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Abstract

We define ‘integration’ for 2287 US banks from 1993–2019 as the ex-

planatory power of common banking factors in explaining stock returns.

Integration has risen steadily, and shows significantly high peaks during fi-

nancial crises. This is worrisome, since a negative shock to common factors

depresses sector-wide returns more intensely when the sector is tightly in-

tegrated. The Dodd-Frank Act has improved capital adequacy but has not

arrested rising levels of integration. Further, banks’ current integration pre-

dicts their instability up to 4 quarters in advance; and during crises, past

integration levels explain a healthy (6–7%) variation in US banks’ volatili-

ties.

Keywords: Bank integration; Banking crises; Systemically important

banks; Bank risk; Principal component regressions

JEL Classification: G10, G21, G28, C32, C33, C38, C58
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1 Introduction

The US banking sector has faced several crises over the past few decades. Due to its

critical role in moderating stability in the financial sector, and its ability to amplify

contagion and disruption in the overall economy, episodes of distress in the banking

industry have wreaked havoc several times in the recent past. Policymakers have

responded to such crises by the enactment of several regulations whose imposition

has not yet managed to tame periodic panic in the sector. Even sedate banks have

suffered distress and contagion merely on account of having been integrated with

the fortunes of their riskier cousins. Hence a detailed investigation of US banks’

integration and mutual interdependence, and their relation to crises, warrants

serious attention and rigorous scrutiny.

We define and construct US banks’ integration for a large sample of 2287

banks over 27 years from 1993 to 2019. We define a bank’s integration as the

explanatory power of common banking factors in explaining its stock returns. We

identify these common banking factors as the principal components constructed

from the daily stock return matrix of the full set of 2287 US banks in our sample.

Such anonymous, orthogonal principal components can be interpreted to embed

within themselves, a set of common factors driving all US banks’ stock returns.1 In

order to measure the level of dependence of bank stock returns on these common

factors, we employ the goodness-of-fit, in terms of adjusted R2, of bank stock

returns regressed on the principal components of the US banking sector. Since

a bank’s integration is defined as the explanatory power of principal component

regressions, each bank in our sample displays an integration value between 0 and

100.

We offer a clear and straightforward interpretation of our measure of bank

integration. Without loss of generality, a bank’s stock returns can be explained

by common factors and idiosyncratic factors. Common factors drive the returns

of all banks, while idiosyncratic factors are specific to each bank. Higher (lower)

integration levels equate to higher (lower) exposure to common factors and lower

1For example, tax policy changes, monetary policy changes etc. in principle, affect stock
returns of all banks in a country and hence would represent two plausible common factors.
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(higher) dependency on idiosyncratic factors. Thus our notion of integration is in

effect, a parametrization of common factor exposure in the range 0–100. A bank

having an integration level of, say, 60 means that collectively, common factors

explain 60% of its returns and idiosyncratic factors, the residual 40%.

In general, if banks show a spike in their integration time series, it means

that their exposure to common banking factors has shot up at the expense of

idiosyncratic factors. This in turn implies that their fortunes are at the mercy

of movements in common factors and a negative shock to one or more common

factors will lead to a plunge in all well-integrated banks’ stock returns. High

exposure to idiosyncratic factors does not imply distress for the sector as a whole:

in the case of downward movement in an idiosyncratic factor, while the particular

bank’s stock returns will suffer, other banks will remain insulated from distress.

On the other hand, negative shocks to common factors lead to stock returns of all

tightly integrated banks to plummet together, which could lead to a sector-wide

crisis. We emphasize that high integration by itself does not lead to crises but

simply highlights the fact that during such times banks are especially vulnerable

on account of being overdependent on the movement in common factors; and if for

some reason, one or more common factors suffer a negative shock it could well lead

to a genuine crisis. From this perspective, the steadily rising levels of US banks’

integration should be a matter of concern.

If the number of common factors is one, our setup is comparable to the CAPM

framework [Sharpe, 1964, Lintner, 1965]. If the number of such factors is more

than one, it is equivalent to other well-known multi-factor frameworks for explain-

ing stock returns [Ross, 1976, Fama and French, 1992, Carhart, 1997, Fama and

French, 2015, Hou et al., 2015]. The main difference however, between our respec-

tive frameworks is that we measure exposure to common factors by calculating the

explanatory power of common factor regressions; while the other frameworks com-

pute regression coefficients (factor loadings) to evaluate how sensitive returns are

to such factors.2 Both approaches are, of course, complementary: when we wish to

know how much do common factors—taken collectively as a whole—influence stock

2As a result, our measure is bounded in 0–100, while there is no such restriction for betas.
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returns, our approach is more suitable; if instead we wish to measure the sensitiv-

ity of stock returns to individual risk factors, the classic multi-factor framework

has more value.

Our main findings are as follows. The median US bank’s integration starts

in 1993 from 23.2 and more than doubles by reaching 56.7 in 2019. It attains a

minimum of 19.4 in 1995Q3, achieves a peak of 70.4 in 2019Q3; and exhibits a

significantly positive trend, which accelerates particularly post-2006. Further, US

banks’ integration displays significantly high peaks over and above its trend during

episodes of market distress such as the LTCM collapse, the Dotcom bust, the Great

Recession and the Eurozone crisis. This phenomenon should be of direct relevance

to policymakers and regulators. For example, if the banking sector displays an

abnormally high median or aggregate integration, it can serve as a warning signal

for endogenous sectoral overdependence on common factors, which may lead to

widespread distress in case of a negative shock to one of the underlying common

factors.

Additionally, consistent with recent studies such as Gao et al. [2018], Balasub-

ramnian and Cyree [2014], Acharya and Richardson [2012] we show that regulatory

intervention (such as the Dodd-Frank Act 2010) has led to a better capitalized US

banking sector; but it has failed to curtail the rise in banks’ exposure to com-

mon factors which continues to rise unabated. Thus US banks remain vulnerable

in case of negative shocks to one or more underlying common factors. In other

words, crisis-era regulations succeeded in improving US banks’ ability to absorb

negative shocks due to increased capital buffers; but the steady rise in US banks’

dependency on common factors has eroded this advantage, and continues to pose

a threat to the stability of the US banking sector. While there have been several

papers which have posited a role between banks’ stability (or lack thereof) on

competition [Goetz, 2018, Kick and Prieto, 2015, Thakor, 2014] capital adequacy

[Schliephake, 2016], transparency [Nier, 2005], business model [Köhler, 2015] etc.,

to the best of our knowledge, ours is the first paper to relate banks’ instability to

their exposure to common factors.

Consistent with the negative relationship between bank stability and integra-

5



tion, we further show that US banks’ current integration is significantly positively

associated with future values of bank volatility and beta up to 4 quarters in ad-

vance. Thus, an increase in bank integration in the current quarter leads to rising

bank volatilities and betas up to one year later. Moreover, panel estimations show

high explanatory power (up to 13%) during crises, and lags of integration explain

6-7% of the variation in bank volatilities during crises.

Our study’s reliance on computing integration by means of goodness-of-fit of

principal component regressions adapts the approach in Pukthuanthong and Roll

[2009].3 An alternative approach is to model banks’ interconnectivity and their

propensity for generating contagion or systemic risk by postulating banking net-

works in which banks are connected to each other by maintaining lending or trading

relationships. Prominent studies in this tradition are Acemoglu et al. [2015] and El-

liott et al. [2014].4 Measuring spillover effects by generalized vector autoregression

induced networks falls in between these two approaches. For example, building on

Diebold and Yilmaz [2009] and Diebold and Yilmaz [2014], Demirer et al. [2018]

employ generalized forecast error variance decompositions (G-FEVD) to construct

weighted, directed networks of a set of globally largest banks to measure global

banking network interconnections.

We offer the following observation regarding these alternative approaches. In

general, network based methods cannot be easily scaled up to study very large

sectors for which dimensionality-reducing techniques such as principal components

have greater utility.5 Hence, researchers who investigate microscopic interconnec-

tivity among individual banks will find network-based techniques more useful. On

3Several other studies have used principal components to measure the related but distinct con-
cept of systemic risk such as Giglio et al. [2016], Berger and Pukthuanthong [2012], Eichengreen
et al. [2012], Billio et al. [2012] and Kritzman et al. [2011].

4Other recent notable works employing the construction of explicit banking networks include
Castiglionesi and Navarro [2020], Duffy et al. [2019], Mart́ınez-Jaramillo et al. [2014], Langfield
et al. [2014] and Rogers and Veraart [2013].

5For example, our full data matrix representing daily returns of 2287 US banks comprises over
3.57 million rows. By projecting this very large dimensional space of the entire US banking sector
onto a maximally informative, yet relatively small dimensional principal component subspace, we
are able to achieve a high level of computational tractability. Such a feature cannot be exploited
in explicit, network-based approaches. One may argue that the cost of such high coverage is
reflected in our coarse estimates of ‘integration’ as opposed to finer ‘interconnectivity’ estimates.
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the other hand, those who favor aggregate, macroscopic estimates of integration

with respect to the entire sector as a whole should rely on indirect econometric

techniques such as principal components. The main difference between the two

concepts is that interconnectivity between two banks can be measured directly but

it is not meaningful to compute integration among two banks. It only makes sense

to measure a bank’s integration with the rest of the sector and in this sense it is

an indirect measure.

The paper is organized as follows. Section 2 discusses the sample construction

and data filtration process, while section 3 outlines the main methodology used

in our study. Section 4 studies trends in US banks’ integration and their relation

to various crisis episodes included in our sample. Section 5 investigates policy

implications for bank regulators and the impact of the Dodd-Frank Act on US

banks’ integration levels. Section 6 presents evidence that integration can predict

banks’ instability—in terms of their volatility and beta—up to one year in advance.

Finally, section 7 presents concluding remarks.

2 Data for estimating US banks’ integration

For estimating US banks’ integration, we access stock returns from the daily secu-

rity file of the Center for Research in Security Prices (CRSP). Our sample period

ranges from January 1, 1993 to December 31, 2019. In order to collect daily stock

returns for all admissible US banks, we include in our search all firms that have an

SIC classification between 6020 and 6079 (commercial banks, savings institutions,

and credit unions) and from 6710 through 6712 (offices of bank holding companies).

We eliminate firms incorporated in a non-US country and eliminate all American

Depositary Receipts (ADRs). Additionally, we extract common shares by subject-

ing the sample to filtration based on their share code availability. Only banks with

share code either 10 or 11—corresponding to common stock—are selected. Fur-

ther, we drop all observations with nominal stock price of less than $1 [Fahlenbrach
et al., 2018]. For firms whose SIC classifications change from an inadmissible to

an admissible class in the sample period, we include data only for the time period
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during which they are depository institutions or bank holding companies within

the admissible codes. For firms whose codes change from one admissible class to

another we maintain differences in their classification.6 Further, we discard any

return which is identical to its immediately preceding value. An identical value

would indicate either a holiday or simply a stale value. Our final sample consists

of daily stock return observations for 2287 distinct US banks from January 2 1993

to December 31, 2019.

Clearly, not all banks in the sample have full data corresponding to the 27

year sample period. This may be due to several reasons: the banks in question

could have been private, or CRSP did not have access to their market values

for the entire duration.7 Irrespective of the cause, we include such banks’ data

from the day their records begin appearing in the CRSP database. Additionally,

since we include all such banks in CRSP database irrespective of whether they

are alive or not, our study is free from survivorship bias. Further, our attention

on public banks with primary listings in the US excludes several multinational

banking corporations which might have secondary listings in the US but primary

listings elsewhere. For example, the British bank HSBC has a secondary listing

on the New York Stock Exchange but under our definition, we do not include it in

the list of US banks. In the same way, financial service providers such as mutual

funds, insurance companies etc. are not included in our definition of banks.

After performing all the above filtrations we are left with a sample of 2287

unique US banks which have some return observations during the sample period

1993–2019. According to the FDIC, in 2019Q4 there were a total of 5177 commer-

cial banks and savings institutions insured by it.8 In terms of banks covered, this

represents around 45% coverage of the US banking sector.

6For example, the SIC of the bank “AmSouth Bancorporation” has been classified variously
as 6711, 6712 and 6022 during the sample period. Correspondingly we maintain three bank-SIC
combinations for AmSouth Bancorporation depending on its classification at different points in
time.

7For example, the bank “1st Constitution Bancorp” had its IPO on January 14, 2000 but
CRSP starts its data coverage only from January 2, 2002.

8See press release at https://www.fdic.gov/news/news/press/2020/pr20018.html.
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3 Methodology

We define a bank’s level of integration as the explanatory power (in terms of

adjusted R2) of the regression of its stock returns on principal components of the

stock return matrix of all US banks. These principal components are in turn,

the eigenvectors of the stock return covariance matrix for all US banks and are

postulated to contain all common banking factors that could potentially influence

individual banks’ integration levels.

Banks whose stock returns are highly explainable by US banking sector’s prin-

cipal components can be rightly thought to have a high exposure to common

factors driving the sector. On the other hand, banks with stock returns that can-

not be well-attributed to the banking sector’s principal components display low

dependence on common factors; and hence can be thought to have low levels of

integration. To rephrase, if a bank is completely cutoff from the vagaries of other

banks’ fortunes and thus, is independent of all common banking factors embedded

in the sector’s principal components, its integration is 0. Similarly, if a bank’s stock

returns are completely attributable to common banking factors, the explanatory

power of principal component regressions—and hence its integration—is 100%.

Real banks display empirical behavior in between these two theoretical ex-

tremes and their integration levels will lie between 0 and 100. While empirically it

is possible for the adjusted R2 to display negative values, since in our study such a

result will imply zero explanatory power, we interpret such instances as depicting

no integration.

Hence, our formal definition of integration for a US bank j is:

Întj := max{adj R2
j , 0}

where Întj is bank j’s estimated integration level and “adj R2
j” is the adjusted R2

for bank j’s corresponding principal component regression.
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3.1 Frequency of estimation

We partition each year into its constituent quarters. Since our duration of study

spans 27 years, there are 108 quarters in total: from 1993Q1 to 2019Q4. There

are between 62–66 daily observations for each bank’s stock return each quarter. In

order for a bank to qualify for computation of its integration in a given quarter,

we demand that it have at least 30 observations in that quarter. We compute the

covariance matrix of all admissible US banks’ stock return matrix for each quarter

and extract as many top eigenvectors as are necessary to explain 90% of return

variance that quarter. By applying eigenvectors to observed returns, we compute

principal components which are then used as explanatory variables for quarterly

regressions for each bank’s return. For banks which do not contain data for the

entire sample period, we start estimating their integration levels from the time their

data begin appearing in CRSP. For example, the bank ‘1st Constitution Bancorp’

has no return data available from 1993Q1 to 2001Q4. Hence, its integration level

estimation starts from 2002Q1.

3.2 Extracting out-of-sample principal components

The common factors that form the right hand side (RHS) of the regression equa-

tion are the principal components of the full set of US banks’ stock return matrix.

These correspond to the eigenvectors of the largest eigenvalues of the US banks’

covariance matrices. Each quarter, we include as many eignevectors as are neces-

sary to cover 90% of the total variation in returns. Hence the actual number of

eigenvectors used varies slightly from quarter to quarter. In case there are banks

with no usable return data, we form principal components from the set of avail-

able banks. For our sample, the minimum number of principal components needed

to cover 90% variance is 17, the maximum is 49; with a median of 44 principal

components.

Once eigenvectors are computed in order of largest to smallest eigenvalue, out-

of-sample principal components are estimated by applying them to observed re-

turns for the subsequent quarter in the spirit of Pukthuanthong and Roll [2009].
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For example, eigenvectors computed from the full covariance matrix in 1993Q1 are

applied to the stock return matrix of observed returns in 1993Q2. This generates

out-of-sample principal components to be used as common factors in the RHS

of the regression corresponding to 1993Q2. Such out-of-sample common banking

factors retain their orthogonality, which lays to rest the concern that the common

factors employed in quarterly regressions suffer from multicollinearity. By the con-

struction detailed above, we compute out-of-sample principal components for 107

quarters—from 1993Q2 to 2019Q4.

3.3 Results

3.3.1 Number of principal components

In principal component analysis, there is no unique method for deciding how many

principal components to use. Most choices therefore, are based on context and

special features of the problem at hand. We decide to be agnostic and data-driven

and employ as many principal components as are required to explain 90% of the

total variance. Hence the number of principal components required varies slightly

from quarter to quarter.

Figure 1 presents a plot of the proportion of variance attributable to the top

ten eigenvectors each quarter from 1993Q1 to 2019Q4. This figure immediately

brings to focus, three important observations:

1. During times of market calm, the marginal contribution of each eigenvector

seems somewhat evenly spread out.

2. During times of market distress—the LTCM collapse (1998Q3), the Dotcom

bust (2002Q3–Q4), the Great Recession (2007Q4–2009Q2); and the Euro-

zone crisis (2010Q2–2012Q2)—the contribution of the top eigenvector is the

highest and displays local maxima during each of the crises. Further, the

marginal contribution of eigenvectors 2, 3 etc. becomes much lower com-

pared to the top eigenvector during crises.

3. After attaining a peak during the Eurozone crisis, the marginal explanatory

11
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Figure 1: Cumulative proportion of variation explained each quarter by the top 10 eigenvectors. The bottom, solid
line is the first eigenvector; the second, dashed line denotes the time series of the explanatory power of top two
eigenvectors together; and similarly, the dotted, top line denotes the cumulative proportion of variance explained
by the whole set of top 10 eigenvectors. The grey, shaded vertical regions denote crises: LTCM collapse (1998Q3),
the Dotcom bust (2002Q3–Q4), the Great Recession (2007Q4–2009Q2); and the Eurozone crisis (2010Q2–2012Q2).

contribution of the top eigenvector has steadily risen and currently exhibits

levels even higher than those during the Eurozone crisis. Insofar as the top

eigenvector’s marginal explanatory contribution is positively associated with

times of market distress, this is an ominous signal.

3.3.2 Descriptive statistics

Table 1 presents descriptive statistics for the set of US banks’ quarterly integra-

tion series for a set of 2287 unique US banks. Since the full set of summary

statistics is too voluminous to be included directly in the paper, we resort to dis-

playing summary statistics for the pooled set of observations. Further, we display

pooled statistics for the subsample of US banks that are deemed either globally

or domestically systemically important.9 Additionally, two time based subsamples

9The Basel Committee on Banking Supervision (BCBS) maintains a list “global systemically
important banks” (GSIBs), 8 of which are US based. In addition, for the United States, the
“Domestic Systemically Important Banks” (DSIBs) include those non-G-SIBs, which remain
subject to the most stringent annual Stress Test by the Federal Reserve. In this paper, the full
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Table 1: Descriptive statistics of US banks’ quarterly integration series.

Sample Min Max Mean Med Std Dev IQR Skew Kurt
All 0 99.899 33.942 32.209 26.145 44.390 0.293 1.989
Sys 0 96.758 54.617 58.865 23.349 32.482 -0.679 2.711
H1 0 98.841 27.473 25.768 22.826 39.948 0.419 2.164
H2 0 99.899 43.944 45.837 27.752 47.332 -0.114 1.816

Notes: The minimum, maximum, mean, median, standard deviations, inter-quartile range, skewness and kurtosis
are reported for integration levels of different subsamples of US banks. “All” denotes the full sample of US banks
(2287 banks), “Sys” denotes the set of banks deemed either globally or domestically systemically important (24
banks, listed in Table 3). “H1” denotes the sample period from 1993Q1 to 2006Q2, corresponding to the first half
of the sample; while “H2” denotes the second half of the sample from 2006Q3–2019Q4.

corresponding to the first and second halves of the sample duration labeled “H1”

and “H2” respectively are also included.

For the sample of all US banks and the full sample period, the average inte-

gration level is 33.9, the median is 32.2; a mild positive skewness of 0.3; and the

kurtosis level is 2. Further, the systemically important banks’ mean and medians

are substantially higher at 54.6 and 58.9 respectively, suggesting that they are on

average, more exposed to common factors than their ordinary counterparts. The

average integration level of banks rises in the second half of the sample (post-

2006Q2) since the second half average is 44 as opposed to the first half’s 27.4.

4 Trends in US banks’ integration

For each US bank in our sample we have estimates of quarterly integration levels

from 1993Q2 to 2019Q4. Not all banks have quarterly integration estimates for the

full set of 107 quarters and in general most banks display several missing values.

Since individual banks’ full set of quarterly integration results are too voluminous

for display, we focus our attention on the median US bank constructed by comput-

ing the median observed integration values in each quarter, while ignoring banks

with missing integration values in that quarter. Similarly, we also construct the

median systemic US bank.

Figure 2 shows quarterly variation in integration levels for the median US

set of systemic US banks in our sample can be accessed in Table 3.
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Figure 2: Median (solid line), 25th and 75th percentile integration levels (dotted lines) for the full sample of US
banks where integration is measured by the adjusted R2 from principal component regressions on individual US
banks’ stock returns. The dashed line denotes a linear time trend fitted to quarterly integration levels. The grey
region is the 95% confidence interval.

bank as well as the 25th and 75th percentile values each quarter. The dashed line

indicates the result of linear trend fitting and the grey region delineates the 95%

confidence interval. For the median US bank, as well as for the ones corresponding

to the bottom and top quartile, integration shows a significant, positive trend. It

starts in 1993Q2 from 23.2 and ends 27 years later in 2019Q4 at 56.7. The median

bank’s integration reaches a minimum of 19.4 in 1995Q3; and achieves a peak of

70.4 in 2019Q3.

We subject all banks with more than 10 quarterly integration values (out of

a total 107)—a total of 1579 distinct US banks—to a linear trend fitting with

Newey-West standard errors [Newey and West, 1987] and compile results in Table

2. About 38% US banks show significantly positive integration trends at the

10% significance level; about 33% show significantly positive trends at the 5%

significance level; and around 25% show significantly positive trends at the 1%

significance level. Hence a large fraction of the admissible bank sample can be

said to exhibit significant positive trends.

On the other hand, there are about 8% US banks that show significantly nega-
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Table 2: US banks’ integration levels’ trend behavior

Sample Significance level Number Total Fraction
Banks with positive trend 10% 579 1579 0.38

5% 519 1579 0.33
1% 388 1579 0.25

Banks with negative trend 10% 122 1579 0.08
5% 86 1579 0.05
1% 50 1579 0.03

tive trends at the 10% level; around 5% banks that have significant negative trends

at the 5% level and about 3% banks with highly significant negative trends at the

1% level. Overall, this suggests that banks with increasing integration trends heav-

ily outnumber those with negative trends by approximately by 4.75 to 1 at the

10% level; 6 to 1 at the 5% level; and 7.76 to 1 at the 1% level of significance.

Thus the median US bank and a large fraction of the whole sample show a

steady increase in their integration. In case this trend continues, a strong negative

shock to any of the common factors could increase banks’ distress owing to their

large exposure to common factors. This aggregate increase in integration is even

more pronounced for the subsample of systemically important banks, as the next

subsection elucidates.

4.1 Trends among systemically important banks

Our sample contains observations on 24 global or domestic systemically important

banks. All of them qualify for the linear trend tests with Newey-West standard

errors and results of their trend-fitting are displayed in Table 3. 20 out of the 24

systemic banks show significantly high positive trends while 2 out of the 24 show

significantly negative trends. Most of the systemic banks exhibit slopes between

0.30–0.50 and except American Express and Union Bank San Fransisco all banks

have p-values well below the benchmark 1% significance level.

We also investigate the behavior of the median systemic bank. For example,

figure 3 shows quarterly integration levels of the median systemic bank juxtaposed
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Table 3: Systemic US banks’ integration trends.

Bank Estimate Std. Error T -stats p-value N
Ally Financial 1.8850 0.3471 5.4301 0.0000 23
American Express 0.1110 0.0727 1.5271 0.1298 107
BNY Mellon 0.2951 0.1000 2.9500 0.0039 107
Bank of America 0.3379 0.0729 4.6370 0.0000 105
Capital One 0.3216 0.0804 4.0016 0.0001 100
Citigroup 0.2420 0.0578 4.1865 0.0001 107
Comerica 0.4915 0.0631 7.7918 0.0000 107
Discover 2.0468 0.6438 3.1794 0.0098 12
Fifth Third 0.4797 0.0660 7.2681 0.0000 107
Goldman Sachs -4.4606 1.2605 -3.5389 0.0063 11
Huntington Bancshares 0.5319 0.0638 8.3342 0.0000 107
JP Morgan 0.3174 0.0697 4.5536 0.0000 107
Keycorp 0.3861 0.0606 6.3679 0.0000 103
M & T Bank 0.3603 0.1011 3.5648 0.0006 86
Morgan Stanley 0.9766 0.2714 3.5984 0.0042 13
Northern Trust 0.4436 0.0836 5.3027 0.0000 107
PNC 0.4237 0.0782 5.4149 0.0000 107
Regions 0.5401 0.1009 5.3546 0.0000 103
State Street 0.3928 0.0769 5.1053 0.0000 107
Suntrust Banks 0.3857 0.0679 5.6782 0.0000 107
Union Bank San Fransisco 0.3596 1.4105 0.2549 0.8039 12
United States Bancorp -0.8307 0.2688 -3.0903 0.0075 17
Wells Fargo 0.3443 0.0736 4.6765 0.0000 107
Zions Bancorporation 0.5826 0.0715 8.1529 0.0000 102

Notes: The Newey-West standard errors [Newey and West, 1987] are heteroskedastic and autocorrelation consis-
tent.
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with that of the median US bank.10 The median systemic bank starts with a

integration of 47.4 in 1993Q2 and ends at 76 in 2019Q4. It is quite remarkable

that except for a short period very early on in the sample, the median systemic

bank displays uniformly higher levels than its full sample counterpart. Moreover,

the median systemic bank’s quarterly integration time series is much more volatile,

with standard deviation 18.6 compared to that of the median US bank whose

standard deviation is 13.8.
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Figure 3: Median US bank’s and the median US systemic bank’s integration. The shaded area corresponds to the
LTCM collapse: 1998Q3, the dotcom bust: 2002Q3-Q4, the great recession: 2007Q4–2009Q2; and the Eurozone
crisis: 2010Q2–2012Q2.

Further, figure 3 shows clearly that during periods of market distress—LTCM

collapse (1998Q3), the dotcom bust (2002Q3-Q4), the Great Recession (2007Q4–

2009Q2); and the Eurozone crisis (2010Q2–2012Q2)—the median US as well as

the median US systemic banks exhibit significantly high values (local maxima).

Another common feature of the two displayed time series is their consistently

positive trends which have kept pushing up their integration values to successively

10The median systemic bank is constructed from taking the quarterly medians of available
integration levels of systemic US banks.
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higher levels. Insofar as high integration values denote excessive dependence on the

movement of the common factors, such increasing trends suggest a high build-up

of aggregate risk in the US banking sector.

4.2 First and second halves of the sample duration

To investigate the effect of subsample duration on integration levels, we subdi-

vide our sample into two equals halves: H1 and H2 corresponding to the periods

1993Q1–2006Q2, dubbed henceforth as “pre-2006” or “H1”; and 2006Q3–2019Q4

dubbed “post-2006” or “H2” in our sample.
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Figure 4: The dot-dashed line denotes a linear time trend fitted to quarterly integration levels segregated by first
(pre-2006) and second (post-2006) halves of the sample duration. The grey region is the 95% confidence interval
and the vertical grey bands correspond to the LTCM collapse (1998Q3), the dotcom bust (2002Q3–Q4), the great
recession (2007Q4–2009Q2) and the Eurozone crisis (2010Q2–2012Q2).

Figure 4 plots the median US bank’s integration with 95% confidence region in

grey and vertical grey bands for the four prominent periods of market distress in

our sample—LTCM collapse (1998Q3), the dotcom bust (2002Q3-Q4), the Great

Recession (2007Q4–2009Q2); and the Eurozone crisis (2010Q2–2012Q2). To high-

light the effect of the subsample duration, it fits two separate trend lines to the
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median US bank’s quarterly integration levels. Visual inspection of the figure

strongly suggests that for the median US bank, the positive trend with increasing

integration levels has accelerated in the second half of the sample (post-2006).

Table 4: Median US banks’ integration trends.

Sample Estimate Std. Error T -stats p-value
Med full 0.4067 0.0245 16.6339 0.0000
Med full H1 0.2398 0.0192 12.4937 0.0000
Med full H2 0.5243 0.0487 10.7723 0.0000
Med sys 0.4197 0.0651 6.4494 0.0000
Med sys H1 0.7284 0.2318 3.1420 0.0028
Med sys H2 0.2717 0.1254 2.1661 0.0348

Notes: “Med full” denotes the median US bank, “Med sys” denotes the median systemic bank, “Med full H1”
and “Med full H2” denote the median US bank corresponding to the first and second half respectively of the
sample period (pre- and post-2006); and “Med sys H1” and “Med sys H2” denote the median systemic bank pre-
and post-2006 respectively. The Newey-West standard errors [Newey and West, 1987] are heteroskedastic and
autocorrelation consistent.

To confirm the visual evidence presented in figure 2, we construct Table 4 and

compile the results of linear trend fitting on banks’ quarterly integration values.

Results are reported for the median US bank and the median US systemic bank

over the full duration of the study, as well as on the first and second halves of the

sample corresponding to the pre- and post-2006 time period.

For the median US bank for the full sample duration, as well as during the first

and second halves respectively, there is a significantly positive slope, especially

post-2006. The overall slope is 0.40 (per quarter) which indicates that common

factor exposure increased by 16 percentage points in a decade. The corresponding

numbers for the first and second half of the sample are 0.24 and 0.52, indicating

10 percentage points increase in common factor dependency per decade pre-2006;

and about 21 percentage points increase per decade post-2006.

Similarly, for the median systemically important bank, the full sample slope

is significantly positive and suggests about 17 percentage points of integration

increase per decade. The corresponding numbers for the first and second half of

the sample are 0.73 and 0.27, indicating about a 28-percentage points integration

increase per decade pre-2006; and about 11 percentage points integration increase
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per decade post-2006. In this respect the median US and the median systemic bank

display opposite behavior: their major slope increasing regimes are the opposite.

The median US bank increases the steepness of the slope of its trend post-2006,

while the median systemic bank’s high positive trends occur pre-2006.

4.3 Crises

Our sample period from 1993–2019 is able to cover four important market dis-

tress episodes that affected US banks—LTCM collapse (1998Q3), the dotcom

bust (2002Q3-Q4), the Great Recession (2007Q4–2009Q2); and the Eurozone crisis

(2010Q2–2012Q2).

Table 5: Median US banks’ integration trends during crises.

Estimate Std. Error T -stats p-value
Median Bank:

Trend 0.4103 0.0263 15.6003 0.0000
LTCM 7.5488 1.7636 4.2803 0.0000

Dotcom 0.4026 1.3907 1.5011 0.1364
GR 3.2204 1.5277 2.1080 0.0375
EZ 1.6524 3.5462 0.4660 0.6423

Median systemic bank:
Trend 0.4312 0.0530 8.1437 0.0000
LTCM 15.6937 3.5760 4.3886 0.0000

Dotcom 26.8495 3.1402 8.5503 0.0000
GR 17.4276 2.0067 8.6849 0.0000
EZ 3.7769 3.3567 1.1252 0.2632

Notes: “Trend” denotes linear trend, “LTCM” denotes the LTCM collapse (1998Q3), “Dotcom” denotes the
dotcom bust (2002Q3–Q4), “GR” denotes the great recession (2007Q4–2009Q2) while “EZ” denotes the Eurozone
crisis (2010Q2–2012Q2). The Newey-West standard errors [Newey and West, 1987] are heteroskedastic and
autocorrelation consistent. The coefficients, T stats etc. for the regression intercept have been omitted.

For the median US and the median systemic US bank, results from trend re-

gressions with dummy variables for the above four distinct market distress episodes

are tabulated and compiled in Table 5. In assessing the significance of estimates,

we rely on the Newey-West standard errors [Newey and West, 1987] which are

heteroskedastic and autocorrelation consistent.
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A brief overview of the results is as follows: the linear trend is positive and

significant, postulating an increase in integration of about 16–17 percentage points

per decade. For the median bank, the LTCM crisis and the Great Recession

exhibit the highest increases in integration respectively, with the LTCM crisis (in

1998Q3) indicating an increase of almost 7.5 percentage points per quarter; and

the Great Recession suggesting an increase of 3.2 percentage points per quarter,

or equivalently about 22.4 percentage points of increase in integration over its full

course from 2007Q4–2009Q2. The effect of the Dotcom bust (in 2002Q3–Q4) and

the Eurozone crisis (2010Q2–2012Q2) is positive but not significantly so.

For the median systemic bank, except the Eurozone crisis, all variables are

positive and highly significant, with p values indistinguishable from 0. The LTCM

crisis is highly significant, indicating an increase of about 15.7 integration percent-

age points per quarter, while the Great Recession also features significantly high

integration observations over and above the trend, with a 17.4 percentage points

increase in integration per quarter. However, the most significant variable is the

dotcom bust, indicating a 26.9 percentage points integration increase per quarter.

Thus overall, for the median US bank the strongest economic effect comes from

the LTCM collapse, followed by the Great Recession, while for the median systemic

bank, the strongest economic effect is exerted by the Dotcom bust, followed closely

by the Great Recession and the LTCM collapse.

To test the effect of crises on individual banks’ integration levels over and above

their trends, we introduce dummy variables corresponding to the market distress

quarters. The results are presented in Table 6 where we count, for each crisis, how

many banks show significantly positive integration observations over and above

their trends at the conventional 10%, 5% and 1% significance level benchmarks.

Overall, there are 1579 banks for which such regressions can be run. However,

several of these banks have very few usable observations—during tranquil as well as

distressed quarters—and the sample is rife with missing values. To circumvent this

issue, we conduct linear trend regressions with crises dummies—LTCM (1998Q3),

Dotcom bust (2002Q3-Q4), the Great Recession (2007Q4–2009Q2); and the Euro-

zone crisis (2010Q2–2012Q4)—for whichever set of banks that display integration
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Table 6: US banks’ integration levels during crises

Crises 10% 5% 1% N
Positive effect LTCM 84 47 18 500

Dotcom 47 30 3 271
GR 151 132 86 340
EZ 74 44 15 255
Any 190 118 62 710

Negative effect LTCM 31 10 1 354
Dotcom 22 8 3 218
GR 29 18 6 219
EZ 47 30 11 206
Any 56 25 4 485

Notes: Columns “10%”, “5%” and “1%” denote benchmark significance levels and “N” denotes the total number
of available banks. “LTCM” denotes the LTCM collapse (1998Q3), “Dotcom” denotes the dotcom bust (2002Q3–
Q4), “GR” denotes the great recession (2007Q4–2009Q2) while “EZ” denotes the Eurozone crisis (2010Q2–
2012Q2). “Any” is a dummy variable taking the value 1 for each crisis episode and 0 otherwise.

observations during these distress events.

4.3.1 LTCM collapse: 1998Q3

For the LTCM collapse in 1998Q3, there are overall 854 banks with usable obser-

vations. Out of these, 500 banks display integration levels significantly more than

trends, with 85 banks exhibiting significance at the 10% levels, 47 at the 5% level

and 18 at the 1% level. On the other hand, there are overall 354 banks with usable

observations with below trend obversations; and among these, 31 banks exhibit

significance at the 10% levels, 10 at the 5% level and 1 at the 1% level.

4.3.2 Dotcom bust: 2002Q3–Q4

For the Dotcom bust in 2002Q3–Q4, there are overall 489 banks with usable obser-

vations. Out of these, 271 banks display integration levels significantly more than

trends, with 47 banks exhibiting significance at the 10% levels, 30 at the 5% level

and 3 at the 1% level. On the other hand, there are overall 218 banks with usable

observations with below trend observations; and among these, 22 banks exhibit

significance at the 10% levels, 8 at the 5% level and 3 at the 1% level.

22



4.3.3 The Great Recession: 2007Q4–2009Q2

For the Great Recession during 2007Q4–2009Q2, there are overall 559 banks with

usable observations. Out of these, 340 banks display integration levels significantly

more than trends, with 151 banks exhibiting significance at the 10% levels, 132

at the 5% level and 86 at the 1% level. On the other hand, there are overall 219

banks with usable observations with below trend observations; and among these,

29 banks exhibit significance at the 10% levels, 18 at the 5% level and 6 at the 1%

level.

4.3.4 Eurozone crisis: 2010Q2–2012Q2

For the Eurozone crisis in 2010Q2–2012Q2, there are overall 461 banks with usable

observations. Out of these, 255 banks display integration levels significantly more

than trends, with 74 banks exhibiting significance at the 10% levels, 44 at the 5%

level and 15 at the 1% level. On the other hand, there are overall 206 banks with

usable observations with below trend observations; and among these, 47 banks

exhibit significance at the 10% levels, 30 at the 5% level and 11 at the 1% level.

Finally, we also test how many banks get affected by any of the four market

distress episodes outlined above. Overall there are about 1189 banks for which such

tests can be conducted. Out of these, 710 banks show positive effects of crises on

integration, out of which 190 show significance at the 10% level, 118 at the 5%

level and 62 at the 1% level. Similarly, 485 banks show negative effects of crises on

integration, out of which 56 show significance at the 10% level, 25 at the 5% level

and 4 at the 1% level. Overall, for each crisis in our sample duration, both the

median US bank and the median systemic bank; as well as all admissible individual

banks display a marked propensity of significantly increased integration. Increases

in bank integration uniformly dominate decreases for all bank subsamples, as well

as for all conventional benchmarks for significance.
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5 Policy analysis

We draw policy implications relevant to bank regulators based on the following

interrelated observations outlined in prior sections.

1. Integration levels during crises are abnormally high

In section 4.3, we compile extensive evidence that integration is abnormally

high during crises, especially in tables 5 and 6. Visual evidence for this claim

can be assessed via figures 2, 3 and 4.

Abnormally high integration levels over-and-above those warranted by trends,

are observed not only for the median US bank, the median US systemic bank,

the 25th and 75th percentiles; but also for a large sample of banks individu-

ally. This leads credence to the view that during periods of market distress,

the exposure of US banks to common factors is much higher than that during

tranquil periods.

2. The top eigenvector’s explanatory share is highest during crises

The explanatory power—in terms of the proportion of variance explained—

of the top eigenvector is the highest during times of crises. Equivalently, the

marginal contribution in terms of explanatory power of principal components

2, 3 etc. is the lowest during times of crises, as can be seen in figure 1.

This set of results has potentially important consequences for US bank regu-

lators. Excessively high integration levels denote excessive dependence of banks’

stock returns on common banking factors; and a concomitantly low dependence

on idiosyncratic factors. Another indication of the same phenomenon may be

characterized by the time series of contributions of the top eigenvector to the

proportion of explained stock return variance, overly high levels of which denote

overdependence of banks’ stock returns on the fate of common banking factors.

Equivalently, overly low explanatory fraction of the second top eigenvector denotes

the same excessive dependence of banks on common factors.
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Periods of market distress are characterized by negative shocks to one or more

underlying common factors. Thus it is quite natural to observe US banks’ inte-

gration levels jump significantly high during crisis episodes. Even more, since our

comprehensive sample of US banks exhibits ever-increasing dependency on com-

mon factors, they remain vulnerable to potential negative shocks to them when a

future crisis strikes.

Based on our methodology, bank regulators can assess both individual banks’

integration as well as aggregate sector-level exposure. In periods of high mar-

ket distress, requiring additional stress tests, financial disclosures or mandated

increases in capital buffers can mitigate potential heavy losses from such nega-

tive shocks [Hirtle, 2007]. After the Great Recession, the Dodd-Frank Act was

one such reform that sought to make the US banking system safer during times

of market-wide distress. We evaluate its impact on banks’ exposure to common

factors below.

5.1 Effect of the Dodd-Frank Act

The Dodd-Frank Act was enacted on July 21, 2010 in the aftermath of the Great

Recession with a view to overhaul financial regulation in the US. In particular, it

gave the Federal Reserve new powers to regulate the too-big-to-fail banks with an

aim to contain threats to financial stability emanating from their distress. In fact,

the notion of “too-big-to-fail” was formalized under the provision of Title I of the

Dodd-Frank Act which classified such entities as systemically important financial

institutions (SIFIs). In particular, banks that were identified as posing excessive

systemic risk were required to hold increased levels of high quality capital in order

to insulate them from sudden market downturns.

In figure 5 we examine the time series of the full median and the median

systemic banks’ combined tier 1 and 2 capital ratio to verify if the passage of the

Dodd-Frank Act has had any effect on banks’ behavior. The shaded vertical grey

regions correspond to the Great Recession (2007Q4–2009Q2) and the Eurozone

crisis (2010Q2–2012Q2); the dashed vertical line corresponds to the passage of the

Dodd-Frank Act (2010Q3); and the y axis measures in percentages, the combined
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Figure 5: The median US and the median US systemic banks’ combined tier 1 and 2 capital ratio, with the
dot-dashed line at the bottom (in 1993) denoting the median systemic bank and the dotted line at the top (in
1993) denoting the full median US bank. The shaded vertical grey regions correspond to the Great Recession
(2007Q4–2009Q2) and the Eurozone crisis (2010Q2–2012Q2); the dashed vertical line corresponds to the passage
of the Dodd-Frank Act (2010Q3); and the y axis measures in percentages, the combined tier 1 and 2 ratio.

tier 1 and 2 ratio.

We observe roughly three regimes in the time series evolution of figure 5. The

first regime starts from the beginning of the sample in 1993 and ends just as the

Great Recession begins to set in (2007Q4). During this period, the median US

bank’s combined tier 1 and 2 ratio is uniformly higher than that of the median

systemic bank, suggesting that the former was better capitalized than the latter

during this period. The second regime starts from the onset of the Great Recession

and lasts till the end of the Eurozone crisis (2012Q2) and features several interest-

ing observations. First, the median systemic bank’s T1 T2 ratio is at its minimum

in 2007Q4, then builds up rapidly and during just one quarter: 2008Q3–Q4 jumps

vertiginously from around 12% to about 14.7%. This jump also helps the median

systemic bank’s T1 T2 ratio to overcome that of the relatively slow increase of the

full median bank. During the Eurozone crisis, the median systemic bank maintains

levels around 15.5% while the full median catches up with it during the last legs of

the Eurozone crisis in 2012Q1. Finally, in the third regime, starting from 2012Q2,
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the full median and the systemic median bank’s combined tier 1 and 2 ratios seem

to be close to each other, especially after 2014Q3.

Quite interestingly we do not observe tier 1 and 2 capital ratios jump after the

imposition of the Dodd-Frank Act in 2010Q3. The jumps in capital ratios occur

during the Great Recession and hence much before the formal announcement of

the Act. This is true for both the full median and the systemic median bank and

this observation gives credence to the idea that increases in safe capital levels of

US banks were an endogenous reaction to the onset of the Great Recession and not

necessarily to the Dodd-Frank Act, which came into effect about two years later.

In fact, this development is intricately linked to the enactment of the Emergency

Economic Stabilization Act (October 3, 2008) which created the Troubled Asset

Relief Program (TARP). Section 128 of the Act allowed the Federal Reserve Board

to begin paying interest on excess reserve balances as well as on required reserves.11

As a result, US banks’ deposits with the Fed increased from August 2008’s level of

about $10 billion to $880 billion by the end of the second week of January 2009.

By February 11, 2009, total reserve balances fell to $603 billion but by April 1

2009, they increased to $806 billion. Finally, by August 2011, reserves reached

$1.6 trillion.12 All of these ups and downs in banks’ deposits with the Fed closely

mirror the rise and fall in the tier 1 and 2 ratio of the median banks in figure 5.

Thus it can be seen that US banks’ improvement in the quality of capital post-

2008Q3 was prompted by the Fed’s policy change of paying interest on reserves and

excess reserves in 2008Q3, much before the formal imposition of the Dodd-Frank

Act in 2010Q3.

To sum up, insofar as high levels of tier 1 and 2 capital ratio indicate high levels

of safe capital assets, US banks can be said to be better capitalized in the wake

of the Dodd-Frank reform; having moved from roughly 13% pre-2008, to around

15% during crises (2007–2012), to finally about 14% after 2014.13 However, it is

11See the Federal Reserve press release at https://www.federalreserve.gov/newsevents/
presintegrationleases/monetary20081006a.htm.

12Source: Federal Reserve Bank of St. Louis. See the reserve balance time series here: https:
//fred.stlouisfed.org/series/WRESBAL

13Similar observations have been made in Goel et al. [September 2019] which present evidence
that the global systemically important banks are better capitalized after recent crises and thus
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important to note that the improvement in safe capital levels occurred much prior

to the formal imposition of the Dodd-Frank Act and in fact, was due to the policy

change of paying interest on reserves and excess reserves.
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Figure 6: The median US and the median US systemic banks’ common equity ratios (in percentages), with the
dot-dashed line at the bottom (in 1993) denoting the median systemic bank and the dotted line at the top (in
1993) denoting the full median US bank. The shaded vertical grey regions correspond to the Great Recession
(2007Q4–2009Q2) and the Eurozone crisis (2010Q2–2012Q2); and the dashed vertical line corresponds to the
passage of the Dodd-Frank Act (2010Q3).

Since common equity is an important component of tier 1 capital, we also

present figure 6 which compares the time series of the median systemic and the full

median US banks’ common equity ratios (in percentages). The shaded vertical grey

regions correspond to the Great Recession (2007Q4–2009Q2) and the Eurozone

crisis (2010Q2–2012Q2); and the dashed vertical line corresponds to the passage

of the Dodd-Frank Act (2010Q3).

We observe that from 1993 to 2001Q3, the full median bank’s common equity

ratio dominates that of the median systemic bank; and from then on, the two time

series roughly seem to follow each other closely. However, there is one interesting

have become somewhat less systemically important.
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exception to this rule: during a mere two quarters 2008Q3–2009Q1, the median

systemic bank’s common equity ratio drops precipitously from about 9% to around

7.2%, only to jump sharply again during 2009Q2 to end up at about 8.2%. For

both the full median and the systemic median banks, the ratio steadily increases

thereafter, especially during the Eurozone crisis. Overall, the common equity

ratio rises from about 8.5% pre-2008, to a level of about 10.5% after the Eurozone

crisis.14

We emphasize that just as in the case of the combined tier 1 and 2 ratio, the

increase in the full median and the systemic median banks’ common equity ratios

occur much earlier than the imposition of the Dodd-Frank Act in 2010Q3. Again,

this is indicative of the fact that US banks’ increase in common equity is prompted

by the promulgation of Section 128 of the Emergency Economic Stabilization Act

(October 3 2008) which directed the Federal Reserve to begin paying interests to

banks on their reserves and excess reserves.

Table 7: Table for comparing the means of systemic banks’ (pooled) variable estimates during pre- versus post-
Dodd-Frank Act enactment on July 21, 2010.

Variable Name of test Alt: H1 p-value
Tier 1 and 2 capital ratio Welch test Smaller 0

Wilcoxon test Negative shift 0
KS test CDF higher 0

Common equity ratio Welch test Smaller 0
Wilcoxon test Negative shift 0

KS test CDF higher 0
Integration Welch test Smaller 0

Wilcoxon test Negative shift 0
KS test CDF higher 0

Note: ‘Welch test’ stands for the two-sample Welch’s t test, ‘Wilcoxon test’ stands for the nonparametric Wilcoxon
rank-sum test with continuity correction; and ‘KS’ denotes the Kolmogorov-Smirnoff test. For Welch andWilcoxon
tests, the null hypothesis is of equal means, while the alternative hypothesis suggests that the means before the
imposition of the Dodd-Frank Act (2010Q3) are lower. For the Kolmogorov-Smirnov two sample test, the null
hypothesis is that the distribution of integration is the same pre- and post-Dodd-Frank, while the alternative
hypothesis is that the empirical distribution of bank integration before Dodd-Frank lies above (is stochastically
dominated) that after Dodd-Frank.

In order to buttress the above mentioned visual evidence more formally, we

14Adrian et al. [2018] also present evidence that leverage has fallen after recent crises and as
a result, the banking system is safer.
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conduct statistical tests for the sample of all US systemic banks comparing the

means of the tier 1 and 2 capital ratio; and the common equity ratio before and

after the enactment of the Dodd-Frank Act in 2010Q3. We present the results in

Table 7.

The table shows that we can safely reject the null hypothesis that the means of

tier 1 and 2 capital ratio and common equity ratio are the same before and after

the imposition of the Dodd-Frank Act respectively. The alternative hypothesis

tests the view (compatible with the plots in figures 5 and 6) that the respective

ratios are lower before the enactment of the Dodd-Frank Act in 2010Q3. As may

be seen, both parametric (Welch’s two-sample t test) and non-parametric tests

(Wilcoxon’s rank-sum test with continuity correction) resolutely reject the null

hypothesis of equality in means in favor of the alternative hypothesis, with the

p-value indistinguishable from 0. The mean tier 1 and 2 capital ratio before the

Dodd-Frank Act is 12.7% while that after the Act is 15%; and the respective means

for the common equity ratio are 8.1% and 10.2%. In fact, we find that the tier

1 and 2 capital ratio and the common equity ratio are higher post-Dodd-Frank

not just for the median systemic bank bur for all individual systemic banks in our

sample.

5.2 Effect of Dodd-Frank on banks’ integration

We test whether the imposition of the Dodd-Frank Act has helped in reducing US

banks’ exposure to common factors. Clearly, if banks’ common factor exposure

levels are lower post-Dodd-Frank reforms, one could judge it to be a success.

However, prior visual evidence as seen in figure 3 indicates that the median US

bank and the median systemic bank have continued to exhibit a steady rise in

their dependency on common factors.15 Testing this hypothesis more formally in

table 7, we find that the null hypothesis of equal integration before and after the

Dodd-Frank Act can be summarily rejected in favor of the alternative hypothesis

which states that integration before the Dodd-Frank Act was smaller. The median

15Although the rate of increase (slope) for the median systemic bank has come down from 0.72
to 0.27 post-2006 as may be observed in Table 4.
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systemic bank’s mean integration before the Act is 50 while that after the Act is

found to be 68.

In conclusion, the Dodd-Frank Act can be interpreted to be a partial success

insofar as one of its mandates required that US banks, in particular, the system-

ically important banks be better capitalized. However, it has had a very limited

effect on systemic banks’ common factor exposure, which continues to rise.16 To

the extent that overly high integration implies overdependence on common bank-

ing factors, this suggests that US banks continue to be increasingly vulnerable to

negative shocks via high dependency on common factor movements.17

6 Can integration predict banks’ instability?

In this section, we present evidence that US banks’ instability—in terms of their

volatility and beta—can be predicted by past values of their integration.

6.1 Background

Our methodology assumes that the common factors which influence returns of

all US banks are well-represented in the linear space spanned by the top princi-

pal components. While their precise identities remain unknown, our model falls

squarely within the classic multi-factor framework of modern asset pricing the-

ory. On the other hand, the one-factor framework of the CAPM is also closely

aligned with our setup. If there is only one common factor which drives all US

banks’ returns, our goodness-of-fit based measure of integration is equivalent to

the explanatory power (R2) of the CAPM. From this line of reasoning, it follows

that bank integration—the multi-factor model’s goodness-of-fit—will be at least as

large as the CAPM R2. Moreover, it is worth investigating if US banks’ CAPM R2

is systematically related to their integration, and if they show comovement across

16With the exception of two systemic banks in our sample—Bank of New York Mellon and
Northern Trust—all other systemic banks show significantly higher integration levels after the
imposition of the Dodd-Frank Act.

17To combat such sources of fragility, Passmore and von Hafften [2019] advocate even higher
levels of capital surcharges for G-SIBs.
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Figure 7: The median US bank’s integration is represented as the solid line on the primary y−axis and its CAPM
R2, by a dashed line on the secondary y−axis. The grey region denotes the Great Recession and the Eurozone
debt crises.

our sample period. In order to investigate such issues, we present the median US

bank’s integration and its CAPM R2 in figure 7.

The primary axis displays the median US bank’s integration, and the secondary

axis shows its CAPM R2. Some important observations stand out immediately:

there is appreciable comovement between bank integration and the CAPM R2

(correlation ∼0.26) with the former dominating, and the latter displaying local

maxima at the LTCM crisis, and 2-3 quarters after the end of the Dotcom bust,

Great Recession and the Eurozone debt crisis. Global maxima of the two series

also coincide in the same quarter: 2019Q3. For the median CAPM R2, there is a

positive, though mild trend—especially after the Great Recession—which is rela-

tively low compared to that of the median bank’s integration. On the other hand,

there are some dissimilarities also: the CAPM R2 shows small peaks at 1995Q2,

and 2005Q3 for which there are no counterparts in the bank integration time se-

ries. In particular, the median bank’s CAPM R2 shows a very steep rise during

2018Q3–2018Q4 which is absent in the median bank’s integration time series. The

comovements captured in figure 7 lead us to believe that bank integration and its
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Figure 8: The median US bank’s integration is represented as the solid line on the primary y−axis and its historical
return volatility, by a dashed line on the secondary y−axis. The historical return volatility is calculated at the
quarterly frequency from daily returns by scaling daily returns’ standard deviation by the number of trading days
in that quarter. The grey region denotes the Great Recession and the Eurozone debt crises.

lags can contain information with predictive power for US banks’ beta and their

volatility. Since the multi-factor framework of asset returns is more plausible than

the one-factor CAPM, we can use current bank integration levels to predict future

bank (CAPM) betas and their volatilities.

6.2 Predicting bank volatility with bank integration

We present the plots of the median bank’s integration with median historical return

volatility, and with the median CAPM idiosyncratic and total volatility to visualize

systematic comovement between these time series.

Figure 8 displays the median bank integration on the primary y−axis, and

its historical return volatility on the secondary y−axis. The historical return

volatility is calculated at the quarterly frequency from daily returns by scaling

daily returns’ standard deviation by the square root of the number of trading days

in that quarter. While admittedly simple, the chief advantages of this method are
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Figure 9: The median US bank’s integration is represented as the solid line on the primary y−axis and its CAPM
idiosyncratic and total volatility, by dotted and dashed lines on the secondary y−axis respectively. The grey
region denotes the Great Recession and the Eurozone debt crises.

that it is model-free, nonparametric and is consistent with the empirical regularity

that the underlying return time series evolves as a Wiener process.

Visual inspection suggests that the median bank’s historical return volatility

peaks during the Great Recession (2008Q4), and displays local maxima one quarter

after the LTCM crisis (1998Q4), and the Eurozone debt crisis (2011Q3). However,

historical volatility shows no positive trend and in fact, after the Eurozone debt

crisis, tends to display low values trending mildly downwards.

Similarly, figure 9 displays the median bank integration on the primary y−axis,

and on the secondary y−axis, plots the median US bank’s idiosyncratic and total

volatility as calculated according to the CAPM. The time series of idiosyncratic

volatility shows smooth increases and falls, with the highest value attained at the

end of the Great Recession (2009Q2). Total volatility also displays its maximum

at the same point, though it does exhibit more variation and displays local peaks

around the LTCM crisis (1998Q3), at the end of the Eurozone debt crisis (2012Q2),

and towards the end of the sample (2019Q3). However, again in contrast to the
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median bank’s integration, which steadily rises, neither the idiosyncratic nor the

total volatility show any positive trend either prior to or post the Great Recession.

Overall, the comparison of bank integration with its volatility displays one

important similarity: both time series peak during periods of market distress,

though integration shows more sensitivity to crisis episodes owing to its underlying

multi-factor model. The most important dissimilarity between the integration and

volatility is that integration is clearly trending upwards, in particular, after 2006,

but volatility levels do not show any appreciable trend.

To formally test the hypothesis that integration can impact future bank volatil-

ity, we resort to panel estimations with bank volatility as the dependent variable

and lags of integration (and controls) as the independent variables.

6.2.1 Regression Methodology

We test the following regression specification for ascertaining whether there is

evidence for predictive association of bank integration with bank volatility:

V olt,k =
5∑

i=1

βi ∗ Intt−i,k +
J∑

j=1

γj ∗ Controljt,k + ut,k (1)

Here bank k’s volatility (expressed in percentages) in quarter t is regressed on

its lagged integration values up to five quarters back, as well as on contempora-

neous controls which have been shown to be influence bank volatility in previous

studies. Our choice of controls rests on concerns regarding comprehensive cover-

age inasmuch as consistency with recent literature. We include the following bank

characteristics as controls: bank size (log total assets), tier 1 and 2 ratio (com-

bined), the non-performing assets to total assets ratio (expressed in percentages),

and the loss provisions to total assets ratio (expressed in percentages). We note

that our choice of controls is consistent with the choice of determinants of bank

risk in several related papers [Avino et al., 2019, Bessler et al., 2015, Leung et al.,

2015, Delis and Staikouras, 2011, Stiroh, 2006].

Our sample of US banks features missing values for both the independent vari-

ables as well as for the dependent variable. We include all variables as and when
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they become available in Standard and Poor’s Compustat. There is extensive het-

erogeneity in the sample of US banks—not merely in the observed characteristics

such as bank integration, size, common equity etc.—but also in potentially several

relevant unobserved characteristics, which could introduce an omitted variable bias

under naive pooled OLS estimations.

We adopt the methodology of unbalanced, two-way (bank and quarter) fixed

effects panel estimation. To counter potential heteroskedasticity in bank residuals,

and to ascertain the significance of independent variables, the standard errors

are computed allowing clustering at both the bank and quarter levels. We note

that this is consistent with studies such as Petersen [2009], Cameron et al. [2011]

and Thompson [2011] which advocate double clustering to account for persistent

shocks as well as cross-sectional correlation. Further, to forestall concerns that

the explanatory variables on the right hand side suffer from multicollinearity, we

present the correlation matrix of all variables—dependent and independent—in

table 8. The highest magnitude of correlation occurs among the lags of integration

which range in 0.45–0.51, which is quite moderate and raises no concerns regarding

multi-collinearity.

6.2.2 Predicting banks’ historical return volatility

Table 9 presents the results of our panel estimations. We summarize the content

of our findings thus: the benchmark panel estimation with only controls features

∼40,000 observations, explains ∼4% of the variation, and suggests strong statisti-

cal significance for bank size, tier 1 and 2 capital ratios, as well as loss provision (as

percentages of total assets). The signs of the coefficients also have intuitive inter-

pretations: all else equal, increased bank size and higher T1 T2 ratios lead to lower

bank volatility; and higher loss provisioning leads to increased bank volatility.

For the whole sample with the inclusion of five quarterly lags of integration,

we have ∼33,000 observations and our specification explains ∼11% of the total

variation, implying that the five quarterly integration lags add around 7% of ex-

planatory power. The findings show that all four controls—bank size, T1 T2 ra-

tio, NPA and loss provisions—have coefficients which are statistically significantly
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Table 9: This table presents the results of unbalanced, two-way (bank and quarter) fixed effects panel estimation
with clustered robust standard errors allowing clustering at both the bank and quarter levels. The row for coeffi-
cients is followed by the row featuring coefficients’ p-values. The coefficients highlighted in bold are statistically
significant, with corresponding p-values ≤ 0.10.

V olt,k =
∑5

i=1 βi ∗ Intt−i,k +
∑J

j=1 γj ∗ Controljt,k + ut,k

Bench Full Large Pre-DF Post-DF
int lag1 0.0229 0.0191 0.02312 0.0199
p value 0 0 0 0.014
int lag2 0.0078 0.0100 0.00924 0.0009

0.007 0.007 0.009 0.862
int lag3 0.0061 0.0016 0.00484 0.0046

0.059 0.684 0.217 0.382
int lag4 0.0056 0.0042 0.00694 -0.0026

0.071 0.185 0.061 0.665
int lag5 0.0013 0.0009 -0.00006 0.0007

0.643 0.803 0.985 0.890
Controls
size -1.8996 -1.6454 -0.0257 -1.82008 2.0083
p value 0.01 0.023 0.976 0.112 0.161
t1 t2 -0.0006 -0.0006 -0.1415 -0.00045 -0.1989

0 0 0.003 0 0
npa 0.1466 1.6519 1.4103 1.66459 1.52705

0.30 0 0 0 0
loss prov 7.6634 4.5679 6.4365 4.53947 2.4783

0 0 0 0 0
N 40029 32869 15108 21884 10985
R2 0.043 0.112 0.094 0.104 0.102

Notes: The dependent variable is US banks’ quarterly historical return volatility (expressed in percentages) which
is calculated as the daily volatility scaled by the square root of the number of trading days in the quarter. ‘bench’
refers to benchmark regression results for the full sample for the whole duration with only controls; ‘Full’ refers to
results with all US banks over the entire sample duration; ‘Large’ refers to the subsample of large banks, defined to
have more than $1 billion in total assets in 2019; ‘Pre-DF’ and ‘Post-DF’ denote the subsamples before the formal
imposition of the Dodd-Frank Act in July 2010. ‘int lag1’, . . . ‘int lag5’ (quarterly lags 1–5 of bank integration),
‘size’ (bank size), ‘t1 t2’ (tier 1 and 2 combined), ‘npa’ (nonperforming asset percentage), and ‘loss prov’ (loss
provision as percentage of total assets) are explanatory variables.
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away from 0. Bank size and T1 T2 ratio have the expected negative association

with bank volatility, while loss provisions and the NPA percentage have a signif-

icant positive association with banks’ historical return volatility. In addition, we

find that bank integration values from up to four quarters back (one year) have

(uniformly) significantly positive association with bank volatilities, suggesting that

(all else equal) an increase in bank integration in the current quarter leads to rising

bank volatility up to 4 quarters in the future. For the subsample of large banks,

bank size loses its negative significance but all other controls retain their signif-

icance in influencing volatility, and bank integration retains its predictive power

up to two quarters in the future. Finally, for the pre- vs. post-Dodd-Frank Act

(July 2010) subsample, we find that except bank size, all other controls retain their

significance, while bank integration also retains its predictive power both pre- and

post-Dodd-Frank, though its impact reduces somewhat, after the Act’s imposition.

Similarly table 10 presents panel estimation results for four relevant time-

subsamples: crises (LTCM or Dotcom or Great Recession or Eurozone Debt),

periods of high/low VIX as well as high/low TED spreads. During crises, we

find that all controls, and bank integration up to three quarters past, retain pre-

dictive significance, and our regression specification explains a healthy 12.7% of

the variation in bank volatility during crises. As expected, bank size and tier 1

and 2 ratio have negative effects on volatility, while all others—NPA, loss provi-

sions, past quarters’ bank integration—have a significantly positive influence on

US banks’ historical return volatility. During periods of high VIX, only NPA, loss

provisions and previous quarter’s bank integration have statistically significant,

positive effects, whereas during low VIX periods, bank size and NPAs retain their

significance, while bank integration lags up to four quarters have significant, pos-

itive association with bank volatility. Finally, during periods of high credit risk,

as proxied by the TED spread, NPAs and loss provisions retain their significance,

tier 1 and 2 ratio impacts bank volatility positively, while past four quarters’ bank

integration values positively impact bank volatility. On the other hand, during

periods of low credit risk, bank integration lags up to 5 quarters display signif-

icant association with bank volatility but with a negative sign, suggesting that
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Table 10: This table presents the results of unbalanced, two-way (bank and quarter) fixed effects panel estimation
with clustered robust standard errors allowing clustering at both the bank and quarter levels. The row for coeffi-
cients is followed by the row featuring coefficients’ p-values. The coefficients highlighted in bold are statistically
significant, with corresponding p-values ≤ 0.10.

V olt,k =
∑5

i=1 βi ∗ Intt−i,k +
∑J

j=1 γj ∗ Controljt,k + ut,k

Crises VIX H VIX L TED H TED L
int lag1 0.026 0.021 0.011 0.011 0.006
p value 0.024 0.009 0.005 0.209 0.126
int lag2 0.021 0.014 0.007 0.007 -0.014

0.019 0.195 0.086 0.349 0.006
int lag3 0.014 -0.002 0.012 0.010 -0.014

0.091 0.756 0.014 0.242 0.018
int lag4 0.012 0.007 0.013 0.014 -0.017

0.229 0.272 0.005 0.042 0.001
int lag5 0.003 -0.005 0.002 0.002 -0.013

0.692 0.432 0.481 0.741 0
Controls
size -5.010 0.617 -1.880 1.543 -1.286
p value 0.016 0.714 0.008 0.499 0.502
t1 t2 -0.3280 -0.121 -0.055 0.192 -0.344

0.003 0.267 0.339 0.079 0
npa 2.032 1.809 .840 1.516 1.437

0 0 0.009 0.025 0
loss prov 2.640 4.272 0.710 5.967 1.982

0.003 0 0.532 0.002 0.086
N 7343 6467 4417 6268 6510
R2 0.127 0.103 0.029 0.081 0.127

Notes: ‘Crises’ refer to the subsample of crisis episodes in the sample: LTCM (1998Q3), Dotcom bust (2002Q3–
Q4), the Great Recession (2007Q4–2009Q2), and the Eurozone debt crisis (2010Q2–2012Q2); ‘VIX H’ and ‘VIX L’
refer to subsamples for quarters during which the VIX (the ‘fear index’) was more than 0.75 quantiles/less than
0.25 quantiles in its distribution respectively; and finally the same definition is applied for ‘TED H’ and ‘TED L’
where TED denotes the difference between the three-month Treasury bill and the three-month LIBOR based in
US dollars, which is used as a proxy for the credit risk in the economy. ‘int lag1’, . . . ‘int lag5’ (quarterly lags 1–5
of bank integration), ‘size’ (bank size), ‘t1 t2’ (tier 1 and 2 combined), ‘npa’ (nonperforming asset percentage),
and ‘loss prov’ (loss provision as percentage of total assets) are explanatory variables.
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Table 11: This table, based on the p-values of the Clarke-West test [Clark and West, 2007] for predictive accuracy
presents the number of banks that show significant predictive accuracy for lags of bank integration. The dependent
variable is US banks’ historical return volatility and the explanatory variables are integration lags and controls
according to the panel regression specification in equation (1).

Bank sample Significance Level N
10% 5% 1%

Full 897 739 288 1003
Large 214 190 85 232
Systemic 20 17 7 21
Pre-Dodd-Frank 828 668 255 919
Post-Dodd-Frank 365 282 96 400

during low credit risk environments, integration negatively impacts volatility. The

controls (except size) retain their usual explanatory significance.

To formally evaluate forecast performance we use the commonly employed

Clark and West [2007] test for equal predictive accuracy, which tests the null hy-

pothesis that the forecasts obtained from two nested forecasting models perform

equally well. Rejection of the null implies that the nested benchmark model is

outperformed by the extended model that incorporates lags of banks’ integration

in line with the regression specification in equation (1).

Table 11 presents our results for various US banks’ subsamples. For the full

sample of admissible banks, 897 (out of 1003) report rejection of the null at the 10%

significance level, 739 at the 5%, and 288 at the 1% significance level. Similarly,

out of 232 large banks, for 214 we can reject the null at 10%, 190 at 5%, and 85 at

1% significance level. Among 21 systemic banks, 20 report significance at the 10%

level, 17 at the 5% level, and 7 at the 1% level. Finally, among 919 admissible

banks in the pre-Dodd-Frank period, for 828 we can reject the null at the 10%

level, for 668 at the 5% level, and for 255 at the 1% level. After the imposition of

the Dodd-Frank Act (2010 July), out of 400 admissible banks, 365 post significant

results at 10%, 282 at 5%, and 96 at the 1% level. Overall, this presents strong

evidence that the predictive accuracy of the model with lags of bank integration

(in line with regression specification in equation (1)) is high, compared to the

specification without lags.

Insofar as large values of banks’ historical return volatility proxy instability,
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Figure 10: The median US bank’s integration is represented as the solid line on the primary y−axis and its CAPM
beta, by a dot-dashed line on the secondary y−axis respectively. The grey region denotes the Great Recession
and the Eurozone debt crises.

the three tables described above suggest that bank integration is a good predictor

of their instability—especially during periods of market distress.

6.3 Predicting bank beta with bank integration

A bank’s CAPM beta is simply its sensitivity to the market factor, while bank inte-

gration is the goodness-of-fit of a multi-factor model where factors are assumed to

be well-embedded in the principal component subspace. Insofar as banks’ CAPM

beta can be a proxy of their instability (higher the beta, more the instability) a

positive, predictive association between banks’ integration and their future betas

lead to the conclusion that current levels of bank integration can contain important

information about their future instability.

In figure 10 we present the median bank integration on the primary y−axis, and

the median bank beta on the secondary axis. At first glance, it seems that the me-

dian bank’s beta rises with time but on closer inspection, beta shows falling levels
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in the period 1993–2007, and then increasing values for 2007–2019. The positive

trend is strongly amplified by the global maximum of the median bank’s beta be-

ing attained in 2017Q3. Further, the median bank’s beta does not exhibit maxima

during crisis episodes encountered in our sample (except for LTCM). While some-

what dissimilar in details, the two plots do suggest an overall healthy comovement,

which leads us to test a regression specification similar to equation (1). We follow

the same methodology for panel estimations viz. unbalanced, two-way (bank and

quarter) fixed effects regression. Again, to counter potential heteroskedasticity

in bank residuals, and to ascertain the significance of independent variables, we

cluster the standard errors at both the bank and quarter levels.

betat,k =
5∑

i=1

βi ∗ Intt−i,k +
J∑

j=1

γj ∗ Controljt,k + ut,k (2)

Table 12 displays the results of panel estimations using the regression specifi-

cation in equation (2). The benchmark regressions display the effect of the bank

characteristics used as controls. Bank size is the only characteristic which is signif-

icantly away from 0 and it impacts the contemporaneous bank beta positively, i.e.,

all else equal, a rise in bank size leads to higher bank beta. For the full sample of

banks, for the entire sample duration, we observe that all bank integration lags 1–5

influence bank beta significantly positively. In other words (all else equal) a rise in

current bank integration level leads to higher future bank beta uniformly up to five

quarters in advance. Among controls, bank size and the tier 1 and 2 ratio impacts

bank beta positively. For large banks, again, all five quarterly integration lags

impact bank beta positively, and size and the nonperforming asset percentage sig-

nificantly impact bank beta among bank characteristics. Bank integration displays

significantly positive, predictive association with bank beta uniformly up to three

quarters in the future—both before, and after the imposition of the Dodd-Frank

Act in July 2010. Among controls, the tier 1 and 2 ratio and loss provisioning

exert a positive influence on bank beta before the Act imposition, while bank size

and the loss provision impact bank beta after the Act is implemented.
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Table 12: This table presents the results of unbalanced, two-way (bank and quarter) fixed effects panel estimation
with clustered robust standard errors allowing clustering at both the bank and quarter levels. The row for coeffi-
cients is followed by the row featuring coefficients’ p-values. The coefficients highlighted in bold are statistically
significant, with corresponding p-values ≤ 0.10.

betat,k =
∑5

i=1 βi ∗ Intt−i,k +
∑J

j=1 γj ∗ Controljt,k + ut,k

Bench Full Large Pre-DF Post-DF
int lag1 0.001771 0.0017 0.001250 0.00230
p value 0 0 0 0
int lag2 0.001294 0.0015 0.000883 0.00146

0 0 0.006 0.045
int lag3 0.001375 0.0018 0.000647 0.00231

0 0 0.020 0
int lag4 0.000426 0.0006 0.000202 0.00023

0.095 0.091 0.484 0.672
int lag5 0.000574 0.0007 0.000432 -0.00001

0.011 0.009 0.119 0.985
Controls
size 0.3771 0.229647 0.2973 0.135322 0.52818
p value 0 0.002 0 0.169 0
t1 t2 0.0001 0.000273 -0.0026 0.000277 0.00017

0.453 0 0.523 0 0.962
npa 0.0007 0.013710 0.0429 0.007122 0.03357

0.687 0.233 0.043 0.638 0.100
loss prov 0.0549 0.034091 -0.0150 0.122352 -0.14636

0.202 0.408 0.888 0.002 0.077
N 39442 32854 15107 21875 10979
R2 0.005 0.015 0.025 0.008 0.022

Notes: The dependent variable is US banks’ quarterly CAPM beta. ‘bench’ refers to benchmark regression results
for the full sample for the whole duration with only controls; ‘Full’ refers to results with all US banks over the
entire sample duration; ‘Large’ refers to the subsample of large banks, defined to have more than $1 billion in total
assets in 2019; ‘Pre-DF’ and ‘Post-DF’ denote the subsamples before the formal imposition of the Dodd-Frank
Act in July 2010. ‘int lag1’, . . . ‘int lag5’ (quarterly lags 1–5 of bank integration), ‘size’ (bank size), ‘t1 t2’ (tier
1 and 2 combined), ‘npa’ (nonperforming asset percentage), and ‘loss prov’ (loss provision as percentage of total
assets) are explanatory variables.
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Table 13: This table presents the results of unbalanced, two-way (bank and quarter) fixed effects panel estimation
with clustered robust standard errors allowing clustering at both the bank and quarter levels. The row for coeffi-
cients is followed by the row featuring coefficients’ p-values. The coefficients highlighted in bold are statistically
significant, with corresponding p-values ≤ 0.10.

betat,k =
∑5

i=1 βi ∗ Intt−i,k +
∑J

j=1 γj ∗ Controljt,k + ut,k

Crises VIX H VIX L TED H TED L
int lag1 0.0022 0.00100 0.0031 0.0011 0.0007
p value 0 0.043 0 0.012 0.238
int lag2 0.0004 0.00018 0.0024 0.0012 0.0005

0.488 0.708 0.008 0.008 0.441
int lag3 0.0005 0.00003 0.0018 0.0008 0.0017

0.313 0.936 0.020 0.095 0.006
int lag4 -0.0006 0.00044 0.0012 -0.0004 0.0013

0.180 0.368 0.068 0.491 0.048
int lag5 0.0002 0.00028 0.0010 -0.0002 0.0014

0.611 0.408 0.056 0.493 0.006
Controls
size 0.1971 0.23729 0.3538 0.3631 -0.0420
p value 0.067 0.063 0.043 0.004 0.841
t1 t2 0.0120 0.00362 -0.0049 0.0004 0.0002

0.005 0.488 0.550 0.931 0.976
npa 0.0059 0.03728 -0.0438 -0.0111 0.0293

0.731 0.021 0.464 0.609 0.059
loss prov 0.0235 0.03715 -0.1934 0.0481 0.1390

0.531 0.374 0.376 0.459 0.115
N 7340 6463 4417 6265 6506
R2 0.009 0.015 0.033 0.011 0.017

Notes: ‘Crises’ refer to the subsample of crisis episodes in the sample: LTCM (1998Q3), Dotcom bust (2002Q3–
Q4), the Great Recession (2007Q4–2009Q2), and the Eurozone debt crisis (2010Q2–2012Q2); ‘VIX H’ and ‘VIX L’
refer to subsamples for quarters during which the VIX (the ‘fear index’) was more than 0.75 quantiles/less than
0.25 quantiles in its distribution respectively; and finally the same definition is applied for ‘TED H’ and ‘TED L’
where TED denotes the difference between the three-month Treasury bill and the three-month LIBOR based in
US dollars, which is used as a proxy for the credit risk in the economy. ‘int lag1’, . . . ‘int lag5’ (quarterly lags 1–5
of bank integration), ‘size’ (bank size), ‘t1 t2’ (tier 1 and 2 combined), ‘npa’ (nonperforming asset percentage),
and ‘loss prov’ (loss provision as percentage of total assets) are explanatory variables.
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Similarly, table 13 exhibits the results of panel estimations during crises, and

periods of high/low VIX and TED spread. During crisis episodes, bank size and

the tier 1 and 2 capital ratio influence bank beta contemporaneously. In addition,

bank integration level from one quarter past shows statistically significant, pos-

itive association with bank beta during crises. During times of high VIX, bank

integration from one quarter past, is seen to significantly impact current bank

beta. Among controls, size and NPA percentage display their usual positive in-

fluence. During low VIX episodes, the predictive associations of bank integration

with bank beta intensifies, and current integration values impact bank beta up to

all five quarters into the future. Bank size is the only characteristic in this regime

to display any significant effect. Finally, during periods of high credit risk (TED

spread) integration levels today impact positively, bank beta levels up to three

quarters in the future, while bank size remains the only influential control. During

low credit risk periods, integration lags from the past 3, 4 and 5 quarters are seen

to positive influence current bank betas.

6.4 Interpreting integration’s impact on bank instability

US banks’ quarterly integration levels display quite significant predictive associ-

ations uniformly up to 3-4 quarters in the future, with their volatilities, as well

as with their CAPM betas. This is true not just for the full sample, but also for

special cross-sectional, as well as, time-based subsamples, and especially, during

episodes of market distress. In particular, bank integration lags show a signif-

icant marginal explanatory power (∼ 6-7%) during the four crises encountered

in our sample—the LTCM collapse, the Dotcom bust, the Great Recession, and

the Eurozone debt crisis. The sign of the association is positive which suggests,

quite reasonably, that (all else equal) as integration (exposure to common factors)

rises, so does the bank volatility, as well as its beta (sensitivity to one common

factor—the market index).

Among bank characteristics, size is somewhat significant in explaining US

banks’ volatilities, but quite significant in being associated with their betas. It im-

pacts bank volatility negatively suggesting that as bank size rises, (all else equal)
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its volatility falls. T1 T2 ratio is quite significant in its association with bank

volatility, but not so much with its beta. Its sign of association is negative, sug-

gesting that all else equal, increases in the T1 T2 ratio leads to a fall in banks’

volatility, which seems quite reasonable. The non-performing assets of banks are

the strongest in terms of association with banks’ volatility, but not much asso-

ciation with their betas. Finally, the loss provisions are also quite significant in

explaining banks’ volatility, but its association is much reduced for their betas.

Overall, bank size shows strong positive association with bank betas, and T1 T2

ratios, NPAs and loss provisions display strong association with bank volatilities.

7 Concluding remarks

We introduce a new metric: ‘integration’, which captures banks’ stock returns’

dependence on common banking factors. We show that for a large fraction of

US banks, integration levels are rising, especially after 2006, and argue that large

exposures to common factors can pose a threat to the stability of the banking

sector in case of a negative shock to one or more common factors. We also find

that current bank integration levels can predict bank volatilities and beta up to one

year in advance, and in particular, during crises, integration lags have significant

explanatory power.

Relatedly, we also demonstrate that the Dodd-Frank Act has improved US

banks’ capital adequacy which can offset the ill-effects of a negative shock to the

US banking sector, but the ever-increasing aggregate exposure of banks to com-

mon factors has eroded this advantage. Further, during times of high integration,

downward movement in one or more common factors can lead to sector-wide falls in

bank returns, which could precipitate a crisis if the negative shock is large enough.

From this perspective, the steady rise in US banks’ integration levels highlights

their continued vulnerability despite improved capital buffers as mandated by the

Dodd-Frank Act.

From a methodological standpoint, our technique of using the explanatory

power of common factor regressions is complementary to the standard multi-factor
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asset pricing framework which relies on factor loadings (betas) to assess the sen-

sitivity of stock returns to individual factors. Consequently, our metric of bank

integration is in-effect, a parametrization of common factor exposures in the range

0–100, while there is no such restriction on betas.

Further, our approach of capturing common factor exposures by means of prin-

cipal component regressions offers an alternative way to model interconnections

among entities. Researchers who wish to investigate the macroscopic aspects of

‘integration’ of an entity with the sector as a whole will find our technique more

useful. However, those who study microscopic, granular interconnections between

entities and their inter-related reactions to shocks will find network-based methods

more useful.

Appendices

Appendix A Predicting idiosyncratic volatility

In this section we use banks’ idiosyncratic volatility (as calculated according to

CAPM) as a proxy of their instability and test if integration can impact their future

values. We test if banks’ CAPM residuals are significantly predicted by their past

integration values, over and above the impact of explanatory bank characteristics

in table A1.

For the benchmark regression with no integration lags, there are ∼40,000 ob-

servations and the goodness-of-fit is 3.5%. Among bank characteristics, we observe

that tier 1 and 2 combined capital ratio, and loss provisions as percentages of total

assets have estimates significantly different from 0. Their direction of impact is

the usual: all else equal, an increase in tier 1 and 2 ratio lowers US banks’ CAPM

idiosyncratic volatility, while higher loss provisions lead to amplified idiosyncratic

volatility.

Including additional five integration lags leads to ∼33,000 observations and

10% goodness-of-fit, suggesting that integration lags collectively add ∼6.5% ex-
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Table A1: This table presents the results of unbalanced, two-way (bank and quarter) fixed effects panel estimation
with clustered robust standard errors allowing clustering at both the bank and quarter levels. The row for coeffi-
cients is followed by the row featuring coefficients’ p-values. The coefficients highlighted in bold are statistically
significant, with corresponding p-values ≤ 0.10.

IV olt,k =
∑5

i=1 βi ∗ Intt−i,k +
∑J

j=1 γj ∗ Controljt,k + ut,k

Bench Full Large Pre-DF Post-DF
int lag1 0.00590 0.0019 0.00578 0.0060
p value 0 0.346 0 0.079
int lag2 0.00320 0.0012 0.00319 0.0033

0.025 0.526 0.020 0.241
int lag3 0.00130 -0.0005 0.00143 0.0011

0.353 0.770 0.290 0.643
int lag4 0.00121 0.0003 0.00182 -0.0007

0.389 0.850 0.207 0.813
int lag5 -0.00068 -0.0017 0.00042 -0.0028

0.624 0.369 0.774 0.175
Controls
size -0.49954 -0.56227 0.3742 -0.19122 1.8675
p value 0.196 0.185 0.381 0.746 0.0308
t1 t2 -0.00014 -0.00007 -0.0725 -0.00002 -0.1032

0 0.223 0.003 0.419 0
npa 0.06890 0.73171 0.9171 0.61775 0.973

0.291 0 0 0 0
loss prov 2.89840 1.47458 1.7220 1.82398 -0.2327

0 0.002 0.031 0 0.610
N 39442 32854 15107 21875 10979
R2 0.035 0.101 0.112 0.088 0.131

Notes: The dependent variable is US banks’ quarterly CAPM idiosyncratic volatility. ‘bench’ refers to benchmark
regression results for the full sample for the whole duration with only controls; ‘Full’ refers to results with all US
banks over the entire sample duration; ‘Large’ refers to the subsample of large banks, defined to have more than
$1 billion in total assets in 2019; ‘Pre-DF’ and ‘Post-DF’ denote the subsamples before the formal imposition of
the Dodd-Frank Act in July 2010. ‘int lag1’, . . . ‘int lag5’ (quarterly lags 1–5 of bank integration), ‘size’ (bank
size), ‘t1 t2’ (tier 1 and 2 combined), ‘npa’ (nonperforming asset percentage), and ‘loss prov’ (loss provision as
percentage of total assets) are explanatory variables.
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planatory power. Among controls, the NPA and loss provisioning percentages

exhibit significantly positive association with the CAPM idiosyncratic volatility.

Current bank integration values positively impact CAPM idiosyncratic volatilities

uniformly up to two quarters ahead. For the panel estimation for large US banks,

none of the integration lags seems to have significant impact, but banks’ NPA,

loss provisions and tier 1 and 2 ratios impact idiosyncratic volatility with their

usual signs. Finally, for pre- and post-Dodd-Frank Act imposition, we observe in-

tegration positively impacting bank-specific volatility up to two quarters and one

quarter ahead respectively. Among bank characteristics, NPA shows explanatory

significance both before and after the Act’s imposition in 2010 July.

In table A2, we present results of panel estimations during crises, as well as

during periods of high/low VIX and TED spreads. During crises, we find that bank

size, the tier 1 and 2 ratio, and the NPA percentage impact CAPM idiosyncratic

volatility significantly. Among bank integration lags, we observe a statistically

significant, positive impact of integration from 3 and 4 quarters past. During

periods of high and low VIX respectively, integration shows predictive, positive

association with idiosyncratic volatility up to two quarters, and one quarter ahead

respectively. NPA percentage positively impacts idiosyncratic volatility both pre-

and post-Dodd-Frank Act, while loss provisions show positive association during

high VIX episodes. Similarly, for periods of high/low TED spread, the NPA per-

centage retains its usual positive association, while loss provisions exert impact

during high credit risk regimes (high TED spread) while tier 1 and 2 capital ratios

negatively impact CAPM idiosyncratic volatility during low TED spread regimes.

Bank integration values from the past 2 and 4 quarters display significant positive

predictive association during high credit risk periods, but none of the lags have

any significant impact during low credit risk periods.

Appendix B Predicting total volatility

In table B1, the benchmark regression without any integration lags has∼40,000 ob-

servations and its goodness-of-fit is ∼3.5%. Only the loss-provision (as percentage

50



Table A2: This table presents the results of unbalanced, two-way (bank and quarter) fixed effects panel estimation
with clustered robust standard errors allowing clustering at both the bank and quarter levels. The row for coeffi-
cients is followed by the row featuring coefficients’ p-values. The coefficients highlighted in bold are statistically
significant, with corresponding p-values ≤ 0.10.

IV olt,k =
∑5

i=1 βi ∗ Intt−i,k +
∑J

j=1 γj ∗ Controljt,k + ut,k

Crises VIX H VIX L TED H TED L
int lag1 0.005 0.0090 0.0031 0.003 -0.0008
p value 0.201 0.010 0.044 0.356 0.791
int lag2 0.004 0.0059 0.0006 0.005 -0.0010

0.298 0.052 0.755 0.013 0.689
int lag3 0.006 0.0005 0.0027 0.004 0.0011

0.058 0.857 0.123 0.159 0.681
int lag4 0.007 0.0020 0.0021 0.006 -0.0005

0.032 0.567 0.229 0.009 0.802
int lag5 0.002 -0.0008 0.00038 0.002 -0.0026

0.545 0.807 0.790 0.384 0.199
Controls
size -3.719 -0.7755 -0.4255 0.837 -0.9380
p value 0 0.368 0.341 0.346 0.353
t1 t2 -0.108 -0.0573 -0.0341 0.041 -0.1253

0.003 0.300 0.157 0.365 0.008
npa 0.783 0.7527 0.6447 0.364 0.8060

0 0 0 0.068 0
loss prov 0.557 1.6476 -0.6410 2.074 0.7473

0.145 0.001 0.385 0.005 0.177
N 7340 6463 4417 6265 6506
R2 0.125 0.117 0.037 0.063 0.115

Notes: ‘Crises’ refer to the subsample of crisis episodes in the sample: LTCM (1998Q3), Dotcom bust (2002Q3–
Q4), the Great Recession (2007Q4–2009Q2), and the Eurozone debt crisis (2010Q2–2012Q2); ‘VIX H’ and ‘VIX L’
refer to subsamples for quarters during which the VIX (the ‘fear index’) was more than 0.75 quantiles/less than
0.25 quantiles in its distribution respectively; and finally the same definition is applied for ‘TED H’ and ‘TED L’
where TED denotes the difference between the three-month Treasury bill and the three-month LIBOR based in
US dollars, which is used as a proxy for the credit risk in the economy. ‘int lag1’, . . . ‘int lag5’ (quarterly lags 1–5
of bank integration), ‘size’ (bank size), ‘t1 t2’ (tier 1 and 2 combined), ‘npa’ (nonperforming asset percentage),
and ‘loss prov’ (loss provision as percentage of total assets) are explanatory variables.
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Table B1: This table presents the results of unbalanced, two-way (bank and quarter) fixed effects panel estimation
with clustered robust standard errors allowing clustering at both the bank and quarter levels. The row for coeffi-
cients is followed by the row featuring coefficients’ p-values. The coefficients highlighted in bold are statistically
significant, with corresponding p-values ≤ 0.10.

TV olt,k =
∑5

i=1 βi ∗ Intt−i,k +
∑J

j=1 γj ∗ Controljt,k + ut,k

Bench Full Large Pre-DF Post-DF
int lag1 0.00866 0.0048 0.00746 0.0010
p value 0 0.025 0 0.001
int lag2 0.00605 0.0038 0.00544 0.006

0 0.020 0 0.013
int lag3 0.00373 0.0024 0.00340 0.003

0.008 0.094 0.031 0.156
int lag4 0.00187 0.0010 0.00277 -0.002

0.208 0.584 0.074 0.544
int lag5 -0.00023 -0.0011 0.00075 -0.004

0.870 0.583 0.616 0.119
Controls
size 0.02586 -0.17685 0.8583 -0.01955 2.768
p value 0.952 0.701 0.073 0.977 0.002
t1 t2 -0.00003 0.00026 -0.0640 0.00030 -0.094

0.823 0 0.022 0 0.001
npa 0.07202 0.76619 0.9659 0.68219 0.959

0.291 0 0 0 0
loss prov 3.04850 1.55139 1.7654 1.96701 -0.289

0 0.001 0.043 0 0.546
N 39442 32854 15107 21875 10979
R2 0.034 0.101 0.107 0.093 0.124

Notes: The dependent variable is US banks’ quarterly CAPM total volatility. ‘bench’ refers to benchmark
regression results for the full sample for the whole duration with only controls; ‘Full’ refers to results with all US
banks over the entire sample duration; ‘Large’ refers to the subsample of large banks, defined to have more than
$1 billion in total assets in 2019; ‘Pre-DF’ and ‘Post-DF’ denote the subsamples before the formal imposition of
the Dodd-Frank Act in July 2010. ‘int lag1’, . . . ‘int lag5’ (quarterly lags 1–5 of bank integration), ‘size’ (bank
size), ‘t1 t2’ (tier 1 and 2 combined), ‘npa’ (nonperforming asset percentage), and ‘loss prov’ (loss provision as
percentage of total assets) are explanatory variables.
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of total assets) shows any impact significantly different from 0. Including addi-

tional five bank integration lags decreases the number of observations to ∼33,000

but the goodness-of-fit rises to ∼10%, which implies that bank integration lags

collectively explain about 6.5% of the total variance in CAPM total volatility.

Bank integration levels positively impact future total volatility uniformly up to

three quarters ahead. Among bank characteristics, NPA and loss provisions have

their usual positive explanatory significance, while the tier 1 and 2 ratio impacts

the total volatility positively, in contrast with its usual direction of influence. For

large banks also, integration levels predict up to three quarters ahead, and all

explanatory bank characteristics exert their usual influence, except for bank size

which impact total volatility positively. Before the Dodd-Frank Act’s imposition,

integration up to four quarters past displays positive, predictive association with

CAPM total volatility, while this impact weakens post-Dodd-Frank as integration

lags from only two quarters past are able to predict total volatility. Among con-

trols, NPAs show uniformly positive contemporaneous association both pre- and

post-Act.

We present panel estimations during crises, as well as during periods of high/low

fear and credit risk in table B2. Integration levels from past 1, 3 and 4 quarters

show significant positive impact on CAPM total volatility, while among the con-

trols variables, bank size (negative), tier 1 and 2 ratio (negative) and the NPA

percentage (positive) assert their usual significant impact with their usual signs.

As before, the explanatory power of our regression specification is high, and is able

to account for a healthy 11.7% of the total volatility’s variance. During high VIX

periods, integration predicts total volatility up to two quarters ahead, and among

controls, NPA and loss provision exert their usual influence. During quarters with

low VIX as well, bank integration predicts up to four quarters ahead, and among

controls, only NPA percentage has significant associative impact. During high

TED spread periods, bank integration displays its usual positive associative sig-

nificance for lags 1, 2 and 4, but loses all significance during periods of low credit

risk. Among controls, NPA retains its usual uniformly positive significance, while

loss provisions exhibit their usual impact during high credit risk periods but not
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Table B2: This table presents the results of unbalanced, two-way (bank and quarter) fixed effects panel estimation
with clustered robust standard errors allowing clustering at both the bank and quarter levels. The row for coeffi-
cients is followed by the row featuring coefficients’ p-values. The coefficients highlighted in bold are statistically
significant, with corresponding p-values ≤ 0.10.

TV olt,k =
∑5

i=1 βi ∗ Intt−i,k +
∑J

j=1 γj ∗ Controljt,k + ut,k

Crises VIX H VIX L TED H TED L
int lag1 0.0098 0.012 0.006 0.006 0.0006
p value 0.008 0.002 0 0.0717 0.861
int lag2 0.0043 0.006 0.003 0.008 0.0020

0.145 0.040 0.209 0 0.438
int lag3 0.0061 0.002 0.005 0.006 0.0048

0.030 0.666 0.027 0.114 0.125
int lag4 0.0055 0.002 0.004 0.006 0.0024

0.069 0.591 0.074 0.008 0.465
int lag5 0.0009 -0.002 0.001 0.002 -0.0010

0.674 0.630 0.383 0.295 0.712
Controls
size -3.1497 -0.215 -0.059 1.148 -1.2319
p value 0.003 0.825 0.904 0.226 0.264
t1 t2 -0.0804 -0.047 -0.037 0.031 -0.1193

0.030 0.417 0.150 0.519 0.031
npa 0.8122 0.865 0.595 0.417 0.8853

0 0 0.001 0.076 0
loss prov 0.4341 1.589 -0.823 1.859 1.0600

0.213 0.003 0.305 0.020 0.104
N 7340 6463 4417 6265 6506
R2 0.117 0.119 0.036 0.061 0.117

Notes: ‘Crises’ refer to the subsample of crisis episodes in the sample: LTCM (1998Q3), Dotcom bust (2002Q3–
Q4), the Great Recession (2007Q4–2009Q2), and the Eurozone debt crisis (2010Q2–2012Q2); ‘VIX H’ and ‘VIX L’
refer to subsamples for quarters during which the VIX (the ‘fear index’) was more than 0.75 quantiles/less than
0.25 quantiles in its distribution respectively; and finally the same definition is applied for ‘TED H’ and ‘TED L’
where TED denotes the difference between the three-month Treasury bill and the three-month LIBOR based in
US dollars, which is used as a proxy for the credit risk in the economy. ‘int lag1’, . . . ‘int lag5’ (quarterly lags 1–5
of bank integration), ‘size’ (bank size), ‘t1 t2’ (tier 1 and 2 combined), ‘npa’ (nonperforming asset percentage),
and ‘loss prov’ (loss provision as percentage of total assets) are explanatory variables.
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during times of low TED spreads.
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