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Abstract

Using high frequency individual-level panel data from India, we show that in-
come inequality, measured as the ratio of high-skilled to low-skilled income, in-
creased sharply following the imposition of lockdown triggered by COVID-19. To
explain this fact, we integrate a canonical SIRD epidemiological model into a gen-
eral equilibrium framework with high-skilled and low-skilled workers, each choos-
ing to work either from their work locations (onsite) or from their homes (remote).
Onsite and remote labour are imperfect substitutes, but more substitutable for
high-skilled relative to low-skilled workers. Upon introducing the containment
policies calibrated to match the Indian experience, our model can explain between
24 and 60 percent of the observed increase in inequality. We also find that there is
a higher incidence of infections among the low-skilled workers as they optimally
choose to work more onsite compared to their high-skilled counterparts. Imple-
menting direct transfers for low-skilled workers reverses this increase in inequality
and improves the effectiveness of the containment policies.
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1. Introduction

With the global spread of COVID-19 pandemic, governments around the world have

put in place various containment measures that varies from the relatively benign, such

as carrying out day-to-day activities while maintaining effective social distancing, to

the extreme, such as lockdowns. As entire sectors of the economy have stopped func-

tioning due to these containment measures, the effect on average income has been

devastating. In this paper, we argue that the various containment policies, apart from

reducing average income, affects the income of low-skilled workers disproportionately

compared to high-skilled workers, thus worsening the already existing income inequal-

ity.

Like numerous countries, India went into a lockdown during the early days of the

pandemic. We use a high frequency individual-level panel data from India to docu-

ment that income inequality, measured as the ratio of high-skilled to low-skilled in-

come, increased sharply following the imposition of the lockdown. We find that in-

troducing containment policies in a macroeconomic SIRD (Susceptible, Infected, Re-

covered, Dead) model calibrated to India, on top of capturing the empirical disease

dynamics, can explain between 25 and 60 percent of the increase in income inequality

depending on the calibration strategy. We go on to show that direct transfers targeted

towards low-skilled workers can help in reversing this increased inequality and also

improve the effectiveness of the containment policies in slowing down the pandemic.1

Consequently, we argue in this paper that targeted transfers, in cash or kind, should be

an integral component along with the containment policies to prevent worsening of

inequality.

We obtain data on workers and their labour income from Consumer Pyramids House-

hold Survey (CPHS). The CPHS is an individual level panel data of around 170,000

Indian households, containing information on worker income and consumption at

a monthly frequency. Classifying workers into high-skilled and low-skilled based on

their educational attainment, we find that the income inequality between these two

1There is a large literature documenting the positive impact of transfers on different economic out-
comes. Fiszbein and Schady (2009) talks about its effect on poverty, Gertler (2004) discusses its impact
on child health, and Galiani and McEwan (2013) on school enrollment, just to name a few.
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groups of workers increased by around 38 percent between the months of March and

June 2020, when the lockdown was implemented with maximum stringency. We also

use data on infections to analyse the disease dynamics during the period when con-

tainment policies were in place.

In order to quantify the effect of COVID-19 containment policies on both economic

as well as health outcomes, we embed a canonical SIRD epidemiological model into

a dynamic, general equilibrium framework of production and consumption. In our

model, production is carried out by two types of workers: high-skilled and low-skilled.

At the forefront of our analysis are two observations: First, workers have the option

of working either from their worksites or from their homes, with the labour supplied

from their worksites (onsite labour) and the labour supplied from their homes (remote

labour) being imperfect substitutes. Second, compared to low-skilled workers, the on-

site labour for high-skilled workers is far more substitutable with remote labour. For

example, the tasks of an accountant can be carried out remotely without significant

loss in the quality of the service; for a machine operator, much less so.

We calibrate the model to study the impact of the containment policies. We use the

classification proposed by Dingel and Neiman (2020) to determine the substitutability

between onsite and remote labour for both high-skilled and low-skilled workers. And,

we employ two different strategies to calibrate the containment policies implemented

on the ground. In the first approach, we obtain the decline in workplace mobility from

Google mobility data, and the containment rates are chosen so that the model gener-

ates the decline that we see in the data. The second strategy is to calibrate the con-

tainment rates by matching the decline in aggregate income that we obtained from the

CPHS data.

Depending on the calibration strategy, we find that the containment policies imple-

mented during the pandemic can explain between 24 and 60 percent of the increase in

inequality that we see in the data. Because every lockdown policy imposes restriction

on labour mobility and onsite labour is much less substitutable for low-skilled work-

ers, these policies disproportionately impact the labour income of low-skilled workers

compared to their high-skilled counterparts. This worsens the already existing income
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inequality between these two kinds of workers.

Looking at the disease dynamics, we find that the containment policy calibrated

using Google mobility data was successful in delaying peak of the infections by 50 days

compared to a scenario where no policy was implemented. Similarly, the lockdown cal-

ibrated using the alternate approach also succeeds in pushing the peak infection date

by 30 days. Thus, we find that the containment policies, by restricting the labour mobil-

ity, were successful in slowing down the disease spread. Furthermore, high-skilled and

low-skilled workers experience the pandemic differently. We observe that low-skilled

workers suffer higher peak infection rates and a larger fraction of them get infected

through the pandemic compared to high-skilled workers. Because low-skilled workers

are engaged in occupations that cannot be done remotely, they choose to work more

onsite compared to the high-skilled workers, resulting in higher percentage of infec-

tions and deaths among them. Thus, low-skilled workers endure a higher cost on both

economic and health dimensions, with increased income inequality and higher inci-

dence of infections.

How much transfer will be required to reduce the lockdown-induced income in-

equality to its pre-pandemic level? For the two different calibrations considered, the

cost of such a transfer to the low-skilled workers turns out to be around 0.12 and 0.05

percent of GDP. We find that these transfers, apart from reversing the increase in in-

equality, also improve the effectiveness of the lockdown policies in containing the pan-

demic. By enabling the low-skilled workers to stay at home and not venture out for

work, these transfers slow down the disease spread among the low-skilled workers and

the economy as a whole. Thus, we show that in these extraordinary times, transfers

contribute both as an economic as well as a health policy, and should be actively im-

plemented along with any containment measure.

There have been several recent papers analysing the impact of the pandemic and

containment measures on different economic and health outcomes. Atkeson (2020) in-

troduces the SIR model to economists and talks about the economic impact of COVID-

19 in the US. Eichenbaum et al. (2021) extends a canonical epidemiology model with a

general equilibrium framework to model the interaction between economic decisions
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and the spread of infections. Farboodi et al. (2020) integrates individual optimization

decisions into an epidemiological model to study the social distancing outcomes in

the US. Glover et al. (2020) talks about the distributional effects of containment poli-

cies in the US where the individuals differ by age, sectors, and health status. Kaplan

et al. (2020) also focuses on the substitution between onsite and remote labour in a

HANK model and talks about the implications for US. Finally, there are a number of re-

cent empirical contributions such as Montenovo et al. (2020), Mongey et al. (2021), and

Dingel and Neiman (2020) that talk about the heterogeneous impacts of social distanc-

ing policies on different occupations. Our paper attempts to study the economic and

health impacts of the containment policies in a developing economy, India, which is

characterized by a large fraction of low-skilled workers whose ability to supply remote

labour is severely limited.

The rest of the paper is organized as follows. Section 2 presents the empirical frame-

work and estimates of inequality and infections. Section 3 describes the model and de-

rives the equilibrium conditions. Section 4 presents the calibration strategy while the

main results of the paper are discussed in section 5. Section 6 concludes.

2. Empirical Evidence

This section documents the economic and health impact of the COVID-19 pandemic

and the ensuing containment policies during the first wave in India. We find that there

was a massive increase in income inequality along with a sharp decline in aggregate

income during this period.

2.1 Economic Impact

We use data from Consumer Pyramids Household Survey to investigate how the aggre-

gate income and inequality changed during the period of September 2019 to December

2020.
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2.1.1 Data

Consumer Pyramids Household Survey (CPHS) conducted by Centre for Monitoring

Indian Economy (CMIE) is a household level panel data covering around 170,000 house-

holds. Each member of the household is interviewed once in four months and the data

on income is obtained retrospectively for the previous four months. Restricting the

sample to members between the age of 20 and 60 years, we have a panel of monthly in-

come data for around 440,000 individuals across India. With the absence of any other

high-frequency surveys, CPHS is the only data source that allows us to study any short-

run economic phenomenon for India.2

Our measure of income is the real labour earnings of the workers in the past month.

We deflate labour earnings using CPI and all incomes are reported in January 2020

prices.3 The main focus of our paper is on income inequality between high-skilled and

low-skilled workers, measured as the relative income between these two groups. We

classify the workers who have at least some college education as high-skilled and the

rest as low-skilled.

2.1.2 Empirical Specification

Even though we can directly aggregate the individual incomes using the sampling weights

to obtain the aggregate income, Solon et al. (1994) points out that this could potentially

lead to composition bias in the aggregate income and inequality measures. Hence, fol-

lowing Solon et al. (1994), Devereux (2001) and others, we exploit the panel structure

of our data to run the following regression weighted by the sampling weights

Yit = αi + Tt + ϵit, (1)

2Chodorow-Reich et al. (2020) and Karmakar and Narayanan (2020) use CPHS data to analyse the
impact of demonetization on the Indian economy. More recently, Deshpande (2020) uses this data to
study the effect of COVID-19 lockdown on gender gap in labour supply.

3We use state level monthly CPI data separately for rural and urban regions. State level data is not
available from March to May 2020 and no data is available for Puducherry for June 2020. We use all-
India CPI measures for these dates.
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(a) Aggregate Income (b) Inequality

Figure 1: Economic Impact

where Yit is the real labour income of individual i in time t, while αi and Tt denote the

individual and time fixed effects respectively.4 This regression captures the variation of

income within a given individual over time and hence the time fixed effect Tt gives us

the aggregate income after correcting for any bias introduced due to changes in com-

position or because of any attrition in the sample. We also run similar regressions for

high-skilled and low-skilled workers separately to calculate our measure of inequality.

2.1.3 Results

Figure 1a shows the aggregate income obtained from our regression, as a deviation

from the initial steady state.5 As India went into one of the harshest lockdown on March

24 2020, we observe that the aggregate income has plummeted in April with a quick

bounce back in the months of May and June, followed by a gradual but steady recovery

until the end of the year. On average, the aggregate income declined by around 39% in

4Some of the papers analysing cyclicality of wages over a long period of time also control for labour
market experience and job tenure. Unfortunately, we do not have this information in our data. But,
since our analysis is over a short time span, these variables should not vary much over time and hence
individual fixed effects would account for these factors.

5We take the average income and inequality over the period of September 2019 to February 2020 to
represent the initial steady state.
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the months of April to June when the lockdown was most stringent.6

Figure 1b shows the evolution of inequality during this period. On average, a high-

skilled worker earned about 3.94 times compared to a low-skilled worker before the

onset of the pandemic. But once the lockdown was imposed, this inequality jumped to

around 7.77 in the month of April, followed by a steady decline over the later months.

On average, inequality increased by 47.4% during the months of April to June 2020.

Even though CPHS is the only nationally representative data available to study the

economic impact of the pandemic, we need to take note of the recent debate around

the representativeness of its sample. Drèze and Somanchi (2021b) in their recent col-

umn in Economic Times argue that the CPHS underrepresents the poor households

and is biased towards richer households. They also claim that, this bias has increased

over time.7 Given that the salaried and formal sector workers were relatively less af-

fected compared to informal sector workers, this sample bias, if present, could lead

to an underestimation of the decline in aggregate income and the increase in income

inequality. Drèze and Somanchi (2021a) talks about a number of household surveys

conducted by different organizations during the pandemic.8 None of these surveys are

nationally representative, and they focus on specific groups of people or geographic re-

gions. A number of these surveys point to a much sharper contraction in income and

a more sluggish recovery compared to the CPHS data. For example, the second round

of CSE-APU survey conducted among informal workers in 161 districts across various

states in October to December 2020 shows that the average income was still 50% below

pre-pandemic levels. Similarly, the third round of IDinsight survey conducted among

6The Stringency Index developed by Hale et al. (2020) at Blavatnik School of Government in Uni-
versity of Oxford shows that, India reached the maximum possible stringency of lockdown by the end
of March with calibrated easing over the later months. More information on this index for India and
other countries across the world can be found at https://www.bsg.ox.ac.uk/research/research-projects/
coronavirus-government-response-tracker.

7The article can be accessed at https://economictimes.indiatimes.com/opinion/et-commentary/
view-the-new-barometer-of-indias-economy-fails-to-reflect-the-deprivations-of-poor-households/
articleshow/83696115.cms while the response of CMIE to this critique can
be found at https://economictimes.indiatimes.com/opinion/et-commentary/
view-there-are-practical-limitations-in-cmies-cphs-sampling-but-no-bias/articleshow/83788605.
cms.

8The list of various surveys are available at https://cse.azimpremjiuniversity.edu.in/
covid19-analysis-of-impact-and-relief-measures/#other surveys.

https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker
https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker
https://economictimes.indiatimes.com/opinion/et-commentary/view-the-new-barometer-of-indias-economy-fails-to-reflect-the-deprivations-of-poor-households/articleshow/83696115.cms
https://economictimes.indiatimes.com/opinion/et-commentary/view-the-new-barometer-of-indias-economy-fails-to-reflect-the-deprivations-of-poor-households/articleshow/83696115.cms
https://economictimes.indiatimes.com/opinion/et-commentary/view-the-new-barometer-of-indias-economy-fails-to-reflect-the-deprivations-of-poor-households/articleshow/83696115.cms
https://economictimes.indiatimes.com/opinion/et-commentary/view-there-are-practical-limitations-in-cmies-cphs-sampling-but-no-bias/articleshow/83788605.cms
https://economictimes.indiatimes.com/opinion/et-commentary/view-there-are-practical-limitations-in-cmies-cphs-sampling-but-no-bias/articleshow/83788605.cms
https://economictimes.indiatimes.com/opinion/et-commentary/view-there-are-practical-limitations-in-cmies-cphs-sampling-but-no-bias/articleshow/83788605.cms
https://cse.azimpremjiuniversity.edu.in/covid19-analysis-of-impact-and-relief-measures/##other_surveys
https://cse.azimpremjiuniversity.edu.in/covid19-analysis-of-impact-and-relief-measures/##other_surveys
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(a) Total Active Infections (b) Total Deaths

Figure 2: Health Impact

5000 rural households across 6 states in September 2020 shows the income levels to

be 74% below the pre-pandemic levels.9 These patterns are at odds with the ones ob-

tained from CPHS data, as it shows a stable and almost complete recovery of income

by the end of 2020. Hence, in light of these findings, it is quite possible that the CPHS

data does not fully capture the decline in income and the increase in inequality during

the pandemic, and care should be taken in interpreting these results.

2.2 Health Impact

We measure the health impact of the COVID-19 pandemic by the number of active in-

fections and the total deaths in the economy. The data for disease dynamics is obtained

from the John Hopkins CSSE repository (Dong et al. (2020)). There has been a lot of dis-

cussion about underreporting of COVID-19 infections and deaths in India. In order to

account for that, we refer to Purkayastha et al. (2021) who calculate the underreport-

ing factor for infections and deaths using publicly available data. They find that, active

infections were underreported by a factor of 11.11 while deaths were underreported by

3.56 times during the first wave of the pandemic. We correct the raw data using these

9More details of CSE-APU survey can be found at https://cse.azimpremjiuniversity.edu.in/
cse-surveys/covid19-livelihoods-phone-survey/ while the findings of IDinsight survey can be accessed
at https://www.idinsight.org/ideas-and-insights/tools/covid-19-interactive-data-dashboard/.

https://cse.azimpremjiuniversity.edu.in/cse-surveys/covid19-livelihoods-phone-survey/
https://cse.azimpremjiuniversity.edu.in/cse-surveys/covid19-livelihoods-phone-survey/
https://www.idinsight.org/ideas-and-insights/tools/covid-19-interactive-data-dashboard/
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numbers to account for the underreporting. Figure 2a shows the total active infections

in the economy while figure 2b shows the total deaths during the period of March to

December 2020. Active infections peaked on September 17, 2020 when around 11 mil-

lion people were infected. The pandemic had claimed around 500,000 lives by the end

of 2020. We next embed a benchmark SIRD model into a macroeconomic framework

to jointly explain the increase in income inequality and the progression of infections

that we documented here.

3. The Model

This section presents the economy before the start of the pandemic and follows it

up with the economy during the pandemic. In particular, we modify the model pro-

posed by Eichenbaum et al. (2021) along two fronts. First, we extend the base model to

two types of workers (high-skilled and low-skilled) supplying two types of labour (on-

site and remote). Second, we model disease dynamics using a SIRD model along the

lines of Fernández-Villaverde and Jones (2020) instead of a standard SIR model used in

Eichenbaum et al. (2021). The containment policy is modeled as a negative productiv-

ity shock to onsite labour.

3.1 Pre-Pandemic Economy

The economy consists of a unit measure of workers out of which ψ fraction is high-

skilled while 1− ψ of them is low-skilled. The workers, apart from choosing consump-

tion, can supply two different kinds of labour. The labour that is supplied at the work

location is called onsite labour (n) while working from home is called remote labour

(n̂). Onsite and remote labour are imperfect substitutes, but more substitutable for

high-skilled compared to low-skilled workers.

Before the pandemic, the high-skilled (and similarly low-skilled) workers maximize

their lifetime utility

U j = u(cj, nj, n̂j) + βU j,
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where cj refers to consumption of worker j ∈ {h, l}, while nj and n̂j refers to the onsite

and remote labour respectively. The budget constraint of a worker is given by

cj = (1− χ)wj
(
(1− µ)nj + ηjn̂j

)
+ Γj,

where wj denotes the wage of worker j, ηj represents the elasticity of substitution be-

tween onsite (nj) and remote (n̂j) labour, and the total labour supplied by worker j is

given by ((1 − µ)nj + ηjn̂j).10 In the event of a lockdown imposed during a pandemic,

remote labour becomes an integral part of labour supply as opposed to onsite labour

in normal times. In this situation, the degree of substitutability between onsite and

remote work becomes critical to determine the effective labour supply. In particular,

lower is ηj , less effective is remote labour relative to onsite labour.

As high-skilled workers belong to occupations that can be more readily performed

remotely compared to low-skilled workers, any lockdown imposed to curtail the pan-

demic will disproportionately affect the economic well-being of low-skilled workers

compared to high-skilled workers. We estimate the elasticities ηh and ηl to find that ηl

is far smaller compared to ηh in line with our expectations. The section on calibration

provides more details on this.

We model the different containment measures as a negative productivity shock af-

fecting onsite labour. µ refers to the containment rate and (1 − µ) is the resulting pro-

ductivity of onsite labour. This negative productivity shock makes onsite labour more

expensive and hence incentivises remote labour. Finally, Γj denotes the transfers the

workers receive from the government funded through tax χ on labour income. Initially,

we set Γj = 0 (and hence χ = 0) but later solve for optimal transfers that minimizes the

inequality generated because of various containment policies.

Assuming a utility function of u(cj, nj, n̂j) = log(cj)− θ
2
(nj)2 − θ̂

2
(n̂j)2, the first-order

conditions for worker j are:

10The term elasticity of substitution is not fully accurate because ηj is meant to capture the difficulty
of substituting onsite labour with remote labour and not the other way round.
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nj =
(1− χ)wj(1− µ)

θcj
,

n̂j =
(1− χ)wjηj

θ̂cj
.

As can be seen from the above labour supply functions, containment rate µ acts as a

deterrent for supplying onsite labour while ηj captures the cost of remote labour due

to imperfect substitutability.

There is a continuum of competitive firms who hire both high-skilled (Lh) and low-

skilled (Ll) workers to produce consumption good (Y ). The firm maximizes its profit

Π = AL− whLh − wlLl,

where the firm combines high-skilled and low-skilled labour using a CES aggregator:

L = [γ1/δ(Lh)
δ−1
δ + (1− γ)1/δ(Ll)

δ−1
δ ]

δ
δ−1 .

Here γ captures the difference in productivity of high-skilled and low-skilled labour

while δ denotes the elasticity of substitution between them.

In equilibrium, total output must equal total consumption:

Y = AL = ψch + (1− ψ)cl.

Labour markets for both types of workers must clear:

Lh = ψ
(
(1− µ)nh + ηhn̂h

)
,

Ll = (1− ψ)
(
(1− µ)nl + ηln̂l

)
.

And, government budget must balance:

χ(whLh + wlLl) = ψΓh + (1− ψ)Γl.
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3.2 During Pandemic

Having developed the general equilibrium framework, we integrate it with the widely

used SIRD (Susceptible, Infected, Recovered, Deceased) model proposed by Kermack

and McKendrick (1927) and recently employed in economics literature by Fernández-

Villaverde and Jones (2020), Bar-On et al. (2021), and others. With the advent of a pan-

demic, the population can be divided into five subgroups, namely Susceptible (those

who have not been infected), Infectious (those who have the disease), Resolving (those

who are out of the infectious state), Deceased (those who did not survive), and Recov-

ered (those who are treated of the infection). Both high-skilled and low-skilled workers

can be separated into these five groups. Let the number of high-skilled workers in

these groups be Sh
t , I

h
t , R

h
t , D

h
t and V h

t while the corresponding numbers for low-skilled

workers be Sl
t, I

l
t , R

l
t, D

l
t and V l

t . Let T h
t and T l

t be the number of newly infected people

at time t respectively.

Following Eichenbaum et al. (2021), the susceptible population can get infected

in three different ways. First channel is through consumption. Susceptible people

can meet infected people while purchasing consumption goods, and this in turn, can

lead to new infections. The number of newly infected high-skilled workers is given by

π1(S
h
t C

S,h
t )(ItC

I
t ) while that of low-skilled workers is given by π1(Sl

tC
S,l
t )(ItC

I
t ). Terms

(Sh
t C

S,h
t ) and (Sl

tC
S,l
t ) represent the total consumption of high-skilled and low-skilled

workers who are susceptible, while (ItC
I
t ) represents the total consumption of all the

infected people.11 π1 denotes the probability of infection through the consumption

channel. A susceptible person coming across an infected person can get infected ir-

respective of whether the infected individual is high-skilled or low-skilled. Hence, the

disease spread in both high-skilled and low-skilled sectors depends on the total con-

sumption of the infected population (ItCt). But since the consumption patterns are

different for high-skilled and low-skilled workers, the disease incidence might be dif-

ferent across these two groups of workers.

The second channel of transmission is through the interactions at place of work.

The number of newly infected high-skilled workers through this channel is π2(Sh
t N

S,h
t )(ItN

I
t )

11Total consumption of all infected population is given by (ItC
I
t ) = Iht C

I,h
t + I ltC

I,l
t



13

and that of low-skilled is π2(Sl
tN

S,l
t )(ItN

I
t ). The disease transmission does not depend

on the entire labour supply, but only on the time spent at the place of work. (Sh
t N

S,h
t )

and (Sl
tN

S,l
t ) represents the total hours of onsite labour supplied by susceptible high-

skilled and low-skilled workers respectively. As before, the disease transmission de-

pends on the total amount of onsite labour (ItN
I
t ) supplied by all the infected work-

ers.12 Because the low-skilled workers belong to occupations that have a lower flexibil-

ity for remote labour, they could be more vulnerable in the face of a pandemic.

The third channel is the transmission through random meetings of susceptible and

infected people other than consumption and labour channels. The number of newly

infected high-skilled and low-skilled workers through this channel are π3Sh
t It and π3Sl

tIt

respectively.

The total number of newly infected high-skilled (T h
t ) and low-skilled (T l

t ) workers

are then given by

T j
t = π1(S

j
tC

S,j
t )(ItC

I
t ) + π2(S

j
tN

S,j
t )(ItN

I
t ) + π3S

j
t It,

where j ∈ {h, l}. The infection rates among the high-skilled (τht ) and low-skilled (τ lt )

workers are defined as τht = T h
t /S

h
t and τ lt = T l

t/S
l
t respectively. The evolution of the

susceptible population for both high-skilled and low-skilled workers is

Sj
t+1 = Sj

t − T j
t .

Susceptible people, after getting infected, move out of the infection pool to a resolving

state with probability πr. The evolution of the infected population is

Ijt+1 = Ijt + T j
t − πrI

j
t .

People in the resolving state exit with probability πe into either recovery or death. The

resolving state evolves according to

Rj
t+1 = Rj

t + πrI
j
t − πeR

j
t .

12Total onsite labour of all infected population is given by (ItN
I
t ) = Iht N

I,h
t + I ltN

I,l
t
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Let πd denote the probability of death conditional on being infected. The law of motion

for the dead is given by

Dj
t+1 = Dj

t + πdπeR
j
t ,

while the recovered follows

V j
t+1 = V j

t + (1− πd)πeR
j
t .

The population of high-skilled and low-skilled workers evolves according to

popjt+1 = popjt − πdπeR
j
t .

At the initial period, we assume ϵ fraction of total population are infected, with no re-

coveries or deaths. The total number of high-skilled and low-skilled workers infected

at period zero is

Ih0 = ψϵ, I l0 = (1− ψ)ϵ,

and the total susceptible population at the initial period is

Sh
0 = ψ(1− ϵ), Sl

0 = (1− ψ)(1− ϵ).

All agents in the economy take these laws of motion as given and make their eco-

nomic decisions. We describe the decision problems of different agents below. De-

tailed description of the model and the derivation of equilibrium conditions is given in

appendix A.

3.2.1 Susceptible People

A susceptible worker j ∈ {h, l} chooses consumption, onsite and remote labour to

maximize the lifetime utility

U s,j
t = u(cs,jt , ns,j

t , n̂s,j
t ) + β

[
(1− τ jt )U

s,j
t+1 + τ jt U

i,j
t+1

]
,
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subject to the budget constraint

cs,jt = (1− χt)w
j
t

(
(1− µt)n

s,j
t + ηjn̂s,j

t

)
+ Γj

t ,

τ jt , the infection rate of worker j ∈ {h, l}, is given by

τ jt = π1c
s,j
t (ItC

I
t ) + π2n

s,j
t (ItN

I
t ) + π3It.

Susceptible people take the aggregate consumption (ItCI
t ) and onsite labour (ItN I

t ) of

infected population as given while making their decisions.

3.2.2 Infectious People

A high-skilled or low-skilled infectious worker maximizes

U i,j
t = u(ci,jt , n

i,j
t , n̂

i,j
t ) + β

[
(1− πr)U

i,j
t+1 + πrU

r,j
t+1

]
,

subject to the budget constraint

ci,jt = (1− χt)w
j
t

(
ϕ(1− µt)n

i,j
t + ϕ̂ηjn̂i,j

t

)
+ Γj

t .

Parameters ϕ and ϕ̂ captures the loss in onsite and remote labour productivity due to

getting infected.13

3.2.3 Resolving People

A worker in the resolving state solves

U r,j
t = u(cr,jt , n

r,j
t , n̂

r,j
t ) + β

[
(1− πe)U

r,j
t+1 + πe(1− πd)U

v,j
t+1

]
,

13One interpretation is that a fraction ϕ (ϕ̂) of the infected individuals are too sick to provide onsite
(remote) labour.
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subject to the budget constraint

cr,jt = (1− χt)w
j
t

(
ϕ(1− µt)n

r,j
t + ϕ̂ηjn̂r,j

t

)
+ Γj

t .

3.2.4 Recovered People

A recovered worker maximizes the lifetime utility

U v,j
t = u(cv,jt , nv,j

t , n̂v,j
t ) + βU v,j

t+1,

subject to the budget constraint

cv,jt = (1− χt)w
j
t

(
(1− µt)n

v,j
t + ηjn̂v,j

t

)
+ Γj

t .

3.2.5 Market Clearing

In equilibrium, the goods and labour markets clear, and the government budget bal-

ances as follows.

Labour Market:

Sh
t

(
(1− µt)n

s,h
t + ηhn̂s,h

t

)
+ Iht

(
ϕ(1− µt)n

i,h
t + ηhϕ̂n̂i,h

t

)
+Rh

t

(
ϕ(1− µt)n

r,h
t + ϕ̂ηhn̂r,h

t

)
+V h

t

(
(1− µt)n

v,h
t + ηhn̂v,h

t

)
= Lh

t ,

Sl
t

(
(1− µt)n

s,l
t + ηln̂s,l

t

)
+ I lt

(
ϕ(1− µt)n

i,l
t + ηlϕ̂n̂i,l

t

)
+Rl

t

(
ϕ(1− µt)n

r,l
t + ϕ̂ηln̂r,l

t

)
+V l

t

(
(1− µt)n

v,l
t + ηln̂v,l

t

)
= Ll

t,[
γ1/δ(Lh

t )
δ−1
δ + (1− γ)1/δ(Ll

t)
δ−1
δ

] δ
δ−1

= Lt.
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Goods Market:

Sh
t c

s,h
t + Iht c

i,h
t +Rh

t c
r,h
t + V h

t c
v,h
t = Ch

t ,

Sl
tc

s,l
t + I ltc

i,l
t +Rl

tc
r,l
t + V l

t c
v,l
t = C l

t,

Ch
t + C l

t = ALt.

Government:

χt(w
h
t L

h
t + wl

tL
l
t) = (Sh

t + Iht +Rh
t + V h

t )Γ
h
t + (Sl

t + I lt +Rl
t + V l

t )Γ
l.

4. Calibration

In this section, we discuss the calibration of the parameters of the model. First, we

calibrate the economic parameters and epidemiological parameters. Next, we back

out the containment policies to match the underlying economic dynamics during the

pandemic.

4.1 Economic parameters

Each model period represents a calendar day. We set the discount factor, β, to be equal

to 0.961/365, which corresponds to a yearly real interest rate of 4%. We set the total

factor productivity, A, to be 31.93 to target the pre-pandemic (steady state) average

real daily income of 138.75 Indian Rupees (INR), obtained from CPHS data. γ captures

the difference in productivity of high-skilled and low-skilled workers, and has implica-

tions for the income inequality. We calibrate γ to be 0.731 to match the pre-pandemic

income inequality of 3.995. For our baseline results, the elasticity of substitution be-

tween high-skilled and low-skilled labour, δ, is chosen to be 1.5 in line with the findings

of Acemoglu and Autor (2011). The disutilities of onsite labour θ and remote labour θ̂

are calibrated to be 0.032 and 0.052 respectively to target 5 hours of onsite labour and 2

hours of remote labour for high-skilled workers in the steady-state. Following Eichen-

baum et al. (2021), we set ϕ (ϕ̂), the productivity loss of onsite (remote) labour due to
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infections at 0.8.

Determination of ψ, ηh, ηl

We make use of the National Classification of Occupations - 2015 (NCO-2015) in order

to identify high-skilled and low-skilled occupations. NCO-2015 considers nine broad

occupation categories and associates a skill level with each of these occupations. In

this classification, an “occupation” is a set of jobs with similar tasks while “skill” is the

ability to carry out those tasks.14 NCO-2015 categorises four skill levels based on formal

and informal education levels. These are (i) Primary education (upto 10 years of for-

mal education and/or informal skill), (ii) Secondary education (11-13 years of formal

education), (iii) First university degree (14-15 years of formal education), and (iv) Post-

graduate university degree (more than 15 years of formal education). Table 1 shows

the occupations and the associated skill levels. Consistent with our classification in the

empirical analysis, we group the two highest skill levels into a high-skilled (h) category,

and the rest to a low-skilled (l) category. Accordingly, occupation codes 1 – 3 in table

1 correspond to high-skilled occupations while codes 4 – 9 correspond to low-skilled

occupations.

In order to find the employment share of high-skilled (ψ) and low-skilled (1 − ψ)

occupations, we use data from Periodic Labour Force Survey (PLFS) 2018-19. It is a

nationally representative survey conducted by National Sample Survey Office (NSSO)

from July 2018 to June 2019, and it provides labour market information for about 420,757

individuals. Concentrating on workers from non-farm sector, the employment share of

high-skilled occupations, ψ, comes out to be 26.5%.15

We next calculate the substitutability between onsite and remote labour for both

high-skilled (ηh) and low-skilled (ηl) occupations. This is the reduction in effective

labour supply when a worker substitutes one unit of onsite labour with one unit of re-

mote labour. We make use of the classification proposed by Dingel and Neiman (2020)

14https://www.ncs.gov.in/Documents/National%20Classification%20of%20Occupations%20 Vol%
20II-A-%202015.pdf

15Following Bhatt et al. (2021), the non-farm sector includes National Industry Classification 2008
(NIC 2008) groups 02-99, 014, 016, and 017.

https://www.ncs.gov.in/Documents/National%20Classification%20of%20Occupations%20_Vol%20II-A-%202015.pdf
https://www.ncs.gov.in/Documents/National%20Classification%20of%20Occupations%20_Vol%20II-A-%202015.pdf
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Table 1: Occupations and Skills

NCO codes Title Skill Share η

1 Legislators, Senior Officials, and Managers IV 0.125 0.896

2 Professionals IV 0.070 0.424

3 Technicians and Associate Professionals III 0.070 0.458

4 Clerks II 0.036 0.554

5 Service Workers and Sales Workers II 0.157 0.002

6 Skilled Agricultural and Fishery Workers II 0.035 0

7 Craft and Related Trades Workers II 0.195 0

8 Plant and Machine Operators and Assemblers II 0.095 0

9 Elementary Occupations I 0.217 0

Note: The NOC codes refer to occupation divisions, the most aggregated categories. The skill levels
are I: Primary Education, II: Secondary Education, III: First University Degree, IV: Post-Graduate
University Degree. Share refers to the employment share of the occupation in the total workforce.
η is the share of individuals in an occupation who can work remotely.
Source: Periodic Labour Force Survey 2018-19 for occupation shares, Government of India’s Min-
istry of Labour and Employment for NCO codes and associated skills, Dingel and Neiman (2020)
classification for remote work shares.

to identify the occupations that can be performed at home. They use data from O*NET

to classify whether a particular occupation is feasible to be done from home or not.

Combining this classification with occupational shares from PLFS, we can construct

the share of WFH occupations.16 Table 1 provides the employment and remote work

shares for occupations at 1-digit level. We use the averages of these remote work shares

as our measure of η.17 Bhatt et al. (2021) uses this data to show that around 19% of the

Indian workforce are employed in WFH occupations, which is similar to what we get

(19.4% in our case). But, we find that there is a large heterogeneity across skill levels.

Aggregating within high-skilled and low-skilled occupations, we find that the remote

work shares among high-skilled (ηh) is 0.656 while that of low-skilled (ηl) is just 0.028.

16The occupation codes used by Dingel and Neiman (2020) classification is SOC-2010 while PLFS
2018-19 uses NCO-2004 occupation codes. We thank Vasavi Bhatt and Ajay Sharma for providing us
with the crosswalk.

17Our reasoning is as follows: Suppose only a fraction η of individuals in any occupation can work
remotely. Then if aggregate supply of onsite labour is 1 (normalized), the aggregate supply of remote
labour is simply η. Hence, one unit of onsite labour is equivalent to η units of remote labour.
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Table 2: Economic Parameters

Parameter description Value Source/Target

Substitutability of remote labour
– high-skilled ηh 0.656 Dingel and Neiman (2020) + PLFS (2018-19)
– low-skilled ηl 0.028 Dingel and Neiman (2020) + PLFS (2018-19)
Share of high-skilled labour ψ 0.265 PLFS (2018-19)
Elas. of substitution between skills δ 1.5 Acemoglu and Autor (2011)

Productivity loss due to infection ϕ, ϕ̂ 0.8 Eichenbaum et al. (2021)

Discount factor β (0.96)1/365 Period = day
Disutility of onsite labour θ 0.032 High-skilled onsite labour = 5 hours

Disutility of remote labour θ̂ 0.052 High-skilled remote labour = 2 hours
Relative productivity γ 0.731 Steady-state inequality = 3.995
Total factor productivity A 31.93 Steady-state income = 138.75 INR

Thus, onsite labour is much more substitutable among high-skilled compared to low-

skilled workers, and this has important implications for income inequality as the pan-

demic and the containment policies curtail the movement of labour. Table 2 shows the

values of all the calibrated economic parameters.

4.2 Epidemiological parameters and Containment policies

Choice of πr,πe,πd

Consistent with the epidemiological literature such as Maier and Brockmann (2020)

and Prem et al. (2020), we assume that once people get infected, they stay infectious for

7 days on average, beyond which they move into the resolving state. Since the model

frequency is daily, we set the probability of entering the resolving state, πr, to be 1/7.

Once in the resolving state, we assume that an average patient takes 10 days to exit this

state and either recover or die. Thus, we choose the probability of exiting the resolving

state, πe, to be 0.1, similar to Fernández-Villaverde and Jones (2020) and Bar-On et al.

(2021). On average, a case lasts for 17 days in total. Purkayastha et al. (2021), after

taking into account under-reporting of deaths, estimate the infection fatality rate (IFR)
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for India to be 0.46%.18 We use this value for πd.

Initial Conditions and R0

We normalize the total pre-pandemic population to be one, and we set ϵ, the fraction

of people initially infected to be 10−6. With a population of 1.38 billion, this translates

to 1380 infections at the start date. Using data on infections from John Hopkins CSSE

repository corrected for under-reporting, we find that India crossed 1380 active infec-

tions on March 17, 2020 (there were 1388 active infections on this date). So, we consider

March 17, 2020 to be the start date of the pandemic in our model.

We next choose the value of the basic reproduction number, R0. It represents the

expected number of individuals who will be infected by a single infected individual

over the course of the disease when everyone is susceptible. We follow Eichenbaum et

al. (2021) in choosing R0 to match the disease dynamics. In particular, we set R0 such

that the peak date of the infections in the model match that of the data. As we saw in

section 2, the total active infections peaked on September 17, 2020 which corresponds

to 185 days from the model start date. Importantly, the number of days it takes for the

infections to peak depends crucially on the containment policies implemented on the

ground. Hence, we need to take a stand on the lockdown policies that were in place

during that time, which is what we turn to next.

Containment Policies

In the model, the lockdown policy implemented by the government is captured by the

containment rates µt. We use two different calibration strategies to back out the daily

containment rates, µt, over the period of March 24 to December 31, 2020. In the first

approach, we make use of Google Mobility data, and the containment rates are chosen

so that the model generates the decline in workplace mobility that we observe in the

data. The second strategy is to calibrate the containment rates to match the decline

in aggregate income that we estimated from the CPHS data. We use both these ap-

18Purkayastha et al. (2021) finds that, by using only reported deaths, the estimate of IFR during the
first wave is 0.13%. After correcting for under-reporting, this estimate jumps to 0.46%.
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(a) Labour Mobility (b) Containment Rate

Note: Data series refers to workplace mobility data from Google Mobility Reports while the model

series refers to model generated onsite labour of high-skilled workers.

Figure 3: Lockdown Calibration using Google Mobility Data

proaches for calibration as each data source has its own advantages and disadvantages

as we discuss below.

Google Mobility Reports, using anonymous location data, document the change in

time spent by people across various location categories. Some of the places that Google

releases mobility data include retail and recreation, groceries, parks, transit stations,

workplaces, and residences. We match the decline in onsite labour from the model

with the decline in workplace mobility in this data to calibrate the containment rates.

In particular, we assume that Google mobility data predominantly reflects the mobility

patterns of high-skilled labour. We believe that this is a valid assumption to make for

two reasons. One, smartphones, even though more prevalent than before, are still a

luxury product. Accordingly, most of the smartphone users (about whom Google col-

lects mobility data) tend to be high-skilled workers. Two, workers need to have a fixed

location of work for Google to recognize it as a workplace. This is more characteristic of

a salaried high-skilled worker compared to a daily wage-earner. So, we map the labour
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(a) Aggregate Income (b) Containment Rate

Note: Data series refers to aggregate income from CPHS while the model series refers to aggregate

income generated by the model.

Figure 4: Lockdown Calibration using CPHS Income Data

mobility patterns in the data with onsite labour of high-skilled workers in the model.19

Figure 3a shows the Google workplace mobility data and the model generated de-

cline in high-skilled onsite labour. As can be seen, once the lockdown was imposed

in late March, the mobility declines by more than 70% followed by a gradual increase

till the end of the year. The model does a good job of capturing this change in on-

site labour except during the months of September and October when the infections

peaked. As the infections start peaking, high-skilled workers in the model reduce their

onsite labour significantly and shift towards remote labour. Even when the calibrated

containment rate is set at zero for those periods, the model generated decline in high-

skilled onsite labour is much larger than the decline observed in the mobility data.

Figure 3b shows the implied containment rates that we obtain from this calibration ex-

19Another option is to interpret the mobility data as representing the aggregate onsite labour. As we
will see in the next section, the aggregate onsite labour in our model doesn’t decline as much as the
Google mobility data even when the containment rates are set to the maximum. This is because, the
low-skilled workers do not reduce their onsite labour by much in response to the containment policies
as they have very low substitutability towards remote work.
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ercise. Except during the peak infection days, the model is able to exactly match the

patterns in the Google mobility data.20

An alternative approach for calibrating the containment rates is to match the de-

cline in aggregate income obtained from CPHS data with the model counterpart. Since

CPHS reports data at a monthly frequency, we assume that the containment rate re-

mains constant within a given month. Figure 4a shows the decline in aggregate in-

come from CPHS data and the model counterpart. The aggregate income decreased by

around 55% once the lockdown was implemented with a steady recovery in the later

months. Just as in the case of mobility data, the model does a good job of capturing

the decline in income except during the peak infection months of September and Oc-

tober. As the infection peaks, both high-skilled and low-skilled workers cut down their

supply of onsite labour and this causes further decline in income. This model gener-

ated decline in income is larger than what we observe in CPHS data even when we set

the containment rates to be zero during these times. Figure 4b shows the containment

rates generated by matching the income data.

The main advantage of using Google mobility to calibrate is that we have daily data

on changes in labour mobility which helps us in calibrating the containment rates at

a daily frequency. The limitation is, even though the data might be extensive, we do

not have any information on how representative the underlying sample is. On the

other hand, CPHS is a nationally representative data with a large sample. But it has

monthly data and hence, we can calibrate our containment rate only at the monthly

frequency. Additionally, the recent concerns of CPHS data under-representing the poor

(low-skilled) workers could potentially bias the estimated decline in aggregate income

and hence our calibrated containment rates. So, we make use of both the calibration

strategies.

Reproduction numberR0: Having calibrated the containment rates, we can now choose

the value of R0 so that the model generated infections peak at 185 days just as in the

data. This gives us a R0 value of 1.739 under the first calibration strategy and a value of

20One way to improve the calibration around the peak infection days is to assume negative contain-
ment rates. But negative containment policy translates to actively encouraging onsite labour in place of
remote work, and it is safe to assume such a policy was never implemented on the ground.
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Table 3: Epidemiological Parameters

Parameter description Value Source/Target

Probability of exiting infection πr 1/7 Infectious period = 7 days

Probability of case resolution πe 0.1 Resolution period = 10 days

Probability of death πd 0.0046 Purkayastha et al. (2021)

Initial fraction of infected population ϵ 10−6 1380 individuals

Google Mobility Data

Reproduction number R0 1.739 Peak infection date

Probability of infection (consumption) π1 1.03× 10−6 Time Use Survey (2019)

Probability of infection (labour) π2 0.004 Time Use Survey (2019)

Probability of infection (social interaction) π3 0.109 Time Use Survey (2019)

CPHS Income Data

Reproduction number R0 1.626 Peak infection date

Probability of infection (consumption) π1 9.65× 10−7 Time Use Survey (2019)

Probability of infection (labour) π2 0.0038 Time Use Survey (2019)

Probability of infection (social interaction) π3 0.1022 Time Use Survey (2019)

1.626 under the second strategy.

Choice of π1, π2, π3

In a standard SIR model, susceptible people get infected when they come in contact

with infected people. The number of new infections in the population through such

“social” interactions can be written as

Tt = ξStIt,

where ξ is the transmission rate of the infections. ξ measures the expected number of

individuals who can get infected in time t by someone who is already infected. Observe

that out of these ξ individuals, only a fraction of St will be new infections (assuming
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that infected individuals come in contact with other individuals randomly). Hence,

the expected number of new infections created by an existing infected individual is

ξSt. Multiplying this by total number of infected individuals It, we get the total number

of new infections.

To obtain the value of ξ, one can use the following relation:

R0 = ξ/πr,

where R0 is the basic reproduction number and 1/πr is the average number of days a

person stays infectious (7 days in our calibration). Since we have already calibrated

R0 to match the infection dynamics, we can immediately back out the value of the

transmission probability ξ.

In this paper, we assume that the transmission probabilities due to consumption,

work and social interactions add up to ξ. At the beginning of a pandemic, we then have

π1 × C2 + π2 ×N2 + π3 = ξ,

where C and N are the pre-pandemic equilibrium values for consumption and onsite

labour respectively. How do we allocate the transmission probability across the dif-

ferent ways individuals can get infected? One possibility is to look at how much time

Indians on average spend on these different activities. Time Use Survey data for India

(2019) suggests that an average Indian spends 10 hours per day outside their home.

Out of these, around 4.8 hours are spent on work, 0.8 hours are spent on consumption-

related market activities and the rest on activities that could lead to social interactions.

Details of the time use data and time allocation across various activities are provided

in appendix B. It follows that

π1 × C2

π1 × C2 + π2 ×N2 + π3
=

0.8

10
,

and
π2 ×N2

π1 × C2 + π2 ×N2 + π3
=

4.8

10
.
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Solving these equations, we find π1 = 1.03 × 10−6, π2 = 0.004, and π3 = 0.109 when

we calibrate using Google mobility data. Calibration using CPHS income data gives

π1 = 9.65 × 10−7, π2 = 0.0038, and π3 = 0.1022. Thus, even though we use two different

data sources for calibration, the transmission probabilities are quite similar under both

the cases. Table 3 shows the epidemiological parameters calibrated using both these

strategies.

5. Results

In this section, we analyse the economic and health impacts of the containment poli-

cies calibrated from the data by comparing them to a counterfactual “no policy” sce-

nario. We measure economic impact using aggregate output and income inequality

between high-skilled and low-skilled workers. The inequality is captured using rela-

tive consumption (or income) of high-skilled to low-skilled workers (cht /c
l
t).21 We use

peak infection rate and also the number of days it takes for the infections to peak as

the measure of health effects. Peak infection rates capture the maximum stress that

the healthcare services might come under while the days to peak measures the speed

at which the infection transmits through the economy. Finally, we introduce economic

transfers designed to keep inequality unchanged and discuss about its impact on eco-

nomic and health outcomes.

5.1 Containment Policies

As we saw in the previous section, we calibrate lockdown policies using two different

strategies. We refer to the containment rates and transmission probabilities obtained

from Google mobility data as “Lockdown 1” while the ones calibrated using CPHS in-

come data as “Lockdown 2”.
21Inequality is calculated as the weighted average of relative consumption across the different cohorts

i.e. susceptible, infectious, resolving, and recovered.

Inequalityt =
Sl
t(c

s,h
t /cs,lt ) + I lt(c

i,h
t /ci,lt ) +Rl

t(c
r,h
t /cr,lt ) + V l

t (c
v,h
t /cv,lt )

Sl
t + I lt +Rl

t + V l
t

.
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Table 4: Comparison with Data

Data Lockdown 1 Lockdown 2

Economic Impact

∆ Income (%) 33.66 48.75 33.59

∆ Inequality (%) 37.71 22.32 9.10

Health Impact

Days to Peak 185 185 185

Days to Double 13.65 11.63 11.79

Note: Data refers to CPHS. Lockdown 1 is calibrated using
Google mobility while Lockdown 2 is calibrated using CPHS
income data. Change in income and inequality refer to the
percentage change over the months of March to June com-
pared to the respective pre-pandemic levels. Days to peak
measures the number of days it takes for the total infections to
peak, with March 17 taken to be day 1. Days to double mea-
sures the average number of days for the total infections to
double from the start till the day infections peaked.

5.1.1 Economic Impact

We measure the economic impact of the containment policies using the change in in-

come and inequality over the months of March to June 2020 when the lockdown was

most stringent. Table 4 compares the model generated changes with the data counter-

parts. As we saw in section 2, aggregate income in CPHS data declined by about 34%,

while inequality jumped by around 38% over these months. Comparing these numbers

with the results of lockdown 1, the model calibrated to match the decline in labour mo-

bility predicts a much sharper income decline of 49%. Thus, the lockdown calibrated

using this strategy is much more intense than what is implied by the CPHS data. We

will discuss the implications of this finding later.

We next look at inequality between high-skilled and low-skilled workers, the main

focus of our paper. Under lockdown 1, the inequality jumps by 22% on average com-



29

pared to 38% observed in the data. Thus, our model calibrated to match the decline in

labour mobility can explain around 60% of the increase in inequality seen during the

months of March to June 2020. Lockdown 2 calibrated using CPHS data generates an

income decline of 34% observed in the data by design. Under this calibration, the in-

equality between the two groups of workers increases by 9% over the same time period.

Thus, the lockdown strategy calibrated to CPHS income data can generate about 24%

of the increase in inequality observed in the data.

Depending on the calibration strategy, our model can explain between 24% and

60% of the observed increase in inequality during the months of March to June, 2020.

As the containment measures restrict labour mobility, it imposes a massive cost on

onsite labour for both high-skilled and low-skilled workers. But since onsite labour is

significantly less substitutable in low-skilled compared to high-skilled occupations, the

lockdown worsens the already existing inequality between these two groups of work-

ers.

In order to understand the impact of the calibrated containment policies, we simu-

late a counterfactual scenario where no lockdown policies are implemented. Figures 5

and 7 show the dynamics of aggregate income and inequality under various policy sce-

narios for both the calibrations. Panel A of table 5 reports the simulated economic and

health indicators during the months of March to June under lockdown 1 while panel

B reports the same for lockdown 2. In the scenario where no lockdown policies are in

place, model predicts a marginal decline in income during these months compared to

a sharp contraction when the containment is in place. Similarly, the inequality hardly

changes in the no policy scenario in contrast to an increase between 24% and 60%

when the lockdown policies are implemented.

Figures 6 and 8 show the dynamics of onsite and remote labour for both high-skilled

and low-skilled workers under both the calibrations. Even in the no policy scenario,

both groups of workers internalize the risk of infections and substitute towards re-

mote work. Containment policies once implemented are successful in further reducing

the onsite labour of high-skilled workers and shift towards remote labour. Low-skilled

workers on the other hand do not respond much to these containment policies. They
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(a) Aggregate Output (b) Inequality

(c) High-Skilled Infections (d) Low-Skilled Infections

Figure 5: Lockdown 1: Economic and Health Outcomes

continue to mostly work onsite as remote labour is not very productive for these work-

ers.

Thus, lockdown policies implemented to contain the spread of the pandemic has

led to a large decline in income and a massive increase in inequality between high-

skilled and low-skilled workers. We next analyse how successful these policies were in



31

(a) High-Skilled Onsite Labour (b) High-Skilled Remote Labour

(c) Low-skilled Onsite Labour (d) Low-Skilled Remote Labour

Figure 6: Lockdown 1: Labour Dynamics

slowing down the spread of infections.
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5.1.2 Health Impact

The model is calibrated to match the peak infection date of 185 days that we find in

the data. Table 4 also shows the number of days it takes for the infections to double

from the start till the peak date. Model generates doubling days of around 11.7 days

under both the calibrations, and this is comparable to 13.7 days that we see in the data.

Even though we do a good job of capturing the days to peak and doubling days of the

infections, the model generates much higher peak infections compared to the data.

The data shows around 1% of the entire population were infected at the peak date. But

the model generates a peak infection rate of around 5% across both the calibrations.

Now we compare the disease dynamics under lockdown with that of the no policy

scenario to evaluate the effectiveness of these lockdown policies. As can be seen from

figures 5 and 7, containment policies were successful in slowing down the pandemic.

The results in table 5 shows that, the containment policy calibrated using labour mo-

bility data (lockdown 1) was successful in pushing the peak infection date by 50 days.

The simulation shows that the infections would have peaked in 135 days instead of

185 days observed in the data if no containment policies were implemented. Calibra-

tion from CPHS data suggests that, lockdown was successful in delaying the peak by

30 days, with peak date in no policy scenario occurring in 155 days. Thus, irrespec-

tive of the calibration strategy, containment policies implemented on the ground were

successful in slowing down the disease transmission.

Even though the implemented policies were successful in delaying the onset of the

peak, they did not reduce the peak infection rates by much. This is because, the con-

tainment rates are calibrated to be zero when the infections reach the peak and hence

it is equivalent to having no lockdown during those peak days. Thus, the lockdown did

not flatten the peak of infections, but it managed to slow down the pandemic spread

in India.22

Finally, we observe that high-skilled and low-skilled workers experience the pan-

22India started its phased relaxation of lockdown from June while the in-
fections peaked in September. Our finding is consistent with some of
the discussions in popular press like https://www.news18.com/news/india/
lockdown-may-not-have-flattened-covid-19-curve-but-it-bought-india-time-as-it-approaches-infection-peak-2612369.
html

https://www.news18.com/news/india/lockdown-may-not-have-flattened-covid-19-curve-but-it-bought-india-time-as-it-approaches-infection-peak-2612369.html
https://www.news18.com/news/india/lockdown-may-not-have-flattened-covid-19-curve-but-it-bought-india-time-as-it-approaches-infection-peak-2612369.html
https://www.news18.com/news/india/lockdown-may-not-have-flattened-covid-19-curve-but-it-bought-india-time-as-it-approaches-infection-peak-2612369.html
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(a) Aggregate Output (b) Inequality

(c) High-Skilled Infections (d) Low-Skilled Infections

Figure 7: Lockdown 2: Economic and Health Outcomes

demic differently. Table 5 shows that low-skilled workers suffer higher peak infection

rates compared to high-skilled workers. And, a higher fraction of low-skilled workers

end up contracting the infections compared to high-skilled workers. For instance, un-

der lockdown 1, around 55.7% of low-skilled workers would be infected by the end of

the pandemic compared to 51.3% of high-skilled workers, and this pattern holds true
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(a) High-Skilled Onsite Labour (b) High-Skilled Remote Labour

(c) Low-Skilled Onsite Labour (d) Low-Skilled Remote Labour

Figure 8: Lockdown 2: Labour Dynamics

across all the policy scenarios. This is because, as seen from figures 6 and 8, low-skilled

workers optimally choose to work more onsite compared to high-skilled workers as

they have low substitutability between onsite and remote labour. Thus, low-skilled
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workers inspite of the risk of infections venture out more for work as they have no other

choice, and hence end up contracting more infections compared to high-skilled work-

ers.

While analysing the effects of containment policies, two clear observations emerge.

First, there exists a trade-off between containing the infections and its effect on eco-

nomic activity. No policy scenario where no containment policies are in place imposes

the least cost on the economy. Lockdown 1 calibrated from Google mobility data was

effective in delaying the peak by 50 days, but it was also the costliest with an income

decline of around 50%. Lockdown 2 obtained from CPHS data is relatively cheaper to

implement with an income loss of 34%, but it was less effective as it managed to push

the peak by only 30 days.

Second, the low-skilled workers are disproportionately affected on both economic

and health outcomes compared to high-skilled workers. As the containment measures

impose a massive cost on onsite labour, both high-skilled and low-skilled workers sub-

stitute towards remote work. Since remote labour is not very productive for low-skilled

workers, the lockdown worsens the already existing inequality with an increase in the

range of 24% to 60% when the containment policies are implemented. And, since

onsite labour is significantly less substitutable for low-skilled workers, they optimally

choose to work more onsite compared to high-skilled workers. This causes the contain-

ment policies to be less effective for low-skilled workers leading to a higher incidence

of infections among them. In our setup, low-skilled workers face an excessive burden

on both economic and health fronts, with increased inequality and higher incidence of

infections compared to high-skilled workers.

5.1.3 Implications for CPHS Data

As we already discussed in section 2, there are some concerns that CPHS data under-

represents the poor households and this could potentially underestimate the decline in

aggregate income. Since we use Google data to calibrate, we can use our model to ex-

amine the extent of this bias, if any. Figure 9 compares the decline in income obtained

from CPHS data with the model generated decline in income implied by our calibra-
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Figure 9: Income Decline: CPHS data versus the model

tion. Our model calibrated to match the decline in labour mobility generates a much

deeper recession followed by a more sluggish recovery compared to the CPHS data.

This is consistent with a number of survey evidences that document a much much

sharper contraction followed by a more gradual expansion post COVID-19 lockdown.

This exercise gives us an indication of how much CPHS underestimates the decline in

aggregate income.

5.2 Containment with Transfers

Even though the containment policies were successful in controlling the spread of in-

fections, it also exacerbated the already existing inequality between high-skilled and

low-skilled workers. We now perform a policy experiment of implementing direct trans-

fers for low-skilled workers along with the containment policies, to remedy the addi-

tional inequality generated by the lockdown. These transfers targeted towards low-

skilled workers (Γl
t) are chosen to bring the inequality back to pre-pandemic levels,

while high-skilled workers do not receive any transfers (Γh
t = 0 ∀t). Figure 10 shows the

path of the transfers each low-skilled worker receives under both the calibrations and
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(a) Lockdown 1: Transfers (b) Lockdown 1: Tax Rates

(c) Lockdown 2: Transfers (d) Lockdown 2: Tax Rates

Figure 10: Transfer Policies

the associated taxes the government levies on all the workers to fund these transfers. As

can be seen from figures 5b and 7b, the implementation of cash transfers successfully

reverses the increase in inequality under both the containment scenarios.
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Table 5 shows the magnitude of transfers (as a percentage of GDP) required to re-

move the excess inequality under the two calibrations. We obtain the total expendi-

ture of this policy by aggregating the transfers received by each low-skilled worker over

the entire non-agricultural low-skilled workforce of 209 million workers obtained from

World Bank data.23 To put it in perspective, we represent this as a share of India’s GDP,

which is around 200 trillion Indian Rupees (approximately 2.65 trillion USD).

As can be seen from table 5, lockdown 1 calibrated using mobility data generates

a large increase in inequality and hence require more transfers amounting to 0.12%

of GDP. Lockdown 2 on the other hand is less stringent and hence needs direct trans-

fers of around 0.05% of GDP to take care of the excess inequality introduced by this

policy. These transfers should be considered as the bare minimum policy interven-

tion needed to preserve the status-quo on inequality. Any containment policy affect-

ing onsite labour without the accompanying transfers will compound the problem of

inequality.

Apart from reversing the excess inequality, targeted transfers also improve the ef-

fectiveness of containment policies in controlling the pandemic. As can be seen from

table 5, with transfers in place, both the lockdown measures succeed in delaying the

infection peak date even further compared to a pure containment scenario. As shown

in figures 6 and 8, the transfers received by low-skilled workers enable them to reduce

their onsite labour and spend more time at their homes. In the case of lockdown 1,

low-skilled onsite labour goes down by just 3.8% when there are no transfers. But in

the presence of transfers, the low-skilled workers are able to reduce their onsite labour

by 7.8%. This helps in containing the disease spread among the workforce. Introducing

transfers increase the number of days for the infections to peak from 185 days in a pure

containment scenario to 213 days and hence reduce the speed of disease transmission.

Importantly, transfers directed towards low-skilled workers slows down the infections

among high-skilled workers as well by delaying their peak infection dates. Just like in

23Total labour force: https://data.worldbank.org/indicator/SL.TLF.TOTL.IN?locations=IN. Employ-
ment in agriculture: https://data.worldbank.org/indicator/SL.AGR.EMPL.ZS?locations=IN. According
to this data, the total labour force in India in 2019 is 495 million, out of which the non-agricultural
workforce is 284 million. Low-skilled workers constitutes 73.5% of the non-agricultural labour, which
amounts to 209 million.

https://data.worldbank.org/indicator/SL.TLF.TOTL.IN?locations=IN
https://data.worldbank.org/indicator/SL.AGR.EMPL.ZS?locations=IN
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the case of pure containment case, even though transfers delay the onset of the peak, it

doesn’t reduce the peak infection rates as the transfers are calibrated to be zero during

these peak days. This pattern of targeted transfers delaying the peak infections for both

high-skilled and low-skilled workers holds for the alternate calibration as well.

Even when the low-skilled workers cut down on their labour supply, it does not in-

crease the output loss by much. This is because of two opposing channels that posi-

tively affect output in the presence of transfers. One, containment along with transfers

reduce the total number of infections in the economy. In the presence of transfers,

around 54% of the people would eventually be infected due to this disease, compared

to 54.5% under lockdown 1 and 55.7% when no policy action is taken. Due to the re-

duction in number of infected people, the effective labour productivity is higher with

transfers compared to the previous cases. Two, since the infection risk is reduced in

the presence of transfers, the more productive high-skilled workers choose to supply

more onsite labour compared to the pure containment scenario. When lockdown 1

is implemented with transfers, the reduction in high-skilled onsite labour is around

25.4% compared to a 26.5% fall when there are no transfers, thus leading to increased

production. These two effects compensate for the reduction in low-skilled labour and

mitigate any further loss in output.

These results show that direct transfers should be an integral part of the policy

toolkit along with containment policies in combating the pandemic. We find that a

pure containment policy without accompanying transfers worsens the already exist-

ing inequality. Transfer policies designed to take care of the excess inequality, apart

from balancing the economic costs faced by high-skilled and low-skilled workers, also

improves the effectiveness of the containment measures.

6. Conclusion

Following the imposition of a lockdown triggered by COVID-19, income inequality in

India jumped up. In order to jointly explain this increase in inequality and the dis-

ease dynamics, we integrate a standard epidemiological model within a general equi-
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librium framework with high-skilled and low-skilled workers. Calibrating our model

containment policies to those implemented on the ground, we show that these lock-

down policies impose disproportionate economic costs on low-skilled workers, and

can explain between 25 to 60 percent of the observed increase in income inequality.

On top of that, because low-skilled workers do not have the luxury to work from home,

the incidence of infections is also higher compared to high-skilled workers. Finally,

introducing transfers for low-skill workers designed to remove the excess inequality

improves the performance of containment policies by further delaying the peak date

of the infections.
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Appendix

A. Model Solution

A.1 Susceptible People

High-skilled (and similarly low-skilled) susceptible workers choose their consumption,

onsite and remote labour to maximize their lifetime utility

U s,j
t = u(cs,jt , ns,j

t , n̂s,j
t ) + β

[
(1− τ jt )U

s,j
t+1 + τ jt U

i,j
t+1

]
,

subject to the budget constraint

cs,jt = (1− χt)w
j
t

(
(1− µt)n

s,j
t + ηjn̂s,j

t

)
+ Γj

t ,

τ jt , the infection rate of worker j ∈ {h, l}, is given by

τ jt = π1c
s,j
t (ItC

I
t ) + π2n

s,j
t (ItN

I
t ) + π3It.

Assuming the flow utility function as u(cs,jt , ns,j
t , n̂s,j

t ) = log(cs,jt )− θ
2
(ns,j

t )2 − θ̂
2
(n̂s,j

t )2, the

first order conditions are:

1

cs,jt

− λsb,jt + λτ,jt πs1(ItC
I
t ) = 0,

−θns,j
t + λsb,jt (1− χt)w

j
t (1− µt) + λτ,jt πs2(ItN

I
t ) = 0,

−θ̂n̂s,j
t + λsb,jt (1− χt)w

j
tη

j = 0,

β[U i,j
t+1 − U s,j

t+1] = λτ,jt ,

where λsb,jt and λτ,jt denotes the Lagrange multipliers of budget constraint and infection

rate for worker j respectively.
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A.2 Infectious People

A high-skilled or low-skilled infectious worker maximizes

U i,j
t = u(ci,jt , n

i,j
t , n̂

i,j
t ) + β

[
(1− πr)U

i,j
t+1 + πrU

r,j
t+1

]
,

subject to the budget constraint

ci,jt = (1− χt)w
j
t

(
ϕ(1− µt)n

i,j
t + ηjϕ̂n̂i,j

t

)
+ Γj

t .

Assuming the same utility function as before, the first order conditions are

1

ci,jt
− λib,jt = 0,

−θni,j
t + λib,jt (1− χt)w

j
tϕ(1− µt) = 0,

−θ̂n̂i,j
t + λib,jt (1− χt)w

j
t ϕ̂η

j = 0,

where λib,jt is the Lagrange multiplier of the budget constraint.

A.3 Resolving People

A high-skilled or low-skilled worker in resolving state maximizes

U r,j
t = u(cr,jt , n

r,j
t , n̂

r,j
t ) + β

[
(1− πe)U

r,j
t+1 + πe(1− πd)U

v,j
t+1

]
,

subject to the budget constraint

cr,jt = (1− χt)w
j
t

(
ϕ(1− µt)n

r,j
t + ηjϕ̂n̂r,j

t

)
+ Γj

t .

Assuming the same utility function as before, the first order conditions are
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1

cr,jt
− λrb,jt = 0,

−θnr,j
t + λrb,jt (1− χt)w

j
tϕ(1− µt) = 0,

−θ̂n̂r,j
t + λrb,jt (1− χt)w

j
t ϕ̂η

j = 0,

where λrb,jt is the Lagrange multiplier of the budget constraint.

A.4 Recovered People

A recovered worker maximizes the lifetime utility

U v,j
t = u(cv,jt , nv,j

t , n̂v,j
t ) + βU v,j

t+1,

subject to the budget constraint

cv,jt = (1− χt)w
j
t

(
(1− µt)n

v,j
t + ηjn̂v,j

t

)
+ Γj

t .

The first order conditions are given by

1

cv,jt

− λvb,jt = 0,

−θnv,j
t + λvb,jt (1− χt)w

j
t (1− µt) = 0,

−θ̂n̂v,j
t + λvb,jt (1− χt)w

j
tη

j = 0.

with λvb,jt being the Lagrange multiplier of the budget constraint.
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B. Calibration of Transmission Probabilities

Our estimates of the transmission probabilities are based on The Time Use in India

(2019) report prepared by the Ministry of Statistics and Programme Implementation,

Government of India. This report classifies activities as per the International Classifi-

cation of Activities for Time Use Statistics 2016 (ICATUS 2016). Activities are classified

at the 1-digit (major division), 2-digit (division) and 3-digit (group) levels. To compute

the fraction of time spent on consumption and work (outdoor) on a typical day, we look

at the all-India data for urban male in the 15-59 years age group (Statement 8, page

31). First, we compute the time spent by an average respondent outside his home (the

implicit assumption being that the likelihood of getting infected is negligible inside

the home). We get this number by adding the time spent on Employment and related

activities (major division 1), Unpaid volunteer, trainee and other unpaid work (major

division 5), Socializing and communication, community participation and religious

practice (major division 7), Culture, leisure, mass-media and sports practices (major

division 8). The amount of time spent on these activities per day is around 10 hours.

The number of hours spent working is roughly 5 hours. To compute the time spent on

consumption, we assume that the roughly 2.4 hours per day on Culture, leisure, mass-

media and sports practices are spread uniformly over nine activities (Unfortunately,

the report does not provide the fraction of time spent on each of these finer activi-

ties). Out of these, we assume that three activities are primarily performed outside

the home: Attending/visiting cultural, entertainment and sports events/venues (divi-

sion 81), Sports participation and exercise and related activities (division 83), Travelling

time related to culture, leisure, mass-media and sports practices (division 86). Accord-

ingly, an individual spends about 0.8 hours on consumption-related activities outside

the home.


