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Abstract. This note investigates the boundary between polynomially-solvable Max Cut and NP Hard Max
Cut instances when they are classified only on the basis of the sign pattern of the objective function coef-
ficients, i.e., of the orthant containing the objective function vector. It turns out that the matching number
of the subgraph induced by the positive edges is the key parameter that allows us to differentiate between
polynomially-solvable and hard instances of the problem. We give some applications of the polynomially
solvable cases.

A cut in a weighted undirected graph G = (V, E, w) isdefined by anodeset S € V
as the set of all edges with exactly one endpoint in S, and it is denoted by 6(S). The
weight of a cut is the sum of the weights of its edges. Given a weighted graph G, the Max
Cut Problem is to find a cut of G with maximum weight, while the Min Cut Problem is
to find a cut with minimum weight. We call §({v}) the star of v, and denote |V | by n.

There has been a lot of interest in Max Cut problems lately. These problems have
many applications, but are very hard to solve. They are not only NP Hard, but they are
difficult to solve exactly in practice as well. A few special cases of Max Cut that are
solvable in polynomial time are described in the literature. Most of them require the
graph to have a special structure. This is for example the case for planar graphs, graphs
having fixed bandwidth, graphs with bounded tree-width, or graphs with bounded genus.
For a list of references, see, for example [4] and [9].

It is also interesting to investigate conditions on the objective function under which
Max Cut can be solved in polynomial time. One case where it is easy to see that Max
Cut is polynomially solvable is when all edge weights are non-positive. In this case the
problem is trivially solved, as the empty set is always an optimal solution. Galluccio and
Loebl in [5] give a class of instances characterized by both the structure of the graph
and the size of the objective function coefficients for which Max Cut is polynomially
solvable. ’

In this note we investigate some other polynomially-solvable instances of Max Cut
that are characterized by properties of the objective function rather than by properties
of G. In particular we are interested in classifying instances based on the signs of the
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objective function coefficients, i.e., on the orthant that contains the objective function
vector. For a given sign pattern (orthant) of the objective function coefficients, we would
like to know if Max Cut is polynomially solvable no matter how the magnitude of the
coefficients is chosen, or if it can be proven that this class of instances is NP Hard. To
this purpose, for a given weight function w = {wj;} (i.jjep> We define E} to be the set

of positive edges and E, to be the set of negative edges, i.e., the set of edges whose
corresponding components of w are strictly positive or strictly negative, respectively.
From now on we do not make any assumption on the magnitude of the coefficients of w.

Note that Max Cut is equivalent to Min Cut by negating weights. Therefore, from
now on we consider only the minimization version of the problem.

A slight variation of Min Cut that we name Min Proper Cut calls for a nonempty
cut of minimum weight. If E_ is empty, Min Proper Cut is polynomially solvable, for
example, by the Gomory-Hu algorithm [7].

Another variation of the problem is the Min s-t Cut: Here s and ¢ are two distin-
guished nodes of V and we want an s-f cut, i.e., a cut §(S) such that S contains only one
of s and 1, of minimum weight. Again, when £ is empty this problem is polynomially
solvable by max flow (see, e.g., [1]).

The cover number c(V, E,;) of the subgraph with edges £ is the smallest size of
a node subset X such that each edge of Ey;, has an endpoint in X. We call a class of
weighted graphs nearly positive if c(V, E;;) = O(log nk) for some fixed k > O for each
graph in the class. For such a class the next section shows that Min Cut, Min Proper Cut,
and Min s-¢ Cut are solvable in polynomial time. This fact means that it is interesting
to delineate the boundary between polynomially-solvable special cases of Min Cut and
NP Hard cases. Later we show that the Min Cut Problem is strongly NP complete for
a class of graphs with c(V, E)) = Q (n!/*) for a fixed constant k > 0, a natural slight
generalization of nearly positive graphs. We end by giving several applications where
our ideas lead to polynomial algorithms.

Min cut on nearly positive graphs

We call a weighted graph s-r negative if E; is a subset of 5({s}) U 5({¢}). Note that s-

negative graphs are a special case of nearly positive graphs since ¢(V, E_) < 2 in this
case.

Theorem 1. Mins-t Cut is solvable in polynomial time for s-t negative weighted graphs.

Proof. By adding edges of weight 0 we can assume, without loss of generality, that £
contains the edges {s, i} and {7, ¢} foralli € V'\ {s, t}. As every s-f cut contains exactly
one of each pair of edges {s, i} and {i, t} foralli € V \ {s, ¢}, we can add an arbitrary
constant to wg; and w;; to make them both nonnegative. Analogously, if {s, ¢t} € E and
wyr < 0 we can add an arbitrary constant to wy, to make it nonnegative. The resulting
weighted graph has nonnegative weights and therefore its minimum weight s-f cut can
be found in polynomial time. ]

The next special case of Min Cut is when all edges of E,, are incident to a single
node s (the graph is called star negative in this case), which we call Negative Star Min
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(Proper) Cut. Here we use the following simple construction to reduce Min Cut and Min
Proper Cut on such a graph to single Min s-r Cut and a polynomial number (at most
n — 1) of Min s-1 Cut problems, respectively, on s-f negative graphs. This will show that
Negative Star Min (Proper) Cut is polynomial.

Adjoin a new node ¢ to the original graph G and connect ¢ to all the nodes of G by
edges of weight zero to get a new graph G’ which is s-f negative. Now we can compute a
minimum weight s-¢ cut §(S’) in G’ in polynomial time, andset T/ = V\S'. If T’ # {t}
then the corresponding cut §(S’) in G must be a minimum weight proper cut of G. So
assume instead that T’ = {z}. If we are interested in solving Min Cut, we are done, since
we know that in this case the empty cut is optimal. Otherwise, for each node j such that
edge (J, r} is in G’, temporarily set w;, = 0o, and compute a minimum weight s-t cut
8 (S",-). Certainly j ¢ S}. Let k achieve the minimum in min; w(8(S7})). Then it is easy
to see that §(S},) must be a minimum weight cut of G.

It is now easy to solve Min (Proper) Cut in polynomial time for a s-f negative
weighted graph G: A minimum (proper) cut (W) of G either separates s from ¢, thus is
a minimum s-t cut of G, or otherwise can be found by computing the minimum (proper)
cut in the star negative graph obtained from G by contracting s and «.

In the general case for nearly positive graph, E,, can be covered with the stars of
the nodes of aset M C V with |M| = O(log nty = O(logn). Let (W) be a minimum
weightcutof Gandlet S =WNMand T = (V \ W)N M. If eitherone of S and T
is empty, say T, we can consider a graph G’ obtained from G by contracting all nodes
of S into a single node s. That is, to get G’ we remove the nodes of S from G and add
the new node s, and we connect s to every node j such that there was an edge {j, i}
withi € S. This graph is star negative and if §(W') is a minimum weight cut of G’ with
s € W, then §(SU W'\ (s}) must be a minimum cut of G.

Similarly, if both S and T are nonempty we can consider a graph G’ obtained from
G by contracting all nodes of S and 7T into single nodes s and ¢, respectively. This graph
is s-t negative and if §(W’) is a minimum weight cut of G’, then §(S U W’ \ {s}) must
be a minimum cut of G.

There are 228" (a polynomial in 1) possible ways the set M can intersect W.
Thus we only have to enumerate each of this possibilities, compute the corresponding
cut as suggested above, and take the minimum. This establishes:

Theorem 2. Min Cut, Min s-t Cut, and Min Proper Cut are all polynomially solvable
on nearly positive graphs.

Negative cut min cut

In Negative Star Min Cut E_ is contained in the cut §({s}). Thus a natural generalization
to consider is the case when E; is contained in a (general) cut. We refer to this case as
Negative Cut Min Cut. One may speculate that this case is also polynomially solvable.
On the contrary, there is a simple argument that shows that the problem is NP Hard.

In any instance of Negative Cut Min Cut the set V is partitioned into two subsets
U and W and all edges with both endpoints in U or in W have non-negative weight,
while all the others have arbitrary weights. Clearly any bipartite graph with arbitrary
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edge weights is of this kind. C. De Simone [2] showed that Max Cut is NP Hard for
bipartite graphs with arbitrary weights. We report here the simple proof in terms of Min
Cut.

Lemma 3. Min Cut is NP Hard in bipartite graphs with arbitrary edge weights.

Proof. Let G’ = (V’, E’) be the bipartite graph with weights w’ obtained from G by
subdividing each edge {i, j} with one new node v. The weight of the edges {i, v} and
{v, j} are given by wlfv = w;j and w:, j = |w;j|. We claim that there exists a minimum
cut K = 8(S) of G’ having the following two properties:

1. for each edge {i, j} in E at most one of the two edges {i, v} and {v, j} belongs to
K; and
2. if {v, j} belongs to K, then w;j = wjj.

Suppose, without loss of generality, that S contains j. Property 1 holds because if both
{i, v} and {v, j} belong to K, then i also belongs to S. Consequently, including v in
S defines a cut which does not include both the edges {i, v} and {v, j} and the weight
of this cut is no greater than the weight of K. Property 2 holds because otherwise

w;j = —w;j > 0. Adding v to § will replace —w;; > 0 by w;; < 0, decreasing the
weight of the cut.

Cut K has the same weight as the corresponding cut in G, so solving Min Cut on G’
is equivalent to solving Min Cut on G. o

Negative matching min cut

In the NP Hardness proof of Lemma 3 |E | could be as large as ©(n2), while in all the
polynomially-solvable instances that we have analyzed so far |E_ | = O(n). Thus itis
tempting to conjecture that Min Cut is polynomially solvable for any weighted graph
with |E_, | = O(n). The following lemma shows that this is not true.

Consider instances where the edges in £, form a matching, which we call Negative
Matching Min Cut.

Lemma 4. Negative Matching Min Cut is strongly NP Complete.

Proof. The reduction will be from Min 2-Sat [8]. An instance of Min 2-Sat has a set of
logical variables L = {x, x2,...,xp}; variable x; gives rise to literals x; and x;. We
also have a set of clauses Cy, Ca, ..., Cn, where each Cj is a two-element subset of
literals. The question is whether there is a truth assignment such that at most & clauses
are true. Since Min 2-Sat is trivial if kK = m, we can assume that k < m.

We now construct an instance of Negative Matching Min Cut from this instance of
Min 2-Sat. Make a node for each literal with the same name as the literal, and a single
node O to represent all the clauses. Connect literal nodes x; and x; by a variable edge of
weight —2m; these edges form the negative matching. For clause C; = {l;, I}, make
a triangle of three edges, {0, 1}, {{, >}, and {[5, 0}, all of weight 1 (note that this is
likely to create multiple edges (0, /} for most literals /). Finally, set the target weight for
Negative Matching Min Cut to be 2k — 2pm. Note that all numbers here are strongly
polynomial, so this reduction will show strong NP Completeness.
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We now claim that there is a truth assignment having at most k satisfied clauses if and
only if there is a minimum cut having weight at most 2k — 2 pin. Suppose that t is a truth
assignment having at most k satisfied clauses. Define S (o be the node subset consisting
of 0 and all the false literals under t, and T to be the node subset containing all the true
literals. Then C;’s triangle of edges crosses (S) if and only if C; is true under t, and
when this triangle does cross 8(S) it contributes weight exactly 2. Thus contribution of
the clause triangles to the cut weight is twice the number of satisfied clauses under 7,
which is at most 2k. Every variable edge crosses 8(S), contributing —2 pm to the cut
weight, for a total cut weight of at most 2k — 2 pm.

Suppose now that §(S) is a cut of weight at most 2k —2 pm withQ € S. Since k < m,
5(S) must cut every variable edge. Thus §(S) defines a truth assignment T, where 7 (/)
is true if | ¢ S. Then Cj is true under r if and only if two edges of C;’s triangle are cut

by 8(S). Since 3(S) has weight at most 2k — 2 pm, at most k of the clauses can be true
under . a

Define the matching number m(V, E)) to be the size of a maximum cardinality
matching in the subgraph (V, E).

Corollary 5. For any fixed k independent of n, the problems Min Cut, Proper Min Cut,
and Min s-t Cut are all strongly NP Hard to solve in classes of graphs withm(V, E) =
Q(n'/k).

Proof. Since adding negative edges can only make instances harder, it suffices to con-
sider instances where the negative edges form a matching.

Suppose that we adjoin n* nodes to V to get V', and connect them to the rest of the
graph by zero-weight edges in the construction of Lemma 4. Then this is still a strongly
polynomial-time reduction, and there are only o(V'|I\/% negative edges. For Proper
Min Cut and s-¢ Min Cut, note that for any negative matching edge, its ends must appear
an opposite sides of any minimum weight cut, so these problems are Strongly NP Hard
also. u]

The border line

Theorem 2 implies that Min Cut is polynomially solvable if c¢(V, E)) is O(log n*) for
some fixed k. By contrast, Corollary 5 shows that if m(V, E ) is Q(n'/*) for some
fixed k, the problem is strongly NP Hard. Itis easy to see that m(V, E)) <c(V, E}) <
2m(V, E_), sothatc(V, E_)) and m(V, E)) are the same up to a small constant factor.
This establishes the following fairly sharp characterization of the boundary between
polynomially-solvable and NP Hard instances of Min Cut:

Theorem 6. For any fixed integer k > 0, Min Cut is polynomially solvable for class-
es of weighted graphs where m(V, E)) = O(log n*); for classes where m(V, E) =
Q(n'/*y it is strongly NP Hard.

Therefore, if we classify the Min Cut instances only on the basis of the edge set
E ., the structural property of such a set that allows us to differentiate between easy and
difficult instances is the matching number of (V. £ ).
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There is a fairly small unresolved gap here between the easy cases at O (logn*) and
the hard cases at 2(n!/%) for fixed k. Given that the polynomial algorithm for small
independence number depends on an explicit enumeration that is exponential in the
independence number, it seems unlikely that polynomial algorithms exist above an in-
dependence number of O(log n"). On the other hand, it appears to be difficult to adapt
the proof of Lemma 4 to any function of n smaller than Q (n!/ ky for fixed k. It seems
that it would require a more sophisticated proof to narrow this gap.

Applications

We give here several applications that Theorem 2 shows can be solved in polynomial
time.

1. Polynomial separation of the fractional capacity inequalities of the CVRP. The
Capacitated Vehicle Routing Problem (CVRP) can be stated as follows. Given are two
positive integers k and C and a graph G = (V, E) with edge weights w, node weights
d, and a distinguished node s with d; = 0. A feasible solution to the problem (called
Jeasible k-route) is a set of k simple cycles, all containing node s and having no other
node in common, that spans G and is such that the d weight of each cycle is bounded
by C. The degenerate case of a two node cycle is allowed. The problem is to find a
minimum w weight feasible k-route.

An integer formulation of CVRP (see, e.g., [13] for the details) whose feasible
solutions are the incidence vectors of the feasible k-routes is given by:

min ) ,cg CeXe

s.t
x(8@) =2 fori € V\ {5}
x(8({sh) = 2k a0
x(8(W)) =24 forh £ W C V \ (s)
0<x. <1 fore € E\ §({s})
0<x,<2 fore € §({s})
X, integer foree E

All the sets of linear constraints in (1) have size that is polynomial in n except the third
one, which are the so-called fractional capacity inequalities, whose size is 2"~!. When
the vector x is integer, the fractional capacity inequalities guarantee that the cocycle of
each set W intersects at least as many simple cycles of the corresponding k-route as

d(w)
C .

The linear programming relaxation to (1) can thus be solved in polynomial time,
provided that the separation problem for the fractional capacity inequalities is also solv-
able in polynomial time. Therefore, we want to find a polynomial time algorithm that
solves the following problem:

Given a nonnegative weight vector X for the graph G, find a fractional capacity
inequality violated by this vector or prove that no such an inequality exists.



Easy and difficult objective functions for max cut 7

This problem can be solved in following way. Assume, by possibly adding zero
weight edges, that the star of node s is complete. Foreachi € V \ {s} replace the weight
Xs; by X5; — 2d;/C. The resulting graph is clearly star negative and its minimum cut
8(W*) has negative weight if and only if there is a fractional capacity inequality (namely
the one defined by W*) violated by x.

Based on this algorithm, in [3] a polynomial algorithm that solve the separation
for a strengthened version of the fractional inequalities is described. These inequalities,
called the rounded capacity inequalities, are obtained from their fractional counterpart
by rounding the right hand side to the nearest larger integer.

2. Cuts with Two Sets of Weights. Suppose that we have positive weights p and d on
the edges. Here are three questions we might ask:

Min Ratio Cut We want to solve minwcy p(6(W))/d(6(W)) (where p(§(W)) is
defined as Z(i, jles(w) Pij)» i€, we want to find a fractional Min Cut. (See, e.g.,
[10] for a survey of fractional cut applications and algorithms.)

A standard algorithm in such cases is to multiply the denominator by parameter A
and subtract it from the numerator, and so to consider the linear objective function

vrvn_g‘l, p(8(W)) — Ad(8(W)).

We can solve this by finding a Min Cut with the weight function p — Ad. If this
linear objective can be optimized in polynomial time, Radzik [11], [12] shows how
to use a discrete version of Newton’s Algorithm to compute an optimal solution to
the fractional problem in polynomial time.

Does p cut-dominated We want to answer the question of whether p(§(W)) >
d(§(W)) for all W C V. That is, is the weight of every cut under p at least as
great as its weight under d? We can answer this by finding a Min Cut with the weight
function p — d.

Ratio of products We want to solve

Hceé(W) Pe
N e |
wcv neea(m d,

Taking logs, this becomes minwcv Y .c5.w) 10g pe — Zces(w) logd,, so we can
answer the question by finding a Min Cut with weights log p — logd.

In all three cases, we end up with a graph with a difference of weights on its edges. If
the subgraph with negative weights has a small matching number, then we can solve this
in polynomial time.

3. Min Cut with forced edges. Suppose that we have k pairs of nodes {sy, #1}, {s2, 12},
.« +» {8k, i}, where each s; is different from every s; and 7;. We want to solve Min Cut
with the added constraint that we require that the cut §(W) be such that W contains
exactly oneof s; and ¢; fori = 1, ..., k.

We can force this to be true by adding in edges {s;, ¢} fori = 1,2,...,k with
weights w,, ;, = —M for a suitably large M. Then, as long as k = O(logn), we see that
we can solve this in polynomial time.
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