximize the number of hydrobhic topological neighbors while the objective in
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the formulation counts the number of hydrophobhic neighbors both topological and adjacent

on the chain.

Remark 2.1 It is straightforward to extend the formulation to other lattices such as tri-

angular lattices or 3 dimensional lattices. The size of the lattice and the set N{j change

accordingly and additional restrictions, if required, can be easily imposed.

It is also possible to include interactions between amino acids that are placed on non-

adjacent vertices on the lattice but within some specified distance. This requires additional

variables yf? where vertex (u,v) is within the specified distance from vertex (i,j). The for-

mulation can easily be extended to the case of generalized hydrophobicity that is discussed

in [2]. In this case, the amino acids s^, 1 < k < n in the chain are not restricted to be only

hydrophobic or hydrophilic but can be any one of the 20 possible amino acids. The energy

between two topological neighbours can be an arbitrary function that depends upon the type

of amino acids. This extension of the problem requires that the variables y?" must now have

two additional parameters, say a and b denoting the amino acids that are not adjacent on

the chain. Then the constraints (5) and (6) are to be replaced by

yf/(a,6) < x%, 1 < ij < 2n - 1, 1 < a,6 < n (9)

y?/(a,&) < xb
uv, 1 < ij < 2n - 1, 1 < a, 6 < n (10)

where a and b are nonadjacent in the chain and (u, v) G N{j.

The objective function coefficient for yfj(a,b) would be the energy between amino acids

sa and Sb that are not adjacent on the chain but adjacent on the grid. It is understood that

if the energy between topologically adjacent amino acids sa and s& is zero, the corresponding

variables and constraints in (9) and (10) are eliminated from the formulation.

3 Additional Inequalities

Instead of merely restricting the position of the neighbouring amino acids s& a nd s^-n, we

can write constraints that restrict the position of amino acids s& and Sk+t where t > 1.

A path (or a simple path) between two vertices ((i,j), (w, v)) in the graph G is defined

in the usual manner as a sequence of edges connecting vertices (z, j) and (u,v) with no

intermediate vertex repeated. It follows that the shortest distance between any pair of nodes

( i , j ) a n d (n , v) is dW = \u — i\ + \v — j \ .



Then we have the constraints

4 < E xuV for 1 < *, J < 2n - 1; 1 < fc < n - t (11)

Viewing the chain of amino acids in the reverse direction, analogous to constraint set (11),

we have for t > 1 the constraints.

4 < E xuvl for 1 < i,j < 2n - 1; t + 1 < k < n (12)
(uiV):d«?<t

These constraints ensure that if amino acid Sk is placed at vertex (i, j ) , then amino acid Sk~t

must be placed at a vertex which is at a distance less than or equal to t from vertex (i,i).

Integrality of the variables x^ and the constraint set (4) imply the constraints in (11) and

(12). However some fractional solutions to (P) are cut off by (11) and (12). The usefulness of

these constraints from a computational point of view needs to be explored. The inequalities

E 4 + E xuv < 1 +V™ foralledges ((i.j), (u, v)) e E (13)
k€H k€H

are easily verified to be valid. The formulation (P) needs to be studied from a polyhedral

combinatorics perspective. For example, it would be interesting to identify the facet-defining

inequalities, if any, in the above set of valid inequalities

4 Grid Size and Elimination of Variables

In the formulation (P) in Section 2, it is possible to set a number of variables to zero, i.e., to

eliminate several variables. This results in a more compact formulation and more importantly,

can help partial enumeration based optimization algorithms by pruning off the search space.

The shortest distance between any pair of vertices is either even or odd. It is easy to

verify that if the shortest distance between any pair of vertices (i,j) and (u,v) is even (odd),

then all paths between the same two vertices are of even (odd) length.

The distance between two amino acids sa and s& in the chain is defined as wat, = \a — 6|.

Clearly, the distance between two amino acids is either even or odd. It follows that two amino

acids which are at even (odd) distance in the chain must be at even (odd) distance on the

grid. Moreover, two amino acids sa and Sf, with distance wab can never be placed at vertices

(i,j) and (u,v) where df? > wab. Note, however, that it is possible to place sa and st, at

vertices (i, j) and (u,v) where d$j < w^.
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Now, noting that the first amino acid, si, is anchored at vertex (n,n) it follows that the

second amino acid 52 can be placed only at a vertex which is at a shortest distance of 1

from vertex (n,n), i.e, at vertex (n - l,n), (n + l,n), (n,n— 1), or (n,n + 1). Similarly, the

third amino acid 53, can be placed only at a vertex which is at a shortest distance of two.

Moreover, since w\z is even, 53 cannot be placed at a vertex (u, v) whose shortest distance

from vertex (n,n) is odd. Continuing, the fourth amino acid 54, can be placed only at a

vertex which is at a shortest distance of one or three but not more, i.e since w\± is odd, 54

can be placed at a vertex (u, v) such that d™n is odd and less than or equal to 3.

By repeating the above argument for amino acids ŝ , 5 < i < n a large number of variables

can be eliminated from the formulation. It should be noted that some vertices (iz, v) in the

grid such that d^ > n can be eliminated from the grid itself. Eliminating all such variables,

it follows that when n is odd, the number of X\A variables is \p(p + l)(4p + 5) where p = ^Jp.

In this case, the number of y™ variables is 4(n - I)2.

It is also possible to reduce the size of the grid itself by noting that any folding of the

protein can be rotated as necessary. Suppose, as before, we anchor the first amino acid

at vertex (n,n). Let p = [f J where [y\ denotes the largest integer less than or equal to

y. It suffices to consider the rectangular lattice with vertices (t,j), n - p < i < 2n - 1;
n ~ P ^ J'< n + P- In this rectangular grid also, there are some vertices (u, v) such that

^nn > n- Such vertices can be eliminated from the grid.

5 Alternate Formulation

Instead of anchoring the first amino acids s\ at vertex {n,n), the first amino acid may be

placed anywhere. In this case, we require only a n x n grid to begin with. Now we need the

constraint

* 3

to ensure that the first amino acid is placed at some vertex. Moreover, in this formulation,

we cannot eliminate the variables as in Section 4. However by increasing the grid size to

(n + 1) x (n + 1) it is possible to restrict the placing of the first amino acid 51 to be at a

vertex (z, j) where i and j are odd. Given this restriction, it is easily verified that amino acid

52 can be placed only at a vertex (?i, v) such that one of the following holds

u is odd and v is even (15)



u is even and v is odd (16)

Continuing, it follows that amino acid 53 can be placed only at a vertex (a, b) such that one

of the following holds:

a is odd and b is odd (17)

a is even and b is even (18)

It is easily verified that amino acids which are at an odd distance from s\ in the chain may

be placed at a vertex (u,v) that satisfies either (15) or (16) while amino acids which are at

an even distance from s\ in the chain may be placed at a vertex (a, 6) that satisfies either

(17) or (18).

By this argument, a large number of variables can be eliminated in this alternate for-

mulation. Eliminating all such variables, it follows that when n is odd, the number of x^

variables is \{n + l)2(2n - 1) while the number of yff variables is 2n(n + 1).

The alternate formulation is analogous to the formulation in Section 2 except that the

grid size is different and constraint (1) is now replaced by constraint (14).

6 Row and Column Generation

A feasible solution to (P) has exactly n of the variables x^ equal to 1. Typically in a feasible

solution only a few (perhaps of order n) of the variables yf? are equal to 1. However, inspite

of eliminating several variables as indicated in Sections 4 and 5, the formulation in Section 2

and the alternate formulation in Section 5 have a large number of variables and constraints.

The number of variables and constraints are of the order n3. Hence, feasible solutions to (P)

are highly degenerate.

In order to speed up the computations, it might be desirable to start with a small number

of constraints and variables. Given an optimal solution to the linear programming relaxation

of the smaller problem, it is straight forward to generate, if there is one, a violated constraint

from among those not written down explicitly. Similarly, it is straight forward to generate

from among those variables which have not been written down explicitly, a variable if there

is one, to enter the basis. Thus, to keep the size of the working basis small and thereby speed

up the computations, it is possible to resort to row and column generation.
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The process of row and column generation is akin (though not identical) to starting with

a thin rectangular lattice and solving the problem repeatedly by increasing the width and

length of the lattice.

7 Computational Results

To determine the folding of a protein consisting of n amino acids, the current (alternate)

formulation uses a grid of n2 lattice points. Since any of the n amino acids can occupy any

of the n2 lattice points, the number of variables X\A are n3. The number of yf? variables is

2n(n — 1). However, the maximum size of the lattice spanned by a protein of length n consists

of p rows and k columns such that p + k < n + 1. This can be utilized to reduce the size

of the problem. The following outlines the approach that has been used for computational

purposes.

1. Initialize p = 2.

2. Use a grid of size p x k such thatp -f k = n + 1.

3. Calculate the optimal objective function value for the associated integer programming

problem.

4. Increment p by 1. If p = n, go to step (5) else go to step (2).

5. Calculate the maximum of the optimal objective function values obtained in the above

n - 2 iterations.

If n — 2 iterations (the value of p varies from 2 to n — 1) are done, then one of the solutions

will be an optimal solution to the given protein folding problem. Further by considerations of

symmetry, one can vary p from 2 to [§ J, leading to [§J - 1 iterations. For apxfc lattice the

number of x\j variables is pkn and the number of yf^ variables is 2pk — p — k. The total time

taken for [f J — 1 iterations with reduced lattice points can be expected to be less than the

time taken for one iteration with n2 lattice points. That is what we observed in our limited

computational results.

The following is an example illustrating the results of the approach outlined above. The

protein has 10 amino acids with three hydrophobic amino acids at positions 1,4 and 7. For

11



Table 1: Partial Enumeration

Lattice Opt Int Total number of Number of nodes

size Obj Value Simplex iterations in B&B Tree

2x9

3x8

4 x 7

5x6

1

2

2

2

13921

2805

5028

16401

222

39

49

131

Table 2: Optimality Gaps

Problem n Position of Opt Value Opt Value Obj Val

Number H amino acids LP relax IP Hi-heuristic

1

2

3

4

10

10

11

11

1,4,7

1,4,7,8

1,4,7,8,11

1,3,7,8

5.4

6.2

8.09

6.27

2

3

4

2

1

2

2

1

different lattice sizes, the optimal objective function value for the integer programming prob-

lem, the number of simplex iterations that, were required and the number of nodes generated

in the branch and bound scheme arc summarized in Table 1.

Four problems were solved using the integer programming (IP) approach and the Hart-

Istrail (HI) heuristic. The number of amino acids (n) in the chain, the positions of the

hydrophobic amino acids, the optimal objective function value obtained by IP and the objec-

tive function value obtained by HI heurisi ic are given in the table below. The results clearly

show that the Hart-Istrail heuristic produces solutions that are far from being optimal in

relative terms.

The IP approach uses the n x n grid. The optimal objective function values for the

linear programming (LP) relaxation and the IP approach that are given in Table 2 are after

subtracting the constant given by the number of hydrophobic amino acids that are adjacent

in the chain.
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In all the above problems, none of the variables, as suggested in Section 5, were eliminated.

It is planned to implement those improvements in the near future.

8 Conclusion

The lattice models of protein folding have certain limitations [11].

• The resolution of the original problem is lost. Bond angles actually lie in some restricted

regions as indicated by the Ramachandran plot, rather than being right angles.

• Details of protein structure, bond energies and charges cannot be represented accurately

in such models.

• Bond lengths are not captured well enough.

An attempt to address the first limitation has been to explore alternate lattice structures

such as triangular lattices[2]. In spite of the above limitations, discrete lattice models con-

tinue to be useful particularly for simulations and for enumerative techniques for deducing

statistical properties of small proteins and peptides [5,6,7.23,24,25]. An important challenge

is therefore to improve the integrity of lattice models.

The computational results reported in Section 7 are clearly at a very preliminary stage.

We intend to continue with the experiment at ion and will report our findings in a subsequent

paper.
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