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Abstract

We consider a retailer that offers multiple variants of two brands, all of which are substitutable,

within a single product category. Due to supply disruptions, the retailer may not be able to always

offer either or both brands. To mitigate potential loss in demand due to unavailability of one brand,

the retailer may choose the product variety strategically and/or adjust the price of the available

brand. The goal of this paper is to compare the relative impact of these two levers of demand man-

agement in the face of supply disruptions. To that end, we develop and analyze a model of a retailer

buying from two brands (suppliers) subject to random supply disruptions. The retailer’s customer

demand depends on price and product variety, and their impact on customer choice is captured

through the nested logit model. The model also takes into account fixed design and operational

costs associated with product variety. Our analysis reveals that strategic choice of product variety

yields most of the benefit; price is a largely ineffective lever. We also show that when the supply of

one brand is disrupted, the optimal price for the other brand is lower than when both brands are

available, provided the outside option is equally or less affected by the disruption. However, even if

the outside option is affected more, this result may not necessarily reverse. Finally, even though re-

sponsive pricing does not improve the profit substantially, it may reduce safety stock requirements.

Keywords: supply chain management, nested logit model, supply disruptions, product variety,

responsive pricing

1 Introduction

Supply chains have increasingly become global and complex over the last three decades. This

complexity has made it difficult for businesses to control all the links in the supply chain. The result

is greater likelihood of a supply disruption due to something going wrong somewhere in the supply

chain (Snyder et al., 2016). Perhaps the first major instance of supply disruption in globalized

supply chains occurred due to the US border shutdowns after 9/11. While Ford had to reduce

production volumes at its assembly plants due to delays in delivery of components from Canada

and Mexico, Toyota came within hours of shutting down its plant in Indiana (Sheffi, 2001). As
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another example, a tsunami caused by an undersea earthquake off the coast of Japan in March

of 2011 and floods in Thailand eight months later caused massive disruptions in electronics and

automotive industries (Bland and Kwong, 2011). More recently, COVID-19 has led to supply chain

snarls throughout the world (Foldy, 2020).

A disruption in supply of products can easily cause massive losses for any firm, sometimes even

leading to bankruptcy. The possibility of such disastrous consequences has motivated growing

academic literature in recent years on identifying suitable supply chain strategies to manage

disruptions (Ho et al., 2015; Snyder et al., 2016). Examples of such strategies are dual sourcing,

safety inventory, demand management, and emergency suppliers. An alternative to using such

strategies is the use of financial measures such as insurance. Although financial measures can

compensate a firm for the loss of profit due to a disruption, they cannot compensate for the

loss of competitive position due to stockouts (Tang, 2006). In contrast, supply chain strategies

could accomplish both objectives: They may not only mitigate profit loss, but also prevent loss of

competitive position. However, the literature is lopsided in that much of it has examined supply-side

strategies based on inventory and suppliers with few studies focusing on demand management

strategies. Our paper aims to redress this imbalance by deriving insights on two demand management

strategies: product variety management and responsive pricing, to mitigate the effect of supply

shortages. Both of these strategies mitigate demand loss by influencing customer choice behavior.

A recent academic study based on interviews of supply chain executives corroborates the value of

our focus on product variety (Cohen et al., 2022). The strategy of responsive pricing is also rooted

in practice. For example, in 2014 Chipotle faced shortage of beef due to drought in many parts of

the US, while the supply of chicken was not affected (Valentine, 2014). The company changed the

prices of steak burritos and chicken burritos by differential magnitudes that reflected the relative

supply situation. It is common that a supply disruption changes the balance of supply and demand

in the market, which leads firms to responsive pricing.

With this motivation, we consider a retailer that sells multiple product variants of two brands

in a product category. Each brand is sourced from a different supplier, and both suppliers are prone

to disruption. If a supplier is unable to supply the variants of its brand, the retailer can adjust the

price of the other brand to lure customers to buy the available brand. In this way, responsive pricing

could help the retailer alleviate the consequences of supply disruptions. An alternative to price

adjustments, which are a tactical tool, is strategic selection of product variety, in which the retailer

offers a balanced portfolio consisting of a suitable number of variants of both brands, after taking

into account the possibility of disruption. With this strategy, the retailer can offer a reasonable

amount of choice to customers even when one brand is unavailable; that is, through suitable design

of its product variety, the retailer can mitigate demand loss.

To explore the relative impact of product variety management and responsive pricing, we develop

a discrete-time model to maximize the expected profit of the retailer from the sale of the product

over a finite planning horizon. At the beginning of the planning horizon, the retailer chooses the

number of variants for each brand. While doing so, she also incurs product variety costs. Once the
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planning horizon starts, the retailer chooses the optimal price for each variant every period. The

optimal price reflects the product variants that are available, because the variants of one or both

brands may become unavailable from time to time due to supply disruptions.

Since the availability of variants may change over time, the choice available to customers may

also vary accordingly. We model the selection of an available variant by a customer through the

nested logit model (Anderson et al., 1992). This model gives us the expected demand for any

product variant in any period, which depends on the price and variety (number of variants) of the

brands that are available (not disrupted) in that period. Given the expected demand, the expected

profit, which is the difference of gross profit and operational cost, can be computed for each period.

This profit summed over all the periods in the planning horizon minus the product variety cost is

the total expected profit of the retailer from the product.

We use the model to probe several research questions on the structure of optimal pricing and

product variety decisions and how the possibility of supply disruptions influences these decisions.

First, we examine the effect of supply disruptions on the optimal pricing policy through the following

research question: How does the optimal pricing policy when both suppliers are available compare

to when one of them is unavailable? We find that the optimal price for variants of an available

brand decreases when the other brand is not available compared to when both brands are available,

provided the disruption does not adversely affect the attractiveness of outside option in the nested

logit model. The purpose of this price reduction is to attract customers who would have purchased

a variant of the unavailable brand into purchasing a variant of the available brand. Interestingly,

the converse of this result is not necessarily true: Even if the outside option is less attractive under

disruption, the price of the available brand may still not increase. The reduction in available product

variety may make it difficult for the retailer to take full advantage of the lower attractiveness of the

outside option.

The result also implies that the optimal margin may not remain constant over time for a brand.

In contrast, when suppliers are reliable, the optimal margin is not only constant over time but also

across brands. This type of pricing policy, which we refer to as equal-margin policy, has been shown

to be optimal in many contexts in the existing literature; see, for example, Hopp and Xu (2005) and

Li and Huh (2011). The sub-optimality of this policy in the presence of supply disruptions is driven

by differential number of product variants over time due to supply disruptions.

In a similar manner, we probe the selection of product variety. We seek to compare the total

number of product variants when the suppliers are reliable to when they are not reliable. The

purpose of this analysis is to establish whether or not the analogy with inventory management, in

which random supply or demand forces a firm to keep extra stock in the form of safety stock, carries

over to our context. The analogy will carry over if the total number of product variants is greater

when suppliers are unreliable compared to when they are not reliable. Accordingly, our next research

question is as follows: Does supplier unreliability induce the retailer to ensure greater product variety

and sell additional variants in the form of safety variety? We examine this question computationally.

We find that although the expansion of product variety is highly probable when suppliers are
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unreliable, there exist scenarios in which the variety may, in fact, reduce. Two parameters play

an important role here, the attractiveness of outside option and customer heterogeneity. If the

unavailability of one brand makes the outside option appear more attractive, then the total variety

may decrease when suppliers are unreliable. The same outcome may also occur at low values of

customer heterogeneity.

Having examined responsive pricing and strategic selection of product variety separately, we

next compare the two strategies by probing the following research question: Which of the two levers

of demand management, responsive pricing or product variety, is more effective? We explore this

question computationally as well and find that the incremental profit improvement due to responsive

pricing is relatively insignificant given strategic selection of product variety. Thus, product variety

appears to be a more effective demand management lever than responsive pricing.

Apart from examining price and product variety, we aim to develop structural properties of the

optimal profit function, especially with respect to product variety. We ask the following research

question: What is the relationship between product variety and expected profit? How does the optimal

expected profit change with respect to model parameters? We find that the expected profit over the

planning horizon is jointly concave in the number of variants for each brand. This means that the

marginal profit due to an additional variant of a brand decreases as the number of variants increases.

Moreover, the expected profit is a submodular function of the number of variants for each brand.

This property implies that greater variety in one brand reduces the marginal value of adding one

more variant of the other brand, regardless of the quality or the propensity for disruption of each

brand. We combine both results to also show that the optimal number of variants for a brand does

not exceed the corresponding number when only that brand is offered. This means that supplier

diversification leads to fewer variants of each brand compared to when only one brand is offered.

We note that our demand-modeling framework also permits us to examine the impact of adoption

of the responsive pricing strategy on the volatility of demand. Since the volatility of demand usually

determines the safety stock requirement, this analysis sheds light on the effect of responsive pricing

on the safety stock required. An interesting finding from this analysis is that responsive pricing

leads to a reduction in the volatility of demand, which implies that the use of this strategy may also

lead to lower safety stock requirement.

In some situations, it may be possible for the retailer to add additional variants of an available

brand at short notice when the other brand is unavailable. We refer to this strategy as responsive

variety strategy. To examine this strategy, we ask the following research questions: Do the

relationships explored in the previous research questions change when it is possible to modulate variety

in response to a supply disruption? What is the profit improvement, if any, due to responsiveness

in product variety? We find that responsiveness in product variety does not alter the relationship

between the expected profit and product variety stated above. Moreover, the responsive variety

incrementally improves profit up to 8.6% for the range of parameters we consider. This strategy

appears to be particularly effective when customers have heterogeneous preferences.
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The rest of the paper is organized as follows. We begin with a survey of relevant literature in

the following section. In Section 3, we develop the model and provide a convenient list of notations.

In Section 4, we analyze the model and present results answering the research questions above. A

computational analysis of the pricing and variety decisions is presented in Section 5. In Section 6,

we examine the responsive variety strategy. Finally, we conclude in Section 7. (Proofs are relegated

to the Appendix.)

2 Literature Review

Since we derive insights regarding price and product variety in the face of supply disruptions, our

work lies at the interface of operations and marketing. To position our paper, we first review the

literature in the areas of supply chain disruptions and product variety.

The supply chain disruption literature falls within the broad category of supplier unreliability

literature. When a supplier is unreliable, it may deliver nothing or it may deliver a quantity that

is not equal to the quantity ordered. In the latter case, the quantity delivered may be lower than

the quantity ordered due to yield uncertainty or random capacity. In our survey below, we have

primarily summarized the literature in which the supplier is unable to deliver anything when it is

disrupted, which is what we also presume. Readers who are interested in a comprehensive review

of analytical models in this literature may refer to Snyder et al. (2016). For a broader review,

which includes both analytical and qualitative models and considers full gamut of supply chain risks,

readers may refer to Ho et al. (2015).

We classify the relevant supply chain disruption literature into three broad classes depending

upon the mitigation strategy deployed. These classes correspond to inventory management, sourcing-

related strategies such as dual sourcing, and demand management. Of these, the literature on

inventory management is the oldest. The studies in this class examine optimal replenishment

decisions given the possibility of supply disruptions. In general, the objective function lacks

structure in such models, rendering optimal policy difficult to compute. Several papers have

sidestepped this problem by deriving optimal parameters for a given policy. For example, Parlar

and Perry (1996) identify parameters of a policy consisting of reorder point and order quantity in

three scenarios in an Economic Order Quantity (EOQ) setting: a single supplier, two suppliers, and

multiple suppliers. The supplier(s) in every scenario are prone to disruption. Similarly, Arreola-Risa

and DeCroix (1998) identify optimal values of parameters in a (Q,R) policy when demand arrives

as a Poisson process, and the up and down periods are exponentially distributed. In another paper,

Parlar and Perry (1995) develop a model to determine three parameters of a policy in an EOQ

setting: order quantity, reorder point when the supplier is available, and time until the next order

when the supplier is unavailable (such orders remain backlogged until the supplier becomes available).

Other studies in this vein include Snyder (2006), Parlar (1997), and Weiss and Rosenthal (1992).

We next discuss the literature on sourcing-related mitigation strategies. This literature can

be broadly divided into two categories depending upon the research questions probed. The first
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category of papers concentrates on the number and identification of suppliers and allocation of

orders among them. One example is Dada et al. (2007), who develop and analyze single-period

models when suppliers are asymmetric in terms of procurement costs and yield distributions. They

show that the optimal order quantity is greater when suppliers are unreliable compared to when

they are not. Studies in the second category develop insights on sourcing strategies such as dual

sourcing and contingent sourcing to mitigate supply disruptions. The primary objective of studies

in this category is to shed light on when to deploy these strategies. Apart from sourcing-related

strategies, such papers may also consider other strategies such as inventory, insurance, investment

in supplier’s processes to improve reliability, and doing nothing (or, passive acceptance). A few

examples of studies in this category are as follows. Using an infinite-horizon planning model with

one reliable and one unreliable supplier, Tomlin (2006) provides insights on when it is optimal

to use the reliable supplier alone, dual sourcing, unreliable supplier with contingent sourcing, or

unreliable supplier with inventory. Qi (2013) examines the possibility of waiting for the primary

supplier, who is prone to disruptions, to recover from a disruption before an order is placed with a

backup supplier, who is reliable. He shows that waiting is optimal when the primary supplier is

disrupted often but recovers promptly. Tang et al. (2014) examine the role of incentives in inducing

a supplier to improve its process reliability in a decentralized supply chain consisting of one buyer

and one supplier. When the supplier delivers nothing upon disruption, they find that the buyer

prefers to use subsidy to improve process reliability over order inflation. Chopra et al. (2007) show

that bundling yield uncertainty (when quantity received is a random fraction of order quantity) and

disruption (when nothing is delivered) in the presence of an unreliable and a reliable supplier leads

a buyer to underutilize the reliable supplier and overutilize the other supplier.

In contrast to the literature on inventory and sourcing strategies, the literature on the use of

demand management is rather limited. In fact, we are aware of only one study on this topic: Tomlin

(2009) examines shifting of demand from one product to another in a newsvendor framework if

the first product cannot be replenished due to a supply breakdown and compares its optimality to

other strategies such as dual sourcing and contingent sourcing. He finds that demand shifting is

not optimal to manage supply risk if dual sourcing from the same two suppliers is used for both

products.

Although demand management through pricing has not been studied in the context of supply

disruption, there do exist many papers on the use of this tool when suppliers deliver a random

fraction of the order quantity. One example is Li et al. (2017), who consider two suppliers, one of

which is reliable but expensive and the other one is unreliable. The unreliable supplier’s capacity,

hence the quantity delivered by it, is random. They compare responsive pricing, in which price

is set after observing the quantity available to satisfy the demand, to dual sourcing as a strategy

for managing supply uncertainty. They find that depending upon the cost parameters, the two

strategies can be complements or substitutes. Two other examples of papers in which pricing

strategy is analyzed in the presence of supply uncertainty are Tang and Yin (2007) and Dong et al.

(2015).
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Since both product variety and price are tools to influence customer demand, this study

contributes to the literature on managing disruptions using demand management strategies. Given

the scant attention received by demand management strategies, we believe this study fills an

important gap in the literature on supply chain disruptions.

We next position this study in the literature on product variety management and assortment

planning. This literature is also vast and considers a diverse set of models and research questions.

Apart from identifying product selection, studies in this stream may also consider other decisions

such as price and order quantity. Further, these studies deploy a number of customer choice models

such as the multinomial logit or MNL (van Ryzin and Mahajan, 1999), nested logit (Alptekinoğlu

and Grasas, 2014), locational choice (Gaur and Honhon, 2006), probabilistic substitution (Smith

and Agrawal, 2000), and preference-rank-based substitution (Honhon et al., 2012). Much of the

literature assumes static substitution, in that the customers select a product from a given pool of

products regardless of its availability. A key objective of these studies is to develop insights on the

structure of the optimal assortment.

Given our focus on product variety and pricing decisions, we briefly review a few papers here in

which either both price and assortment are optimized or only price is optimized given the assortment.

Hopp and Xu (2005) use a Bayesian logit model to capture product substitution and study optimal

length of product line and price vector in the presence of product modularity. They find that

reducing product development cost through modular design leads to greater product variety. Li and

Huh (2011) and Gallego and Wang (2014) examine optimal price vector for a given assortment when

product substitution is modeled using the nested logit model. Aydin and Porteus (2008) analyze

the order quantity and price decisions for a given assortment under a general price-demand curve.

For an excellent review of assortment planning literature, see Kök et al. (2015).

Overall, this study lies at the interface of two large streams of literature on assortment plan-

ning/product variety management and supply chain disruptions. Ours is the first study that

examines the design of assortment from the strategic perspective of supply chain disruptions.

3 Model

We consider a retailer that sells multiple variants of two branded products. Each brand is sourced

from a different supplier. The brands may differ in quality, though product variants for a given

brand are of the same quality and are horizontally differentiated. From a modeling perspective,

therefore, we assume that all the variants of a brand offer the same expected utility to a customer

at identical prices; the selection of a variant by a customer is driven by personal taste. However,

due to the quality difference, any two variants of different brands may differ in their expected utility

to a customer even when they have identical prices.

The retailer faces two decisions: the variety or the number of product variants for each brand

and the price for each variant. These decisions are determined by maximizing the expected profit

from the sale of all the variants over a planning horizon equal to the life cycle of the product. Let
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the number of periods in the planning horizon be denoted by T . While the number of product

variants is optimized at the beginning of the planning horizon (an assumption we relax in Section

6), the price is optimized every period. Thus, product variety is a strategic decision, and price is a

tactical decision. This decision hierarchy reflects the fixed costs associated with each decision.

Both suppliers are unreliable and are prone to disruption. When a supplier is disrupted in any

given period, the retailer is not able to offer any variant from the associated brand in that period.

Further, consistent with the decision hierarchy discussed above, in the event of a disruption for

one brand, the retailer is unable to add more product variants from the available brand. This may

occur if suppliers incur significant fixed costs to design each variant and qualify the product and its

required components. Potential variation in the number of available product variants over time is

the reason that prices are optimized every period. The optimal prices, thus, reflect the available

product variety.

3.1 Supply Model

In each period, each supplier can be in one of the two states: 1 or 0. When a supplier or brand is in

state 1, it is available, meaning it can supply all the variants of that brand.1 In state 0, however, it

cannot supply any of the product variants.

We model suppliers’ availability as a discrete-time Markov chain with four states, 00, 01, 10,

and 11, where a state ij corresponds to supplier 1 being in state i and supplier 2 being in state j.

(Note that it is possible that the supplier availability is correlated.) This type of availability model

has been prevalent in the literature; as an example, see Yang and Babich (2015). A more detailed

discussion of the suppliers’ availability model, including the Markov chain assumption, is available

in Subsection 8.8 in the Appendix.

3.2 Demand Model

The demand for each product variant in a period depends on the number of product variants

available for each brand as well as the price of each variant. Let the number of product variants

offered for brand k be denoted by nk (k = 1, 2). (See Table 1 for a list of notations.) Since all the

variants of a brand have the same quality, it is optimal to set identical prices for them. Let P ijk
be the price for variants of brand k when suppliers are in state ij, provided brand k is available

in state ij. Note that we have not indexed prices by time. The reason is that the price for variants

of a brand remains the same in any two periods in which the Markov chain is in the same state.

Both price and the number of product variants for each brand are inputs to a customer choice

model, which determines the demand for each product variant every period. We use the nested

logit model to represent customer choice behavior (Ben-Akiva and Lerman, 1985; Anderson et al.,

1992). To illustrate the application of this model to our context, consider a period in which both

brands are available. According to the nested logit framework, each customer first either selects

1Throughout this study, we use supplier and brand interchangeably, because each brand has a unique supplier.
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a brand k with probability Q11
k or chooses not to purchase any variant. If she selects one of the

brands, then she next chooses a variant corresponding to the selected brand. Let the probability

of selection of variant m of brand k be denoted by q11
m|k. This conditional probability is given by

q11
m|k = e

ak−P
11
k

µ

/
nke

ak−P
11
k

µ = 1/nk, k = 1, 2, where ak is the expected utility of a variant of brand

k, and µ is a parameter that tracks the variability around this expected utility (capturing customer

heterogeneity). It controls the rate of within-brand substitutions; larger µ means smaller rate of

within-brand substitution.

To obtain the unconditional probability of selection of a variant, q11
m|k must be multiplied with

Q11
k . This latter probability is equal to

Q11
k =

(
nke

ak−P
11
k

µ

)µ
γ

e
ω11

γ +

(
n1e

a1−P11
1

µ

)µ
γ

+

(
n2e

a2−P11
2

µ

)µ
γ

,

where γ tracks how differentiated the two brands are (larger γ implying more differentiated “nests”).

It controls the rate of between-brand substitutions; larger γ means smaller rate of between-brand

substitution. Note that Q11
k may also be interpreted as the market share of brand k. Moreover, in

the above expression, ak − P 11
k is the expected net utility from any variant of brand k, and ω11 is

the expected utility of the no-purchase or outside option in state 11. The linearity of expected net

utility in price is a common assumption in the operations management literature on assortment

planning (see, for example, Li and Huh (2011) and Gallego and Wang (2014)). The parameter ak

can be interpreted as the quality of brand k and ω11 as a composite measure of the attractiveness

of all competing retailer product varieties in state 11. Without loss of generality, we assume that

a1 ≥ a2.

We assume that the price sensitivity of demand is the same for both brands. The assumption

follows from the pool of customers for the two brands being the same and is without loss of generality;

all of our analytical results continue to hold even when the price-sensitivity of demand depends on

the brand. For simplicity, we set the price-sensitivity of demand equal to one. Additionally, for

consistency with utility maximization, we impose γ > µ, which is a standard assumption (Anderson

et al., 1992, pp. 47-48). The relationship γ > µ implies that variants for the same brand are more

alike than variants across the two brands.

Putting everything together (and as noted above), the probability of a customer selecting variant

m belonging to brand k is q11
mk = q11

m|k ×Q
11
k . Note that the probability of a customer not choosing

any variant offered is equal to 1−
2∑

k=1

nk∑
m=1

q11
mk = 1−Q11

1 −Q11
2 .

We next develop an expression for the probability of selection of a variant in a period when

only brand 1 is available. Observe that brand 2, when available, may be sold by many retailers,

some of which can be competitors of the retailer. This means that its unavailability may affect the

attractiveness of their product variety as well. Since this attractiveness is reflected in the utility of
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outside option, this parameter may now change. We therefore define a new parameter ω10 as the

utility of outside option in state 10.

Depending upon the competitive landscape for the product, ω10 can be either less than or greater

than ω11. For example, if supplier 2 is exclusive to the retailer, the unavailability of its brand would

not affect other retailers. For a customer, in fact, the attractiveness of the competing retailers’

product varieties should increase in such a scenario, which would imply ω10 to be larger than ω11.

In contrast, if brand 2 is the only brand (or a leading brand) at one or more competing retailers,

then its unavailability may lead to a reduced utility of outside option (i.e., ω10 ≤ ω11). Since either

of ω10 and ω11 can be greater, we do not assume any specific order between them.

Given that only brand 1 is available, the probability that a customer purchases the vari-

ant m of brand 1 is equal to q10
m1 = q10

m|1 × Q10
1 , where q10

m|1 = e
a1−P

10
1

µ

/
n1e

a1−P
10
1

µ = 1
n1

is

the conditional probability that a customer chooses variant m given n1 choices, and Q10
1 =(

n1e
a1−P

10
1

µ

)µ
γ
/(

e
ω10

γ +

(
n1e

a1−P
10
1

µ

)µ
γ

)
is the probability that a customer chooses to buy a

variant of brand 1 instead of walking away. Similarly, when only brand 2 is available, the probability

that a customer purchases variant m (of brand 2) is equal to q01
m2 = q01

m|2 ×Q
01
2 , where q01

m|2 = 1
n2

and Q01
2 =

(
n2e

a2−P
01
2

µ

)µ
γ
/(

e
ω01

γ +

(
n2e

a2−P
01
2

µ

)µ
γ

)
. As above, ω01, the utility of outside option,

could be smaller or larger than ω11.

Decision Variables
nk Number of product variants offered for brand k

P ijk Price for variants of brand k in state ij

Qijk Market share for one variant of brand k in state ij
Parameters and Functions
ck Unit purchasing cost for variants of brand k
ωij Utility of outside option in state ij
µ Degree of customer heterogeneity
γ Measure of brand disparity
ρ Failure correlation of suppliers
Nt Market size in period t
T Length of product lifecycle/planning horizon
Fk Fixed cost per variant of brand k for being included in the assortment
f(n) Operational cost incurred in a period in which a total of n product variants are offered

Zijt Expected profit in period t given product variety and prices when suppliers are in state ij
πij Limiting probability of Markov chain that describes supplier availability being in state ij

Table 1: Summary of Notation

3.3 Expected Profit

The expected profit over the planning horizon comprises three major components. The first

component encapsulates fixed costs associated with including the product variants of each brand in

the assortment. Examples of costs captured by this component are cost of creation of shelf space,

which includes the cost of accessories, for effective display of inventory of a variant in the store;

modification of sales register to include variants; and setting up of processes for procurement and
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display of each variant in the store. These costs are incurred prior to launch of the product in the

store(s) and are assumed to be proportional to the number of variants for a brand. Let Fk be the

unit fixed cost per variant of brand k. The total fixed cost is thus equal to F1n1 + F2n2.

The second component captures operational costs. It is well-understood in academia and practice

that higher product variety increases operational costs (Kök et al., 2015); these costs may arise

from increased handling effort and greater risk of excess inventory (van Ryzin and Mahajan, 1999).

In every period in the planning horizon, we model such costs as f(n), where f(·) is a convex and

increasing function, and n is the total number of product variants offered in the period. Specifically,

n is equal to n1 +n2 in state 11, n1 in state 10, and n2 in state 01. We do not model inventory-related

costs explicitly since replenishment decisions are beyond our scope of product-strategic decisions.

Moreover, an explicit modeling of such decisions makes the model intractable. For the same reason,

many recent studies on assortment planning and product variety management also do not model

inventory costs; see, for example, Li and Huh (2011) and Davis et al. (2014).

The third component captures gross profit from the sales of the product. Consider first a period

in which both brands are available. Let ck be the unit purchasing cost for one unit of a variant of

brand k. The profit per customer is equal to

n1∑
m=1

(P 11
1 − c1)q11

m1 +

n2∑
m=1

(P 11
2 − c2)q11

m2 = (P 11
1 − c1)

n1∑
m=1

(q11
m|1Q

11
1 ) + (P 11

2 − c2)

n2∑
m=1

(q11
m|2Q

11
2 )

= (P 11
1 − c1)

n1∑
m=1

(
1

n1
Q11

1

)
+ (P 11

2 − c2)

n2∑
m=1

(
1

n2
Q11

2

)
= (P 11

1 − c1)Q11
1 + (P 11

2 − c2)Q11
2 . (3.1)

Let Nt be a random variable that denotes the market size in period t. We assume that the

market size is independent of the customers’ brand and product variant choice process outlined

above. Multiplying the profit per customer in (3.1) with E(Nt) and subtracting operational costs

from it gives us the total expected profit earned during period t, Z11
t , which is equal to

max
P 11

1 ,P 11
2 ≥0

Z11
t (n1, n2, P

11
1 , P 11

2 ) = E(Nt)
{

(P 11
1 − c1)Q11

1 + (P 11
2 − c2)Q11

2

}
− f(n1 + n2).(3.2)

Consider now a period in which only brand 1 is available. As above, the profit per customer

is equal to (P 10
1 − c1)Q10

1 . Therefore, the total expected profit earned during the period, Z10
t =

max
P 10

1 ≥0
Z10
t (n1, P

10
1 ) = E(Nt)(P

10
1 − c1)Q10

1 − f(n1). In a similar manner, the expected profit when

only brand 2 is available, Z01
t = max

P 01
2 ≥0

Z01
t (n2, P

01
2 ) = E(Nt)(P

01
2 − c2)Q01

2 − f(n2). When none of

the suppliers is able to deliver the product (in state 00), the retailer may incur a loss (denoted

by Z00, a non-positive constant), which we assume to be independent of the variety and pricing

decisions.
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Bringing all the components together, the total expected profit over the planning horizon is

equal to

Z∗r = max
n1,n2≥0

{
−F1n1 − F2n2 +

T∑
t=1

E

{
1(Xt

1 = 1, Xt
2 = 1) max

P 11
1 ,P 11

2 ≥0
Z11
t (n1, n2, P

11
1 , P 11

2 )

+ 1(Xt
1 = 1, Xt

2 = 0) max
P 10

1 ≥0
Z10
t (n1, P

10
1 ) + 1(Xt

1 = 0, Xt
2 = 1) max

P 01
2 ≥0

Z01
t (n2, P

01
2 )

+ 1(Xt
1 = 0, Xt

2 = 0)Z00
}}

,

where Xt
k ∈ {0, 1} is a random variable that indicates the availability of brand k in period t and

1(·) is an indicator function.2 Observe that we assume n1 and n2 take non-negative real values

and not non-negative integer values. This simplification keeps the notation and analysis simple.

Furthermore, this simplification has practically no impact on the insights we derive.

We assume that at the time of product launch as well as throughout the product lifecycle, the

Markov chain that governs supplier availability is in steady state, i.e., the probability P (X0
1 =

i,X0
2 = j) = πij , where πij is the limiting probability. We also assume that the number of customer

arrivals Nt is independent of the evolution of supply disruptions. Using these assumptions, the

optimal expected profit over the planning horizon is equal to

Z∗r = max
n1,n2≥0

{
−F1n1 − F2n2 +

T∑
t=1

{
π11 max

P 11
1 ,P 11

2 ≥0
Z11
t (n1, n2, P

11
1 , P 11

2 ) + π10 max
P 10

1 ≥0
Z10
t (n1, P

10
1 )

+ π01 max
P 01

2 ≥0
Z01
t (n2, P

01
2 ) + π00Z00

}}
. (3.3)

We refer to this model as responsive pricing (RP) model. Let G(n1, n2) denotes the maximand for

the outer maximization problem; that is,

G(n1, n2) = −F1n1 − F2n2 +

T∑
t=1

{
π11 max

P 11
1 ,P 11

2 ≥0
Z11
t (n1, n2, P

11
1 , P 11

2 ) + π10 max
P 10

1 ≥0
Z10
t (n1, P

10
1 )

+ π01 max
P 01

2 ≥0
Z01
t (n2, P

01
2 )

}
. (3.4)

Further, let (n∗1, n
∗
2) = arg max

n1,n2≥0
G(n1, n2).

4 Analysis

In this section, we analytically derive insights on the optimal decisions (on price and variety) as

well as the optimal expected profit.

2Since price(s) remain(s) the same during any period in a given state, the three price maximization problems can
be consolidated into a single price-maximization problem, which can be defined outside the summation over t.
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4.1 Optimal Price

We first consider the inner optimization problem for state 11 in Eq. (3.3), in which prices are the

decision variables, and present two basic results that are adapted from Li and Huh (2011). In

the first result, the expected gross profit Z11
t is shown to be a concave function of market shares

(Q11
1 , Q

11
2 ). To derive this result, the prices (P 11

1 , P 11
2 ) need to be expressed in terms of the market

shares. Accordingly, we observe that

(
n1e

(
a1−P

11
1

µ

))µ
γ

e
ω11

γ

=
Q11

1

1−Q11
1 −Q11

2

.

Taking log of both sides and rearranging terms, we get

P 11
1 = a1 + µ lnn1 − ω11 + γ

{
ln(1−Q11

1 −Q11
2 )− ln(Q11

1 )
}
. (4.5)

Similarly, P 11
2 can be expressed in terms of (Q11

1 , Q
11
2 ). It can be easily seen that P 11

1 and P 11
2 are

injective (one-to-one) functions of (Q11
1 , Q

11
2 ). Thus, Z11

t can be equivalently stated as a function of

(n1, n2, Q
11
1 , Q

11
2 ).

In the second result, optimality of the equal-margin policy in state 11 is established. As per the

policy, regardless of the purchasing costs and qualities of the two brands, the retailer will set the price

in such a way to extract the same margin out of the two brands. The optimal margin can be expressed

in terms of Lambert’s W function (also called Omega function), which is a multi-valued function

that satisfies z = W (z)eW (z). Further, the function is single-valued and increasing when z ≥ 0.

We state both results in the following lemma. Define (P 11∗
1 , P 11∗

2 ) and (Q11∗
1 , Q11∗

2 ) as the optimal

price and market share vectors given the number of product variants (n1, n2). Let r11∗
1 = P 11∗

1 − c1

and r11∗
2 = P 11∗

2 − c2 be the optimal margins for brands 1 and 2, respectively, in state 11.

Lemma 1. (Adapted from Li and Huh (2011))

1. The expected profit per period in state 11, Z11
t (n1, n2, Q

11
1 , Q

11
2 ), is jointly concave in (Q11

1 , Q
11
2 )

for any given (n1, n2).

2. The optimal pricing policy for state 11 is an equal-margin policy that sets both margins r11∗
1 =

P 11∗
1 − c1 and r11∗

2 = P 11∗
2 − c2 equal to r11∗ = Π∗ + γ, where

Π∗ = γ ·W


2∑

k=1

(
nke

ak−ck−γ
µ

)µ
γ

e
ω11

γ

 . (4.6)

Observe that the equal-margin policy would be optimal every period if suppliers were perfectly

reliable. This policy (alternatively called constant-markup pricing) has also been shown to be
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optimal in various other settings; see, for example, Anderson and de Palma (1992), Besanko et al.

(1998), and Hopp and Xu (2005).

Using the same approach as in part 2 of the above lemma, we next characterize the optimal

pricing policy for states 10 and 01 in the following proposition. As before, let P ij∗k be the optimal

price for brand k given nk variants (k = 1, 2) in state ij. Let r10∗ = P 10∗
1 − c1 and r01∗ = P 01∗

2 − c2

be the optimal margins in state 10 and 01, respectively.

Proposition 2. 1. For a given n1,

P 10∗
1 = γW


(
n1e

a1−c1−γ
µ

)µ
γ

e
ω10

γ

+ c1 + γ.

2. For a given n2,

P 01∗
2 = γW


(
n2e

a2−c2−γ
µ

)µ
γ

e
ω01

γ

+ c2 + γ.

Since P 10∗
1 6= P 11∗

1 and P 01∗
2 6= P 11∗

2 , the optimal margin for a brand may change over time.

Clearly, the equal-margin policy is not optimal when suppliers are not reliable. The sub-optimality

of this policy is primarily caused by the variation in product variety over time. Another contributing

factor is the change in the utility of outside option over time, though the equal-margin policy is

not necessarily optimal even when the utility of outside option is the same in different states of

the Markov chain; that is, even when ω11 = ω10 = ω01. In the following proposition, we explore

how supply disruptions influence optimal prices by comparing them in different states.

Proposition 3. 1. For any given n1 and n2, if ω10 ≥ ω11, then P 10∗
1 ≤ P 11∗

1 . Similarly, if

ω01 ≥ ω11, then P 01∗
2 ≤ P 11∗

2 .

2. The optimal margins r11∗ = P 11∗
1 − c1 = P 11∗

2 − c2, r10∗ = P 10∗
1 − c1, and r01∗ = P 01∗

2 − c2

(and thus optimal prices) are decreasing in ω11, ω10, and ω01, respectively.

Part 1 indicates that if the utility of outside option remains unchanged or increases when one

brand becomes unavailable, it is optimal to decreases the price of the available brand. (Throughout

this study, we use increases/decreases and less/greater than in a weak sense; otherwise, we add

strictly while describing it.) This also means that all else being equal, the optimal price for the

available brand reduces in the face of a supply disruption. The purpose of this price reduction is

to induce some of the customers who would have bought the unavailable brand and who may now

choose an outside option to purchase a variant of the available brand.

The converse of the first part, however, is not necessarily true. Even if ω10 (ω01) is less than

ω11, the price for brand 1 (brand 2) in state 10 (state 01) may still be lower than in state 11. The

reason lies in the greater product variety in state 11. Due to greater variety, the probability of
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purchase of at least one variant of brand 1 (brand 2) in state 11 may be higher than in state 10

(state 01) even if the outside option is less attractive in state 10 (state 01) compared to state 11.

This enables the retailer to charge a higher price for brand 1 (brand 2) in state 11 compared to

state 10 (state 01). More precisely, if ω11 ≥ ω10, P 11∗
1 may still exceed P 10∗

1 when n2 is sufficiently

large. The large value of n2 will buoy P 11∗
1 but will not affect P 10∗

1 . We illustrate this observation

in the following example.

Example 4. Let ω11 = 6 and ω10 = 5.5. The remaining parameters are as given in Table 2. The

optimal price for brand 1 in states 11 and 10 are equal to 8.75 and 8.68, respectively.

Even though a reduction in the utility of outside option in state 10 may not lead to a greater

price in state 10 (compared to state 11), the price in state 10 (for brand 1) nonetheless increases.

This is implied by part 2 of Proposition 3. By setting a higher price, the retailer is taking advantage

of the lower attractiveness of the outside option.

In the following proposition, we relate the optimal margins in different states to additional model

parameters. In general, the margins increase as the relevant number of product variants or quality

increases and decrease as the unit purchasing cost increases. The margins also increase as customer

heterogeneity (µ) increases.

Proposition 5. Both r11∗ and r10∗ increase as n1 or a1 increases or as c1 decreases. Similarly,

both r11∗ and r01∗ increase as n2 or a2 increases or as c2 decreases. All three margins increase as µ

increases, provided the number of variants offered for the available brand is at least one.

As the product variety increases, the probability of a customer purchasing a product increases.

The retailer takes advantage of this by raising the price, which results in a higher margin. The effects

of ck and ak are similarly intuitive. Finally, as customer heterogeneity increases, the likelihood of

larger ex-post utilities increases, resulting in greater willingness-to-pay. Once again, the retailer

takes advantage of this and increases the price, which leads to a greater margin.3

4.2 Optimal Variety and Expected Profit

We now focus on the outer optimization problem in Eq. (3.3) in which product variety is the decision

variable. Along the way, we also develop properties of the expected profit function.

We begin by showing in the following theorem that the expected profit over the planning horizon

G(n1, n2) (Eq. 3.4) is jointly concave in the numbers of product variants for the two brand. The

concavity implies that the marginal benefit of an additional variant of a brand reduces as the number

of variants for that brand increases. This function is also submodular in the numbers of product

variants for both brands, (n1, n2). The submodularity implies that the variants of the two brands

are substitutable; that is, greater number of variants of one brand reduces the marginal benefit

of an additional variant of the other brand. Observe that product variants are substitutable even

3Observe that greater heterogeneity also implies greater likelihood of smaller ex-post utilities. However, this does
not affect the outcome since such customers would not have purchased the product in the first place.
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though the qualities of the brands and reliabilities of the suppliers may differ significantly. Both

concavity and submodularity are also useful in searching for the optimal values of n1 and n2 in the

computational experiments in Section 5.

Theorem 6. The expected profit for responsive pricing over the planning horizon G(n1, n2) is jointly

concave in n1 and n2 for n1 ≥ 0 and n2 ≥ 0. Furthermore, G(n1, n2) is submodular in (n1, n2).

Another implication of the above theorem is that the optimal number of variants of a brand

cannot exceed the corresponding value when variants of only that brand are sold. Thus, the optimal

number of variants of brand k when only brand k is sold provides an upper bound on the optimal

number of variants of brand k when both brands are sold, n∗k. This bound is useful while searching

for the optimal solution since we need to search for n∗k only between 0 and this bound. We state

this observation formally in the following theorem.

Theorem 7. Define n#
1 := arg maxn1≥0G(n1, 0) and n#

2 := arg maxn2≥0G(0, n2). Then, n∗1 ≤ n
#
1

and n∗2 ≤ n
#
2 .

In the following proposition, we show that the optimal expected profit Z∗r decreases as any of

the outside option utilities increases. The proposition also illustrates relationship between Z∗r and

unit costs ck, expected utilities ak, and the degree of customer heterogeneity µ.

Proposition 8. The optimal expected profit Z∗r is a decreasing function of c1, c2, ω11, ω10, and

ω01 and an increasing function of a1 and a2. Furthermore, Z∗r also increases with µ, provided the

optimal number of variants for each brand included in the assortment is at least one.

Observe that the (increasing or decreasing) relationship between the optimal expected profit

and a model parameter is the same as that of the parameter with the optimal margins (Propositions

3 and 5). We note that these relationships also hold for the expected profit per period in different

states; that is, for Z11
t (n1, n2, P

11∗
1 , P 11∗

2 ), Z10
t (n1, P

10∗
1 ), and Z01

t (n2, P
01∗
2 ).

Finally, we explore the role of brand and market parameters in supplier diversification. Since

supplier diversification is likely to be an automatic choice when suppliers are unreliable, we assume

that they are perfectly reliable for this analysis. Brand parameters, quality (ak) and unit cost (ck),

have a clear role in this decision since an increase in ak or a reduction in ck for brand k should lead

to a greater number of variants for that brand.

Proposition 9. Suppose that F1 = F2 > 0, and let a1− c1 > a2− c2. The retailer will offer strictly

greater number of variants of brand 1 than brand 2, that is, n∗1 > n∗2 > 0. The outcomes regarding

brand 1 and brand 2 reverse when a1 − c1 < a2 − c2. Finally, n∗1 = n∗2 > 0 when a1 − c1 = a2 − c2.

The proposition shows that it is always optimal to offer both brands, though the brand with

greater quality-cost differential dominates the other brand in terms of the number of product variants.

Another observation based on this result is that the impact of quality and unit cost parameters

operates through their difference.
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5 Computational Experiments

Since a closed-form solution for the optimal number of product variants for each brand does not

appear possible, the rest of our analysis uses extensive numerical experiments. We first describe

our experimental setup (Subsection 5.1) and then present three types of experiments. In Subsection

5.2, we explore the effect of supply disruption risk on the total number of variants. This analysis

is important since increasing product variety complicates the management of operations. We also

examine how the optimal product variety and its allocation among the two brands vary with

respect to a few critical model parameters. In Subsection 5.3, we estimate the incremental profit

improvements due to strategic product variety and responsive pricing. Finally, in Subsection 5.4,

we develop insights on the effect of responsive pricing on optimal safety stock required.

5.1 Experimental Setup

To understand the effect of risk of supply disruption on the total number of product variants, we

compare the total number of product variants over both brands offered in the responsive pricing model

to another scenario in which there is no risk of supply disruption. In this scenario, both suppliers are

always available, so the expected profit in every period is equal to max
P1,P2≥0

Z11
t (n1, n2, P1, P2), where

Z11
t is as defined in Eq. (3.2). We refer to the corresponding model, which is an auxiliary model, as

perfect supply (PS) model. Let Z∗p be the optimal expected profit over the planning horizon for this

model. Then,

Z∗p = max
n1,n2≥0

{
−F1n1 − F2n2 +

T∑
t=1

max
P1,P2≥0

Z11
t (n1, n2, P1, P2)

}
. (5.7)

To estimate the incremental profit improvements due to the product variety and responsive

pricing strategies, we consider another auxiliary model in which not only the product variety but

also the corresponding prices are determined at the beginning of planning horizon. The prices then

remain unchanged throughout the planning horizon. Let Z∗s be the optimal expected profit for this

auxiliary model, which we refer to as static pricing (SP) model. Then,

Z∗s = max
n1,n2≥0

Zs(n1, n2) (5.8)

where

Zs(n1, n2) =

{
−F1n1 − F2n2 + max

P1,P2≥0

T∑
t=1

{
π11Z11

t (n1, n2, P1, P2) + π10Z10
t (n1, P1)

+ π01Z01
t (n2, P2) + π00Z00

}}
. (5.9)

Note that periodic expected profits only depend on the state (and not on t). To determine the

incremental profit improvement due to strategic selection of product variety, we compare the optimal
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profit in the static pricing model with the profit in the static pricing model in which the product

variety is the same as the perfect supply model. Although prices are reoptimized in the latter

scenario, they remain unchanged throughout the planning horizon in a manner similar to the perfect

supply model. Thus, the profit improvement could be primarily attributed to the strategic selection

of product variety.

To compute the incremental profit improvement due to responsive pricing, we compare the

optimal profits in the static and responsive pricing models. Although both prices and the number

of product variants are optimized in the responsive pricing model, the profit difference between the

static and responsive pricing models can be primarily attributed to responsive pricing since the

difference in product variety between the two models is small (see Subsection 5.2.1).

Default values of the parameters and the functional form for f used in the experiments are

provided in Table 2. In all the sensitivity analyses that we report in this section, we vary one

parameter while keeping other parameter values fixed to their default values.

F1 F2 f(n) π11 π10 π01 ω = ω11 ω10 ω01 µ γ N T c1 c2 a1 a2
5000 5000 25n2 0.3 0.4 0.3 6 6 6 2 2.5 1500 150 6 4 7 5

Table 2: Parameters and Functional Forms for Numerical Experiments

5.2 Optimal Variety under Supply Disruption

In this subsection, we report outcomes of three sets of experiments. The objective for the first set is

to determine the extent to which responsive pricing results in changes in product variety (Subsection

5.2.1) - that is, we explore how the distribution of product variants across the two brands and their

total count change with the practice of responsive pricing. In the second set of experiments, we

examine whether product variety is always greater when there is risk of supply disruption compared

to when suppliers are perfectly reliable (Subsection 5.2.2). The third set of experiments are aimed

at understanding how model parameters such as correlation between supplier failures and customer

heterogeneity affect the optimal number of product variants (Subsection 5.2.3).

5.2.1 Responsive Pricing and Product Variety

To explore the impact of responsive pricing on product variety, we identify and compare the optimal

number of product variants for each brand with and without responsive pricing. For the scenario

with responsive pricing, these values are computed using the RP model defined in Eq. (3.3); and for

the scenario without responsive pricing, these values are computed using the model defined in Eq.

(5.8). We find that the impact of responsive pricing is very small on both the brand-level and the

total variety. The relative change in the number of variants for either brand and the total variety

due to responsive pricing is usually less than 1%. Sample data on the optimal number of product

variants for each brand for both scenarios is available in Table 4 in the Appendix.
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5.2.2 Supplier Unreliability and Product Variety

To understand whether the risk of supply disruption results in greater product variety, we compare

the total number of product variants (over both brands) with and without the risk of disruption.

For the scenario with the risk of disruption, we use the responsive pricing model to identify the

optimal variety (Eq. 3.3). For the scenario in which there is no risk of supply disruption, we use the

PS model (Eq. 5.7) to identify the optimal variety.

The experiments indicate that the possibility of supply disruptions may not always result in

greater variety (Figure 1). This observation is contrary to our initial intuition since we expected

that consideration of risk of supply disruption should always result in redundancy in the form of

additional product variants.

Three parameters, ω10, ω01, and µ, play a crucial role in determining whether the risk of dis-

ruption leads to increased variety. The roles of ω01 and ω10 are relatively straightforward. When

one or both the parameters are smaller than ω11, then the probability of selection of the available

brand gets a boost when only one brand is available, and so we are likely to see greater variety when

supply could be disrupted. Conversely, an increase in either or both of the two parameters is likely

to generate an opposite result. (See Figures 1(a) and 1(b).) However, even when ω10 = ω01 = ω11,

both outcomes are possible depending upon the value of µ. In Figure 1(c), we observe that the

variety could reduce in the presence of supply disruptions for small values of µ. Conversely, for

high values of µ, the variety is greater in the presence of supply disruptions. The heterogeneity of

customers naturally favors greater product variety. However, it appears to induce a greater change

when only one brand may be available occasionally (considering the possibility of supply disruptions)

compared to when both brands are always available.

5.2.3 Sensitivity Analysis on Product Variety

In this subsection, we describe how the optimal number of product variants for each brand varies

with respect to four parameters in our base (responsive pricing or RP) model: µ (range: 1-3), ω10

(range: 0-15), ρ (failure correlation of suppliers, range: -1 to -0.1), and γ (range: 2.5-7). (The

relationships with respect to ω01 are similar to ω10.) A graphical representation of these relationships

is shown in Figure 2. A summary of observations from the figure is as follows.

1. As the customer base becomes more heterogeneous (as µ increases), the retailer increases the

number of product variants of each brand (Figure 2(a)).4 The heterogeneity of customer base

implies that customers are more likely to have high ex-post utilities for the two brands, resulting

in greater willingness to buy. To take advantage of this, the retailer offers additional variants and

accordingly charges a higher price (Figure 3(a)).

4The reason for n1 increasing more than n2 with respect to µ in Figure 2(a) is that π10 > π01. Since brand 1 is
available greater fraction of time (π11 + π10) compared to brand 2 (π11 + π01), it is more profitable to carry a higher
number of variants for it as customer heterogeneity increases. Observe that the two brands are equivalent otherwise
as ω10 = ω01, F1 = F2, and a1 − c1 = a2 − c2.
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2. As the utility of outside option when only brand 1 is available, ω10, decreases, the number of

variants of brand 1 increases (Figure 2(b)). At the same time, to keep the fixed costs under control,

the retailer reduces the number of product variants of brand 2. A consequence of greater number

of variants of brand 1 is that it is optimal to charge a higher price for the brand (Figure 3(b)).

3. The number of variants for brands 1 and 2 increases and decreases, respectively, as the failure

correlation increases (Figure 2(c)), in the sense of becoming less negative.5 (Throughout Section 5,

an increase in correlation means correlation becomes less negative.) Before we explain the underlying

mechanics, we note that different values of correlation are obtained by varying π11 and π01 such

that their sum is equal to 0.75. (The values of π10 and π00 remain fixed at 0.25 and 0, respectively.

See Subsection 8.9 in the Appendix for more details.) Further, correlation increases with π11. This

increase in correlation is synchronous with a reduction in the value of π01, which is the probability

that only brand 2 is available, which explains the reduction in the number of variants of brand 2.

At the same time, the probability of brand 1 being available increases (π10 + π11), which leads to

a greater number of variants for the brand.

Observe that the roles of suppliers 1 and 2 can be interchanged while obtaining correlation

values (i.e., fix π01 = 0.25 and π11 = 0.75− π10). In that case, the number of variants of brands

1 and 2 will decrease and increase, respectively, as correlation increases.

Overall, greater failure correlation first leads to greater supplier diversification in the form of

similar number of product variants for both brands (ρ ∈ (−1,−0.34)). Specifically, for ρ = −0.34,

n∗1 = n∗2. Subsequently, as correlation increases further, the diversification appears to reduce with

greater divergence (n∗1 > n∗2) in the number of product variants for the two brands.

4. The number of variants of both brands increases as brand disparity γ increases (Figure 2(d)). An

increase in brand disparity means the variants in one brand are less substitutable for the variants

in the other brand. Clearly, with reduced substitutability, the retailer should offer more variants

of each brand, which is reflected in the figure.

5.3 Relative Value Added by Strategic Product Variety and Responsive Pricing

In this subsection, we compare incremental profit improvements due to strategic selection of product

variety and responsive pricing. To obtain the incremental profit improvement due to strategic

selection of product variety, we first determine the benefit of realigning product variety when

suppliers are unreliable. We estimate this benefit as Z∗s − Zs(nPS1 , nPS2 ), where Z∗s and Zs are as

defined in Eq. (5.8) and Eq. (5.9), respectively; and nPSk , k = 1, 2 is the optimal number of product

variants for brand k in the perfect supply model (Eq. 5.7). Subsequently, we divide this value by

Zs(n
PS
1 , nPS2 ) to obtain the profit improvement in percentage; that is,

PIP (Product Variety) =
Z∗s − Zs(nPS1 , nPS2 )

Zs(nPS1 , nPS2 )
× 100, (5.10)

5We set π00 to zero in the experiments since varying π00 would have resulted in a confounding effect on the optimal
product variety. Fixing π00 to zero, however, ensures that positive correlation values cannot be attained. This is why
the range of correlation values considered in the figure is narrower than [−1, 1].
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Figure 1: Impact of Customer Heterogeneity (µ) and Utilities of Outside Option in States 10 (ω10)
and 01 (ω01) on Total Product Variety

where PIP stands for percent improvement in profit. Similarly, to determine the percent profit

improvement due to responsive pricing, we first estimate the benefit of responsive pricing as Z∗r −Z∗s ,

where Z∗r and Z∗s are as defined in Eq. (3.3) and Eq. (5.8), respectively. Subsequently, we divide

this value by Z∗s to obtain the profit improvement in percentage; that is,

PIP (Responsive Pricing) =
Z∗r − Z∗s
Z∗s

× 100. (5.11)

Additionally, we examine how both the increments vary as a function of µ, ω10, ρ, and γ. The range

for each parameter remains the same as in the previous subsection.

The outcomes from this set of experiments are presented in Figure 5. A summary of insights

is as follows.

1. The incremental profit due to strategic selection of product variety is significantly more than

that of responsive pricing. (Observe that the scales for the two PIPs are different in Figure 5.) In

fact, the ratio of the PIPs due to the two strategies could be as high as three orders of magnitude.

This means that the residual value added by responsive pricing after product variety redesign is
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Figure 2: Number of Variants for Each Brand in the Responsive Pricing Scenario as a Function of
Model Parameters

small. Thus, we can conclude that product variety redesign is a more effective lever to manage

supply disruptions than responsive pricing. The shapes of the PIP curves for product variety are

primarily determined by how different the optimal product variety is for the static pricing versus

perfect supply models. Similarly, the magnitude of price difference between static and responsive

pricing scenarios in different states primarily determines shapes of the PIP curves corresponding to

the responsive pricing strategy. In what follows, these observations are used to explain the shapes

of the PIP curves.

2. As the customer heterogeneity increases, the PIP due to strategic selection of product variety

generally increases (Figure 5(a)). The PIP curve mirrors the difference in the number of product

variants between the static pricing and perfect supply models. (See, for example, Figure 1(c). The

number of variants for each brand is nearly identical in the static and responsive pricing models.)

Since the difference in the number of product variants increases between the static pricing and

perfect supply scenarios with µ, the percent profit improvement also increases with µ. Similarly,

the benefit of responsive pricing increases with µ. As we saw in the previous subsection, in general,

higher customer heterogeneity causes the retailer to increase the number of variants for both brands.
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Figure 3: Optimal Prices in Static Pricing (SP) and Responsive Pricing (RP) Scenarios as a Function
of Model Parameters
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Figure 4: Optimal Prices in Static Pricing (SP) and Responsive Pricing (RP) Scenarios as a Function
of Model Parameters
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Figure 5: Profit Improvement due to Product Variety and Responsive Pricing Strategies as a
Function of Model Parameters

This also means that the difference in the total number of product variants available in different

states (for example, 11 and 10) increases. For example, the difference in the number of variants

available in states 11 and 10 is n2, and this difference increases with µ. This implies that it becomes

more attractive to charge different prices for brand 1 in states 11 and 10 since price for a brand

increases with the total number of variants offered (Proposition 5). Figure 3(a) confirms this

rationale: the difference between optimal prices for brand 1 in states 11 and 10 is increasing in µ.

3. The PIP due to strategic selection of product variety has a unimodal shape with respect to ω10,

with a trough occurring at ω10 = 7 (Figure 5(b)). As ω10 increases, the optimal number of variants

for brand 1 decreases and that for brand 2 increases. For ω10 = 7, these values are close to the

corresponding values for the perfect supply model. (Recall that ω10 does not affect product variety

in the perfect supply model.) This is why the PIP is close to zero at ω10 = 7. For other values

of ω10, the optimal variety in the perfect supply and static pricing cases are differentiated, which

results in greater PIP. On the other hand, the PIP for the responsive pricing strategy essentially

decreases as ω10 increases. The relationship is monotonic but for a small peak when ω10 = 7. The

profit differential is high for low values of ω10 since it is optimal to carry a larger variety for such
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values of ω10 in the responsive pricing scenario. For larger values of ω10, however, relative values

of the optimal prices appear to explain the shape of the curve (see Figure 3(b)). In particular,

the profit improvement is close to zero when ω10 = 5 since P 11
1 and P 10

1 in the responsive pricing

scenario become equal to the P1 in the static pricing scenario. The prices diverge again as ω10

increases, which may explain the small peak corresponding to ω10 = 7.

4. The impact of failure correlation of suppliers occurs in a roughly U-shaped fashion for the product

variety strategy and an inverted U-shaped manner for the responsive pricing strategy (see Figure

5(c)). Given the modeling of correlation, the number of variants of brand 1 increases and that of

brand 2 decreases as correlation increases, as discussed in item 3 in Subsection 5.2.3. These values

are closest to the corresponding numbers for the perfect supply model when correlation is equal to

-0.3. This is why the PIP for product variety has a trough when correlation is -0.3. The PIP takes

greater value elsewhere since the product variety in the static pricing model is more differentiated

from that in the perfect supply model. To understand the PIP due to responsive pricing, recall from

item 3 in Subsection 5.2.3 that π11 increases and π01 decreases with correlation. In state 11, the

profit margins for both brands are higher in the responsive pricing scenario compared to the static

pricing scenario, though the gap reduces with correlation (Figure 4(a)). As correlation increases

from -1, the increase in π11, which appears as a scaling factor in (Eq. 3.3), appears to dominate

the closure of the profit margin gap resulting in an increase in the profit improvement. The peak

occurs at a correlation value of -0.5, implying that the reduction in profit margin gap dominates

the increase in π11 for higher (less negative) correlation values. Moreover, greater profit margins

in the static pricing scenario in states 10 and 01, which increase with correlation, also diminish the

profit advantage of the responsive pricing scenario as correlation increases.

5. As brand disparity γ increases, the percent profit improvement decreases for the product va-

riety strategy but increases for the responsive pricing strategy. For the product variety strategy,

Z∗s − Zs(nPS1 , nPS2 ) increases with γ since the difference in the number of variants (brand-wise as

well as in aggregate) increases between the static pricing and perfect supply scenarios as γ increases.

However, the denominator in Eq. (5.10), Zs(n
PS
1 , nPS2 ), increases at an even faster rate with γ,

which leads to a decreasing curve for the PIP. On the other hand, the explanation for the responsive

pricing strategy remains the same as that for µ; that is, the difference in product variety between

states 11 and 10, n∗2, and the difference between states 11 and 01, n∗1, increases with γ (see Figure

2(d)), which makes it more attractive to charge differential prices in different states.

5.4 Implications for Inventory Requirements

In the nested logit model, the number of product variants and price together determine the probability

that an incoming customer purchases some product variant. Since this probability in turn determines

the distribution of the total customer demand over all the product variants, the variety and pricing

decisions have implications for the inventory decisions as well as the safety stock, which is generally

taken to be proportional to the standard deviation (SD) of demand. Accordingly, in this subsection,
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we compute the SD of total demand over all the product variants and examine how it changes due

to responsive pricing. We also conduct a sensitivity analysis relative to several model parameters.

We begin by deriving the variance of total customer demand in a period in which both suppliers

are available. Recall that if n1 variants of brand 1 and n2 variants of brand 2 are offered at respective

prices of P 11
1 and P 11

2 in a period, then the total market share, which is equivalent to the probability

that an incoming customer purchases a variant from either of the brands, is

α11
t =

(
n1e

a1−P
11
1

µ

)µ
γ

+

(
n2e

a2−P
11
2

µ

)µ
γ

e
ω11

γ +

(
n1e

a1−P11
1

µ

)µ
γ

+

(
n2e

a2−P11
2

µ

)µ
γ

= Q11
1 +Q11

2 .

If the number of customers in period t, Nt, is deterministic, then the number of customers who

purchase the product is binomial distributed with parameters Nt and α11
t . The variance of demand

is thus equal to Ntα
11
t (1− α11

t ).

The above expression can be easily modified when one of the suppliers is unavailable. Suppose

that the probabilities that an incoming customer purchases a product variant in states 10 and 01

are denoted by α10
t and α01

t , respectively. The values of α10
t and α01

t are equal to

α10
t =

(
n1e

a1−P
10
1

µ

)µ
γ

e
ω10

γ +

(
n1e

a1−P10
1

µ

)µ
γ

= Q10
1 , α01

t =

(
n2e

a2−P
01
2

µ

)µ
γ

e
ω01

γ +

(
n2e

a2−P01
2

µ

)µ
γ

= Q01
2 ,

and conditional on the state, the demand is again binomial distributed with parameters Nt and αijt .

By conditioning on the Markov chain being in state ij, the variance of demand in a generic

period t can be obtained as

V ar(Dt) =
∑

ij=11,10,01

πij
(
Ntα

ij
t (1− αijt ) +N2

t (αijt )2
)
−

 ∑
ij=11,10,01

πijNtα
ij
t

2

.

This expression holds for both static pricing and responsive pricing models. Whereas in the

static pricing model, the price used in the computation of αijt remains the same for all states

ij; in the responsive pricing model, the price varies with the state. The above approach, with

some modifications, can also be utilized to compute the variance of demand for any other arrival

distribution, for example, Poisson distribution.

In Table 3, we report the SD of total demand in a generic period t for the static pricing and

responsive pricing models as a function of four different model parameters. We experimented with

the number of arrivals being both deterministic and Poisson distributed. Since the results in both

cases provide identical insights, we report only the deterministic case. The base parameter values

for the table remain the same as in Table 2.
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Observe from the table that responsive pricing results in a lower SD than static pricing for all

the parameters, which implies that the safety stock requirements decline if responsive pricing is

utilized. The reason is as follows. When responsive pricing is used, as opposed to static pricing, the

spread in probabilities of an arriving customer purchasing a variant across various states is smaller.

More precisely, α11
t , α

10
t , and α01

t are closer to each other in the presence of responsive pricing than

static pricing. Therefore, the likelihood of a customer purchasing a variant depends less significantly

on the state of the Markov chain for responsive pricing compared to static pricing, which results in

lower standard deviation of total customer demand.

µ Responsive Pricing Static Pricing
0.5 23.65 24.85
1.0 23.39 24.57
1.5 24.86 26.21
2.0 28.50 30.33
2.5 35.87 38.82

ω01 Responsive Pricing Static Pricing
1.0 196.22 207.14
4.0 56.31 57.67
7.0 34.53 35.86
10.0 42.49 42.78
13.0 43.38 43.47

ω10 Responsive Pricing Static Pricing
1.0 218.41 232.02
4.0 68.45 70.09
7.0 33.93 35.49
10.0 43.41 43.78
13.0 44.36 44.46

γ Responsive Pricing Static Pricing
2.5 28.50 30.33
3.5 46.52 52.89
4.5 54.39 64.27
5.5 58.53 70.88
6.5 61.02 75.17

Table 3: Standard Deviation of Total Demand in a Generic Period for Base Parameter Values in
Table 2

6 Extension: Responsive Variety

In this section, we explore the scenario in which not only the price but also the number of variants

for an available brand could be updated when the supplier for the other brand becomes unavailable.

Similar to price, we include a superscript ij to nk, provided the brand is available in state ij. All

the other notations remain unchanged. Expressions for probability of selection for brand k, Qijk , in

different states also remain unchanged. Putting everything together, the optimal expected profit

28

Electronic copy available at: https://ssrn.com/abstract=4593500



over the planning horizon, Z∗v , is equal to

Z∗v = max
n11

1 ,n11
2 ,n10

1 ,n01
2 ≥0

{
−F1 max(n11

1 , n
10
1 )− F2 max(n01

2 , n
11
2 )

+

T∑
t=1

{
π11 max

P 11
1 ,P 11

2 ≥0
Z11
t (n11

1 , n
11
2 , P

11
1 , P 11

2 )

+π10 max
P 10

1 ≥0
Z10
t (n10

1 , P
10
1 ) + π01 max

P 10
2 ≥0

Z01
t (n01

2 , P
10
2 ) + π00Z00

t

}}
,

where Z11
t , Z

10
t , and Z01

t are as defined in Subsection 3.3. Let Gv(n
11
1 , n

11
2 , n

10
1 , n

01
2 ) be the maximand

in the above formulation. We refer to this model as the responsive variety model.

We find that all the analytical results presented in Section 4 except Proposition 3 extend to

the above model with suitable modifications. Proposition 3 may break down since the number of

variants of brand 1 (brand 2) in state 10 (state 01) may now exceed that in state 11, which may

induce the corresponding price in state 10 (state 01) to exceed the price in state 11 even when

ω10 ≥ ω11 (ω01 ≥ ω11). However, the result will hold for state 10 if n10∗
1 = n11∗

1 and for state 01 if

n01∗
2 = n11∗

2 . In contrast, Theorem 6 is an example of a result that extends directly, that is, Gv is

jointly concave in (n11
1 , n

11
2 , n

10
1 , n

01
2 ).

We conduct computational experiments to evaluate the incremental profit improvement due to

the responsive variety strategy. We refer to this metric as PIP (Responsive Variety) and compute it

as the percentage profit improvement of the responsive variety model with respect to the responsive

pricing model; that is,

PIP (Responsive Variety) =
Z∗v − Z∗r
Z∗r

× 100.

Similar to Section 5, we compute the PIP due to responsive variety by varying µ, ω10, ρ (failure

correlation), and γ. We find that the PIP ranges between 0 and 8.6% (see Figure 6 in the Appendix).

The PIP is sensitive to changes in µ and ω10, but is relatively insensitive to γ and ρ.

We also conduct experiments to understand how the responsiveness of product variety influences

the relationship between optimal decision variables and model parameters. We find that the

relationships remain broadly the same as in Figures 1, 3 and 4 (Figures 7 and 8 in the Appendix

show a comparison). The only notable difference is that the number of variants for one of the

brands may become significantly smaller in state 11 for some parameter combinations (e.g., for high

values of µ, the number of variants of brand 1 reduces significantly in the responsive variety strategy

compared to the responsive pricing strategy). Since the number of variants of brand 1 (brand 2) are

no longer tied together in states 10 and 11 (states 01 and 11), the retailer’s incentive to carry large

number of variants of both brands is diminished in state 11. The optimal price for a brand may

also reduce in such cases, though otherwise, prices exhibit similar pattern as in Figures 3 and 4.
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7 Conclusions

We consider a retailer that offers multiple product variants of two brands. Due to supply disruptions,

the retailer may not be able to offer both the brands every period. In this context, we examine

the relative role played by the retailer’s product variety and price decisions in countering supply

disruptions. Key insights from this study are as follows.

1. Retailers should pay special attention to product variety management as a strategy to safeguard

against demand losses caused by the unavailability of products and brands. With effective product

variety in place, the marginal improvement in profit due to price adjustments appears to be relatively

small. This means that leaving prices unchanged in the event of supply breakdown is unlikely to

cost the retailer much. Moreover, unchanged prices may also be good for public relations.

One explanation for greater impact of product variety management compared to responsive

pricing is as follows. The effect of price is local in the sense that reduced price may induce some of

the customers whose expected utility is marginally lower than that of the outside option to purchase

an available product. Moreover, there is a limit to how much the price can be reduced since it

affects the margin. In contrast, an additional variant may attract a whole new set of customers

to shop from the retailer. Consequently, an adjustment in product variety has a greater effect on

expected profit than responsive pricing.

2. Even though product variety may look substantially different when supply breakdowns are

accounted for compared to when they are not, it may not be optimal to increase redundancy in the

product variety in the presence of supply breakdowns. In fact, it is possible that the product variety

may shrink. This may occur, for example, when either customers are relatively homogeneous or

unavailability of a brand within the store makes it more attractive for the customers to switch to

other stores.

3. All else being equal, the optimal price for variants of an available brand decreases when the

other brand is not available. This also remains the case when a supply disruption makes the outside

option more attractive. Interestingly, the converse of this insight is not true; it may not be optimal

to increase price even if supply disruption makes the outside option less attractive. However, a less

attractive outside option does increase the profit of the retailer in any period regardless of the state

of the supplier availability.

4. Equal-margin pricing policy, which has been shown to be optimal in many settings, may become

sub-optimal when supplier vulnerability to disruptions is considered.

5. Regardless of the degree of supplier unreliability and the quality of suppliers’ brands, product

variants of different brands are substitutable for each other. Specifically, this means that the

marginal profit due to an additional variant of a brand decreases as the number of variants of the

other brand increases.
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6. Although responsive pricing may not be useful in guarding against supply disruptions, it may

reduce the variability of demand substantially. Since safety stock is typically proportional to the

standard deviation of demand, the use of responsive pricing may result in a diminished safety stock

leading to inventory carrying cost savings.

7. Whenever possible, the retailer should try to modulate the number of variants of each brand

depending upon the supplier availability. Our experiments show that the responsiveness in variety

could lead to a marginal profit improvement of up to 8.6%. This strategy appears to be particularly

effective when customers are heterogeneous in their preference for product.

One future direction is to identify the extent to which our results extend to a competitive

setting. In this model, two brands, which belong to two suppliers that are prone to disruption,

compete (either on an online marketplace or through authorized exclusive retailers) and the product

variety and price decisions for each brand will then be determined in equilibrium. A comparison of

equilibrium decisions in this model with the optimal decisions in this study will permit analysis on

how our results modify in a competitive environment.
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8 Appendix

8.1 Proof of Proposition 2

Since proofs for both parts are similar, we present it only for part 1.

∂Z10(n1, Q
10
1 )

∂Q10
1

= E(Nt)

{
(P 10

1 − c1) +Q10
1

∂

∂Q10
1

(P 10
1 − c1)

}
= E(Nt)

{
(P 10

1 − c1)− γ
(

1

1−Q10
1

)}
.

Setting
∂Z10(n1,Q10

1 )

∂Q10
1

equal to 0, we get P 10∗
1 = c1+γ

(
1

1−Q10∗
1

)
. Let Π10 = (P 10

1 −c1)Q10
1 . Substituting

for P 10∗
1 , Π10∗ = γ

(
Q10∗

1

1−Q10∗
1

)
, which means that P 10∗

1 = Π10∗ + c1 + γ. Using this equation and

Q10
1 =

n1e
a1−P

10
1

µ


µ
γ

e
ω10
γ +

n1e
a1−P10

1
µ


µ
γ

, Π10∗

γ =

(
n1e

a1−c1−γ−Π10∗
µ

)µ
γ

e
ω10
γ

= e
−Π10∗

γ

(
n1e

a1−c1−γ
µ

)µ
γ

e
ω10
γ

and so Π10∗ =

γ · W


(
n1e

a1−c1−γ
µ

)µ
γ

e
ω10
γ

 . Substituting Π10∗ in the above expression for P 10∗
1 , we get P 10∗

1 =

γ ·W


(
n1e

a1−c1−γ
µ

)µ
γ

e
ω10
γ

+ c1 + γ.

8.2 Proof of Proposition 3

1. We present the proof only for the case ω10 ≥ ω11; the proof for the case ω01 ≥ ω11 is similar

and hence omitted. For any given n1 and n2, the optimal price for brand 1 in states 10 and 11

is equal to

P 10∗
1 = γW

(
n
µ
γ

1 e
a1−c1−γ

γ

e
ω10

γ

)
+ γ + c1, and (8.12)

P 11∗
1 = γW

(
n
µ
γ

1 e
a1−c1−γ

γ + n
µ
γ

2 e
a2−c2−γ

γ

e
ω11

γ

)
+ γ + c1, (8.13)

respectively. Since ω10 ≥ ω11, e
ω10

γ ≥ e
ω11

γ . Further, since n1, n2 ≥ 0,

n
µ
γ

1 e
a1−c1−γ

γ

e
ω10

γ

≤ n
µ
γ

1 e
a1−c1−γ

γ

e
ω11

γ

≤ n
µ
γ

1 e
a1−c1−γ

γ + n
µ
γ

2 e
a2−c2−γ

γ

e
ω11

γ

and so

W

(
n
µ
γ

1 e
a1−c1−γ

γ

e
ω10

γ

)
≤W

(
n
µ
γ

1 e
a1−c1−γ

γ + n
µ
γ

2 e
a2−c2−γ

γ

e
ω11

γ

)
,
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where the last inequality follows from the fact that W (z) is an increasing function for z ≥ 0.

Thus, we can conclude that

P 10∗
1 ≤ P 11∗

1 .

2. Consider the expected profit in period t in which the Markov chain is in state 11:

Z11
t (n1, n2, Q

11
1 , Q

11
2 ) = E(Nt)

[
(P 11

1 − c1)Q11
1 + (P 11

2 − c2)Q11
2

]
− f(n1, n2),

where P 11
1 and P 11

2 are as given by Eq. (4.5). Differentiating the above function with respect

to Q11
1 , we get

∂Z11
t

∂Q11
1

= E(Nt)

[
(P 11

1 − c1) +Q11
1

∂

∂Q11
1

(P 11
1 − c1) +Q11

2

∂

∂Q11
1

(P 11
2 − c2)

]
= E(Nt)

[
(P 11

1 − c1) + γQ11
1

(
−1

1−Q11
1 −Q11

2

+
−1

Q11
1

)
+ γQ11

2

(
−1

1−Q11
1 −Q11

2

)]
= E(Nt)

[
(P 11

1 − c1)− γ − γ
(

Q11
1 +Q11

2

1−Q11
1 −Q11

2

)]
.

Setting
∂Z11

t

∂Q11
1

= 0 yields P 11
1 − c1 = γ

(
1

1−Q11
1 −Q11

2

)
. Similarly,

∂Z11
t

∂Q11
2

= 0 yields P 11
2 − c2 =

γ
(

1
1−Q11

1 −Q11
2

)
. Recall that P 11∗

1 and P 11∗
2 are the optimal values of P 11

1 and P 11
2 given n1

and n2. From the above equations (and also as stated in Lemma 1), P 11∗
1 − c1 = P 11∗

2 − c2.

Using Lemma 1, r11∗ := Π11∗ + γ, and Q11∗
k =

(
nke

ak−ck−r
11∗

µ

)µ
γ

e
ω11
γ +

2∑
i=1

(
nie

ai−ci−r11∗
µ

)µ
γ
, k = 1, 2.

Using the relationship between P 11∗
k and Q11∗

k and the above expression for Q11∗
k ,

r11∗ = γ

(
1

1−Q11∗
1 −Q11∗

2

)
= γ

eω11

γ + n
µ
γ

1 e
a1−c1−r

11∗
γ + n

µ
γ

2 e
a2−c2−r

11∗
γ

e
ω11

γ

 . (8.14)

Similarly,

r10∗ = γ

(
1

1−Q10∗
1

)
= γ

eω10

γ + n
µ
γ

1 e
a1−c1−r

10∗
γ

e
ω10

γ

 , and (8.15)

r01∗ = γ

(
1

1−Q01∗
1

)
= γ

eω01

γ + n
µ
γ

2 e
a1−c1−r

01∗
γ

e
ω01

γ

 . (8.16)
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Differentiating r11∗ with respect to ω11,

∂r11∗

∂ω11
= −

nµγ1 ea1−c1−r
11∗

γ + n
µ
γ

2 e
a2−c2−r

11∗
γ

e
ω11

γ

 ∂r11∗

∂ω11
−

nµγ1 ea1−c1−r
11∗

γ + n
µ
γ

2 e
a2−c2−r

11∗
γ

e
ω11

γ


= −(Q11∗

1 +Q11∗
2 ) (8.17)

≤ 0.

Thus, r11∗ is decreasing in ω11. Similarly, we can prove that ∂r10∗

∂ω10 = −Q10∗
1 and ∂r01∗

∂ω01 = −Q01∗
2 .

Thus, the optimal margins r10∗ and r01∗ are decreasing in ω10 and ω01, respectively.

8.3 Proof of Proposition 5

Consider r11∗. Suppose we identify a value Π∗(n1, n2) that satisfies Eq. (4.6). If n1 increases by

δ > 0, then Lambert’s W function will increase, which means that Π∗ (and hence the margin) will

also increase. Similarly, Π∗ increases with n2. Thus, the optimal margin increases as either n1 or n2

increases. Similarly, we can prove the result for r10∗ (with respect to n1) and r01∗ (with respect to

n2).

Next, differentiating r11∗ with respect to a1,

∂r11∗

∂a1
=

nµγ1 ea1−c1−r
11∗

γ

e
ω11

γ

−
nµγ1 ea1−c1−r

11∗
γ + n

µ
γ

2 e
a2−c2−r

11∗
γ

e
ω11

γ

 ∂r11∗

∂a1

=

 n
µ
γ

1 e
a1−c1−r

11∗
γ

e
ω11

γ + n
µ
γ

1 e
a1−c1−r11∗

γ + n
µ
γ

2 e
a2−c2−r11∗

γ


= Q11∗

1

≥ 0.

(8.18)

Thus, r11∗ is increasing in a1. Similarly, we can prove that r10∗ is increasing in a1, and r11∗ and

r10∗ are increasing in a2. In the same manner, we can prove that r11∗ and r10∗ are decreasing in c1,

and r11∗ and r01∗ are decreasing in c2.

Finally, differentiating r11∗ with respect to µ,

∂r11∗

∂µ
=

 ln(n1)n
µ
γ

1 e
a1−c1−r

11∗
γ + ln(n2)n

µ
γ

2 e
a2−c2−r

11∗
γ

e
ω11

γ

−
nµγ1 ea1−c1−r

11∗
γ + n

µ
γ

2 e
a2−c2−r

11∗
γ

e
ω11

γ

 ∂r11∗

∂µ

=

 ln(n1)n
µ
γ

1 e
a1−c1−r

11∗
γ + ln(n2)n

µ
γ

2 e
a2−c2−r

11∗
γ

e
ω11

γ + n
µ
γ

1 e
a1−c1−r11∗

γ + n
µ
γ

2 e
a2−c2−r11∗

γ


= ln(n1)Q11∗

1 + ln(n2)Q11∗
2 (8.19)

≥ 0.
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Since n1, n2 ≥ 1, r11∗ is increasing in µ. Similarly, we can prove that r10∗ and r01∗ are increasing in

µ when n1 ≥ 1 and n2 ≥ 1, respectively.

8.4 Proof of Theorem 6

Let the optimal profit in period t in which the Markov chain is in state 11 be denoted by Y 11
t (n1, n2).

Thus,

Y 11
t = max

P 11
1 ,P 11

2 ≥0
Z11
t (n1, n2, P

11
1 , P 11

2 ).

By definition,

Y 11
t (n1, n2) = E(Nt)r

11∗{Q11∗
1 +Q11∗

2 } − f(n1 + n2) (8.20)

where r11∗ = γ
(

1
1−Q11∗

1 −Q11∗
2

)
. Substituting for r11∗ in the above equation using Eq. (8.14),

Y 11
t (n1, n2) = E(Nt)γ

(
n
µ
γ

1 e
a1−c1−r

11∗
γ + n

µ
γ

2 e
a2−c2−r

11∗
γ

e
ω11

γ

)
− f(n1 + n2). (8.21)

Differentiating with respect to n1,

∂Y 11
t

∂n1
= −f ′(n1 + n2) + E(Nt)µ

(
n
µ
γ
−1

1 e
a1−c1−r

11∗
γ

e
ω11

γ

)

− E(Nt)
∂r11∗

∂n1

(
n
µ
γ

1 e
a1−c1−r

11∗
γ + n

µ
γ

2 e
a2−c2−r

11∗
γ

e
ω11

γ

)
.

(8.22)

Differentiating r11∗ (using Eq. (8.14)) with respect to n1,

∂r11∗

∂n1
= µ

nµγ−1

1 e
a1−c1−r

11∗
γ

e
ω11

γ

− ∂r11∗

∂n1

nµγ1 ea1−c1−r
11∗

γ + n
µ
γ

2 e
a2−c2−r

11∗
γ

e
ω11

γ

 ,

which leads to

∂r11∗

∂n1
= µ

 n
µ
γ
−1

1 e
a1−c1−r

11∗
γ

e
ω11

γ + n
µ
γ

1 e
a1−c1−r11∗

γ + n
µ
γ

2 e
a2−c2−r11∗

γ

 ≥ 0. (8.23)

Substituting for ∂r11∗

∂n1
in Eq. (8.22) using Eq. (8.23),

∂Y 11
t

∂n1
= −f ′(n1 + n2) + E(Nt)µ

(
n
µ
γ
−1

1 e
a1−c1−r

11∗
γ

e
ω11

γ + n
µ
γ

1 e
a1−c1−r11∗

γ + n
µ
γ

2 e
a2−c2−r11∗

γ

)
. (8.24)

Similarly,

∂Y 11
t

∂n2
= −f ′(n1 + n2) + E(Nt)µ

(
n
µ
γ
−1

2 e
a2−c2−r

11∗
γ

e
ω11

γ + n
µ
γ

1 e
a1−c1−r11∗

γ + n
µ
γ

2 e
a2−c2−r11∗

γ

)
. (8.25)
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Differentiating Y 11
t again with respect to n1,

∂2Y 11
t

∂n2
1

= −f ′′(n1 + n2) + E(Nt)µ

(
µ

γ
− 1

)(
n
µ
γ
−2

1 e
a1−c1−r

11∗
γ

e
ω11

γ + n
µ
γ

1 e
a1−c1−r11∗

γ + n
µ
γ

2 e
a2−c2−r11∗

γ

)

+ E(Nt)µ

(
− 1

γ

)(
n
µ
γ
−1

1 e
a1−c1−r

11∗
γ

e
ω11

γ + n
µ
γ

1 e
a1−c1−r11∗

γ + n
µ
γ

2 e
a2−c2−r11∗

γ

)
∂r11∗

∂n1

+ E(Nt)µ

(
− µ

γ

) n
µ
γ
−1

1 e
a1−c1−r

11∗
γ n

µ
γ
−1

1 e
a1−c1−r

11∗
γ(

e
ω11

γ + n
µ
γ

1 e
a1−c1−r11∗

γ + n
µ
γ

2 e
a2−c2−r11∗

γ

)2


+ E(Nt)µ

(
1

γ

) n
µ
γ
−1

1 e
a1−c1−r

11∗
γ n

µ
γ

1 e
a1−c1−r

11∗
γ(

e
ω11

γ + n
µ
γ

1 e
a1−c1−r11∗

γ + n
µ
γ

2 e
a2−c2−r11∗

γ

)2

 ∂r11∗

∂n1

+ E(Nt)µ

(
1

γ

) n
µ
γ
−1

1 e
a1−c1−r

11∗
γ n

µ
γ

2 e
a2−c2−r

11∗
γ(

e
ω11

γ + n
µ
γ

1 e
a1−c1−r11∗

γ + n
µ
γ

2 e
a2−c2−r11∗

γ

)2

 ∂r11∗

∂n1
.

(8.26)

Substituting for ∂r11∗

∂n1
in Eq. (8.26) using Eq. (8.23),

∂2Y 11
t

∂n2
1

= −f ′′(n1 + n2)− E(Nt)

(
∂r11∗

∂n1

)2 [(
γ − µ
µγQ11

1

)
+

(
2−Q11

1 −Q11
2

γ

)]
= −

{
f ′′(n1 + n2) + E(Nt)

(
∂r11∗

∂n1

)2 [
β11

1 + ζ11
]}

≤ 0,

(8.27)

where β11
1 = γ−µ

µγQ11
1
≥ 0 and ζ11 =

(2−Q11
1 −Q11

2 )
γ ≥ 0. Similarly,

∂2Y 11
t

∂n2
2

= −f ′′(n1 + n2)− E(Nt)

(
∂r11∗

∂n2

)2 [(
γ − µ
µγQ11

2

)
+

(
2−Q11

1 −Q11
2

γ

)]
= −

{
f ′′(n1 + n2) + E(Nt)

(
∂r11∗

∂n2

)2 [
β11

2 + ζ11
]}

≤ 0,

(8.28)

where β11
2 = γ−µ

µγQ11
2
≥ 0.
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Differentiating
∂Y 11

t
∂n1

with respect to n2,

∂2Y 11
t

∂n1∂n2
= −f ′′(n1 + n2) + E(Nt)µ

(
− 1

γ

)(
n
µ
γ
−1

1 e
a1−c1−r

11∗
γ

e
ω11

γ + n
µ
γ

1 e
a1−c1−r11∗

γ + n
µ
γ

2 e
a2−c2−r11∗

γ

)
∂r11∗

∂n2

+ E(Nt)µ

(
1

γ

) n
µ
γ
−1

1 e
a1−c1−r

11∗
γ n

µ
γ

1 e
a1−c1−r

11∗
γ(

e
ω11

γ + n
µ
γ

1 e
a1−c1−r11∗

γ + n
µ
γ

2 e
a2−c2−r11∗

γ

)2

 ∂r11∗

∂n2

+ E(Nt)µ

(
− µ

γ

) n
µ
γ
−1

1 e
a1−c1−r

11∗
γ n

µ
γ
−1

2 e
a2−c2−r

11∗
γ(

e
ω11

γ + n
µ
γ

1 e
a1−c1−r11∗

γ + n
µ
γ

2 e
a2−c2−r11∗

γ

)2


+ E(Nt)µ

(
1

γ

) n
µ
γ
−1

1 e
a1−c1−r

11∗
γ n

µ
γ

2 e
a2−c2−r

11∗
γ(

e
ω11

γ + n
µ
γ

1 e
a1−c1−r11∗

γ + n
µ
γ

2 e
a2−c2−r11∗

γ

)2

 ∂r11∗

∂n2
.

(8.29)

Similar to Eq. (8.23), the first derivative of r11∗ with respect to n2 is given as

∂r11∗

∂n2
= µ

 n
µ
γ
−1

2 e
a2−c2−r

11∗
γ

e
ω11

γ + n
µ
γ

1 e
a1−c1−r11∗

γ + n
µ
γ

2 e
a2−c2−r11∗

γ

 ≥ 0. (8.30)

Substituting for ∂r11∗

∂n1
and ∂r11∗

∂n2
in Eq. (8.29) using Eq. (8.23) and Eq. (8.30), respectively,

∂2Y 11
t

∂n1∂n2
= −

{
f ′′(n1 + n2) + E(Nt)

(
∂r11∗

∂n1

)(
∂r11∗

∂n2

)(
2−Q11

1 −Q11
2

γ

)}
= −

{
f ′′(n1 + n2) + E(Nt)

(
∂r11∗

∂n1

)(
∂r11∗

∂n2

)
ζ11

}
≤ 0.

(8.31)

Consider now the optimal profit in period t in which the Markov chain is in state 10. Let it be

denoted by Y 10
t (n1). Thus,

Y 10
t = max

P 10
1 ≥0

Z10
t (n1, P

10
1 ).

By definition,

Y 10
t (n1) = Y 11

t (n1, n2)

∣∣∣∣∣
n2=0

(8.32)

which implies that

∂2Y 10
t

∂n2
1

=
∂2Y 11

t

∂n2
1

∣∣∣∣∣
n2=0

≤ 0
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using Eq. (8.27). Similarly,

∂2Y 01
t

∂n2
2

=
∂2Y 11

t

∂n2
2

∣∣∣∣∣
n1=0

≤ 0.

Next, we define the expected profit function over the planning horizon as

G(n1, n2) = −F1n1 − F2n2 +
N∑
t=1

[
π11Y 11

t (n1, n2) + π10Y 10
t (n1) + π01Y 01

t (n2)
]

= −F1n1 − F2n2 +
N∑
t=1

Gt(n1, n2).

(8.33)

Observe that it is enough to prove the concavity of Gt(n1, n2). The Hessian matrix for Gt(n1, n2) is

equal to

H(Gt(n1, n2)) =

 ∂2Gt
∂n2

1

∂2Gt
∂n1∂n2

∂2Gt
∂n1∂n2

∂2Gt
∂n2

1


=

π11 ∂
2Y 11
t

∂n2
1

+ π10 ∂
2Y 10
t

∂n2
1

π11 ∂2Y 11
t

∂n1∂n2

π11 ∂2Y 11
t

∂n1∂n2
π11 ∂

2Y 11
t

∂n2
2

+ π01 ∂
2Y 01
t

∂n2
2

 .
(8.34)

The first principal minor of the matrix H(Gt(n1, n2)) is equal to

Minor [H(Gt(n1, n2))]1 = π11∂
2Y 11
t

∂n2
1

+ π10∂
2Y 10
t

∂n2
1

≤ 0.

(8.35)

On the other hand, the second principal minor of the matrix H(Gt(n1, n2)) is equal to

Minor [H(Gt(n1, n2))]2 =

(
π11∂

2Y 11
t

∂n2
1

+ π10∂
2Y 10
t

∂n2
1

)(
π11∂

2Y 11
t

∂n2
2

+ π01∂
2Y 01
t

∂n2
2

)
−
(
π11 ∂

2Y 11
t

∂n1∂n2

)2

= (π11)2∂
2Y 11
t

∂n2
1

∂2Y 11
t

∂n2
2

+ π11∂
2Y 11
t

∂n2
1

π01∂
2Y 01
t

∂n2
2

+ π10∂
2Y 10
t

∂n2
1

(
π11∂

2Y 11
t

∂n2
2

+ π01∂
2Y 01
t

∂n2
2

)
−
(
π11 ∂

2Y 11
t

∂n1∂n2

)2

(8.36)
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On the right hand side, second and third terms are positive. Consider the sum of the first and the

last terms (omitting (π11)2).

∂2Y 11
t

∂n2
1

∂2Y 11
t

∂n2
2

−
(
∂2Y 11

t

∂n1∂n2

)2

= E(Nt)
2

(
∂r11∗

∂n1

)2(
∂r11∗

∂n2

)2 [
β11

1 β11
2 + ζ11(β11

1 + β11
2 ) + (ζ11)2

]
+ f ′′(n1 + n2)E(Nt)

[
β11

1

(
∂r11∗

∂n1

)2

+ β11
1

(
∂r11∗

∂n2

)2
]

+ f ′′(n1 + n2)E(Nt)ζ
11

[(
∂r11∗

∂n1

)2

+

(
∂r11∗

∂n2

)2
]

+ f ′′(n1 + n2)2 − f ′′(n1 + n2)2 − E(Nt)
2

(
∂r11∗

∂n1

)2(
∂r11∗

∂n2

)2

(ζ11)2

− 2f ′′(n1 + n2)E(Nt)

(
∂r11∗

∂n1

)(
∂r11∗

∂n2

)
(ζ11)

= E(Nt)
2

(
∂r11∗

∂n1

)2(
∂r11∗

∂n2

)2 [
β11

1 β11
2 + ζ11(β11

1 + β11
2 )
]

+ f ′′(n1 + n2)E(Nt)ζ
11

[(
∂r11∗

∂n1

)
−
(
∂r11∗

∂n2

)]2

+ f ′′(n1 + n2)E(Nt)

[
β11

1

(
∂r11∗

∂n1

)2

+ β11
1

(
∂r11∗

∂n2

)2
]

≥ 0.

(8.37)

Since the second differential terms in Eq. (8.36) are all negative, using Eq. (8.37), we get

Minor [H(Gt(n1, n2))]2 ≥ 0. (8.38)

Since the first and the second principal minors are negative and positive, respectively, the Hessian

matrix H(Gt(n1, n2)) is negative semi-definite. This implies that Gt(n1, n2) is jointly concave in

(n1, n2), which, in turn, means that G(n1, n2) is jointly concave in (n1, n2).

The submodularity of G(n1, n2) follows from the submodularity of Y 11
t (n1, n2) as

∂2Y 11
t (n1,n2)
∂n1∂n2

≤ 0.

8.5 Proof of Theorem 7

The first derivatives of G(n1, n2) are equal to

∂G(n1, n2)

∂n1
=

T∑
t=1

[
π11∂Y

11
t

∂n1
+ π10∂Y

10
t

∂n1

]
− F1, (8.39)

∂G(n1, n2)

∂n2
=

T∑
t=1

[
π11∂Y

11
t

∂n2
+ π01∂Y

01
t

∂n2

]
− F2, (8.40)
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where Y ij
t for ij = {11, 10, 01} are as defined in the proof of Theorem 6. When nRP1 , nRP2 > 0,

which is what we assume for simplicity, the above two equations should be equal to zero at

(n1, n2) = (nRP1 , nRP2 ).

Suppose that we reduce n1 down to zero. Then, both of the first derivatives of G(n1, n2) with

respect to n1 and n2 will increase and become positive since both the second derivatives and the

cross-partial of G are negative. Consequently, we need to increase n2 to make ∂G(0,n2)
∂n2

= 0 again.

G(0, n2) is concave in n2 and so it has a unique maximizer. Thus,

nRP2 ≤ n#
2 .

Similarly, we can show that

nRP1 ≤ n#
1 .

8.6 Proof of Proposition 8

Recall the definition of Y 11
t from the proof of Theorem 6. Differentiating Y 11

t with respect to a1,

∂Y 11
t

∂a1
= E(Nt)

nµγ1 ea1−c1−r
11∗

γ

e
ω11

γ

− E(Nt)

nµγ1 ea1−c1−r
11∗

γ + n
µ
γ

2 e
a2−c2−r

11∗
γ

e
ω11

γ

 ∂r11∗

∂a1

Substituting ∂r11∗

∂a1
= Q11∗

1 (using Eq. (8.18)), we get

∂Y 11
t

∂a1
= E(Nt)

(
Q11∗

1

1−Q11∗
1 −Q11∗

2

)
− E(Nt)

(
Q11∗

1 +Q11∗
2

1−Q11∗
1 −Q11∗

2

)
Q11∗

1

= E(Nt)Q
11∗
1

≥ 0.

Thus, Y 11
t (n1, n2) is increasing in a1. Similarly, we can show that Y 10

t (n1) and Y 01
t (n2), which are

defined in the proof of Theorem 6, are increasing in a1. In turn, the optimal expected profit Z∗r is

also increasing in a1. Using the same approach, we can show that the optimal expected profit is

increasing in a2 and decreasing in both c1 and c2.

Next, differentiating Y 11
t with respect to µ,

∂Y 11
t

∂µ
= E(Nt)

 ln(n1)n
µ
γ

1 e
a1−c1−r

11∗
γ + ln(n2)n

µ
γ

2 e
a2−c2−r

11∗
γ

e
ω11

γ


− E(Nt)

nµγ1 ea1−c1−r
11∗

γ + n
µ
γ

2 e
a2−c2−r

11∗
γ

e
ω11

γ

 ∂r11∗

∂µ
.
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Substituting ∂r11∗

∂µ = ln(n1)Q11∗
1 + ln(n2)Q11∗

2 (using Eq. (8.19)), we get

∂Y 11
t

∂µ
= E(Nt)

(
ln(n1)Q11∗

1 + ln(n2)Q11∗
2

1−Q11∗
1 −Q11∗

2

)
− E(Nt)

(
Q11∗

1 +Q11∗
2

1−Q11∗
1 −Q11∗

2

)(
ln(n1)Q11∗

1 + ln(n2)Q11∗
2

)
= E(Nt)

(
ln(n1)Q11∗

1 + ln(n2)Q11∗
2

)
≥ 0

when n1, n2 ≥ 1. Thus, Y 11
t (n1, n2) is increasing in µ when n1, n2 ≥ 1. Similarly, we can show that

Y 10
t (n1) and Y 01

t (n2) are increasing in µ, provided n1 ≥ 1 and n2 ≥ 1, respectively. This means

that the optimal expected profit Z∗r is also increasing in µ, provided n∗1, n
∗
2 ≥ 1.

Finally, differentiating Y 11
t (n1, n2) with respect to ω11,

∂Y 11
t

∂ω11
= E(Nt)γ

(
− 1

γ

)(
n
µ
γ

1 e
a1−c1−r

11∗
γ

e
ω11

γ

)
∂r11∗

∂ω11
+ E(Nt)γ

(
− 1

γ

)(
n
µ
γ

2 e
a2−c2−r

11∗
γ

e
ω11

γ

)
∂r11∗

∂ω11

+ E(Nt)γ(−1)

(
1

γ

)(
n
µ
γ

1 e
a1−c1−r

11∗
γ + n

µ
γ

2 e
a2−c2−r

11∗
γ

e
ω11

γ

)
.

Substituting ∂r11∗

∂ω11 = −(Q11∗
1 +Q11∗

2 ) (using Eq. (8.17)), we get

∂Y 11
t

∂ω11
= E(Nt)

(
n
µ
γ

1 e
a1−c1−r

11∗
γ

e
ω11

γ

)
(Q11∗

1 − 1) + E(Nt)

(
n
µ
γ

2 e
a2−c2−r

11∗
γ

e
ω11

γ

)
(Q11∗

2 − 1)

≤ 0.

Thus, Y 11
t (n1, n2) is decreasing in ω11. This means that the optimal expected profit Z∗r is also

decreasing in ω11. Similarly, we can prove the result for ω10 and ω01.

8.7 Proof of Proposition 9

Since both suppliers are assumed to be perfectly reliable, we drop the superscript ij in this proof.

Consider the following function: Π(Q1, Q2) = (P1 − c1)Q1 + (P2 − c2)Q2, where P1 and P2 are as

given by Eq. (4.5). Differentiating the above function with respect to Q1, we get

∂

∂Q1
Π(Q1, Q2) = (P1 − c1) +Q1

∂

∂Q1
(P1 − c1) +Q2

∂

∂Q1
(P2 − c2)

= (P1 − c1) + γQ1

(
−1

1−Q1 −Q2
+
−1

Q1

)
+ γQ2

(
−1

1−Q1 −Q2

)
= (P1 − c1)− γ − γ

(
Q1 +Q2

1−Q1 −Q2

)
.

Setting ∂
∂Q1

Π(Q1, Q2) = 0 yields P1 − c1 = γ
(

1
1−Q1−Q2

)
. Similarly, ∂

∂Q2
Π(Q1, Q2) = 0 yields

P2 − c2 = γ
(

1
1−Q1−Q2

)
. Recall that P ∗1 and P ∗2 are the optimal values of P1 and P2 given n1 and
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n2. From the above equations, P ∗1 − c1 = P ∗2 − c2 (and also as stated in Lemma 1), and let it be

denoted by r∗. Using Lemma 1, r∗ = Π∗ + γ, and Q∗k =

(
nke

ak−ck−r
∗

µ

)µ
γ

e
ω11
γ +

2∑
i=1

(
nie

ai−ci−r∗
µ

)µ
γ
, k = 1, 2.

Using the relationship between P ∗k and Q∗k and the above expression for Q∗k,

r∗ = γ

(
1

1−Q∗1 −Q∗2

)
= γ

eω11

γ + n
µ
γ

1 e
a1−c1−r

∗
γ + n

µ
γ

2 e
a2−c2−r

∗
γ

e
ω11

γ

 .

Differentiating r∗ with respect to n1, ∂r∗

∂n1
= µ

(
n
µ
γ−1

1 e
a1−c1−r

∗
γ

e
ω11
γ

)
− ∂r∗

∂n1

(
n
µ
γ
1 e

a1−c1−r
∗

γ +n
µ
γ
2 e

a2−c2−r
∗

γ

e
ω11
γ

)
,

which leads to ∂r∗

∂n1
= µ

(
n
µ
γ−1

1 e
a1−c1−r

∗
γ

e
ω11
γ +n

µ
γ
1 e

a1−c1−r∗
γ +n

µ
γ
2 e

a2−c2−r∗
γ

)
. Define G(n1, n2) as the maximand for

n1 and n2. For simplicity, let E(Nt) be time-invariant and so we omit the subscript t. Thus,

G(n1, n2) = T (E(N)r∗ {Q∗1 +Q∗2} − f(n1 + n2))− F1n1 − F2n2

= T

(
E(N)γ

{
Q∗1 +Q∗2

1−Q∗1 −Q∗2

}
− f(n1 + n2)

)
− F1n1 − F2n2

= T

E(N)γ

n
µ
γ

1 e
a1−c1−r

∗
γ + n

µ
γ

2 e
a2−c2−r

∗
γ

e
ω11

γ

− f(n1 + n2)

− F1n1 − F2n2.

Suppose there exists an optimal solution n∗1 and n∗2. Then, n∗1 satisfies the following first order

condition:

∂G(n1, n2)

∂n1
= 0 = T

−f ′(n1 + n2) + E(N)µ

nµγ−1

1 e
a1−c1−r

∗
γ

e
ω11

γ


−E(N)

∂r∗

∂n1

nµγ1 ea1−c1−r
∗

γ + n
µ
γ

2 e
a2−c2−r

∗
γ

e
ω11

γ

− F1.

Substituting for ∂r∗

∂n1
, we get

∂G(n1, n2)

∂n1
= 0 = T

−f ′(n1 + n2) + E(N)µ

 n
µ
γ
−1

1 e
a1−c1−r

∗
γ

e
ω11

γ + n
µ
γ

1 e
a1−c1−r∗

γ + n
µ
γ

2 e
a2−c2−r∗

γ

− F1.

Similarly,

∂G(n1, n2)

∂n2
= 0 = T

−f ′(n1 + n2) + E(N)µ

 n
µ
γ
−1

2 e
a2−c2−r

∗
γ

e
ω11

γ + n
µ
γ

1 e
a1−c1−r∗

γ + n
µ
γ

2 e
a2−c2−r∗

γ

− F2.
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When a1 − c1 > a2 − c2, e
a1−c1−r

∗
γ > e

a2−c2−r
∗

γ . Moreover, F1 = F2. Together, these conditions

imply that the first order conditions can only be satisfied if n∗1 > n∗2. Additionally, observe that
∂G(n1,n2)

∂n2
> 0 for sufficiently small n2 as γ > µ. This along with the concavity of G implies that

n∗2 > 0.

On the other hand, when a1 − c1 = a2 − c2 and F1 = F2, ∂G(n1,n2)
∂n1

= ∂G(n1,n2)
∂n2

for any (n1, n2).

Moreover, both first derivatives have identical coefficients for n1 and n2. As a consequence, n1 = n2

is optimal.

8.8 Discussion on Modeling of Suppliers’ Availability

That the supplier availability is governed by a Markov chain implies that the retailer does not

receive any advance information about supplier failures. The Markov chain assumption also means

that the probability of disruption in a period is independent of how long the supplier has been in

state 1. Although some disruptions may come with an advance warning (e.g., labor unrest), most

come without any warning or at most a short notice (e.g., natural catastrophes, terrorist events).

Therefore, the onset of disruptions is characterized well by a Markov chain model.

However, the Markov chain assumption also implies that the supply resumes without any advance

information. This is a strong assumption since it is fair to believe that in many instances the supplier

has some idea about the time it will take to resume production capacity and it communicates it to

the retailer. This information may not become available immediately after the disruption. However,

once the damage is assessed, the supplier may know an approximate time table in which it can

resume delivery.

A more sophisticated stochastic process that can address this issue is a multi-state semi-Markov

process. A semi-Markov process may spend a random amount of time in a state, whose distribution

depends on that state, before shifting to another state. The state space of a semi-Markov process

that would characterize suppliers’ availability may include the state of normal operations and

different degrees of possible damage to the production facility, for instance, low damage, high

damage, and complete destruction. Subsequently, a distribution may be defined for each state of

damage that would correspond to the time it takes before the production resumes normally. While

such a model would overcome some of the apparent weaknesses in our model, we believe the results

would not fundamentally change due to the average-cost criterion that we employ. In this criterion,

the sample path process of supplier availability over time is not important given our modeling

approach. What matters, instead, is the fraction of time a supplier is available. Therefore, to keep

the analysis simple, we have used the discrete-time Markov chain model.

Another feature of our model of supplier availability is that it considers only extreme possibilities

such that either a supplier is fully available or is completely unavailable. When disruptions are

massive, it is very likely for a supplier to lose all of its production capacity, and it will not be able

to deliver the product at all. However, the recovery of the production capacity is sometimes gradual.

While recovering, the supplier may first be able to deliver the best-selling product variants before
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resuming supply of all the variants. To keep the analysis simple, we ignore this possibility and

assume that a supplier resumes supply only when its capacity is fully restored.

8.9 Modeling of Supplier Failure Correlation

In this subsection, we present an approach to define the correlation of suppliers’ availability. Our

approach is similar to Babich et al. (2007). Define π1∗ := π11 + π10 and π∗1 := π11 + π01 as the

total fraction of time suppliers 1 and 2, respectively, are available. Since π11 + π01 + π10 + π00 = 1,

fixing the values of π11, π∗1 and π1∗ gives us the values of π01, π10, and π00.

Recall that we use Xt
1 and Xt

2 to denote the availabilities of supplier 1 and 2, respectively,

in a generic period t. We drop the superscript t to keep the notation simple. Both X1 and X2

are Bernoulli random variables that take two values, 0 and 1. X1 is equal to 1 with probability

π1∗. Similarly, X2 assumes a value of 1 with probability π∗1. Also, P (X1 = 1, X2 = 1) = π11 and

P (X1 = 0, X2 = 0) = π00. The correlation of X1 and X2, ρX1X2 , is equal to

ρX1X2 =
E(X1X2)− E(X1)E(X2)√

(E(X2
1 )− E(X1)2)(E(X2

2 )− E(X2)2)
=

π11 − π1∗π∗1√
π1∗π∗1(1− π1∗)(1− π∗1)

. (8.41)

The supplier availability correlation can be varied by changing any one of the three parameters,

π11, π1∗ or π∗1.

Observe that if we set π11 = π∗1 = π1∗, then π01 = π10 = 0, and the two suppliers are perfectly

positively correlated. When the two suppliers have a correlation of 1, in any period, either both

suppliers are available or both suppliers are unavailable. On the other hand, if π11 = π00 = 0, then

either supplier 1 or supplier 2 is available (but not both) in any period. Thus, the two suppliers

are perfectly negatively correlated. The condition π11 = π00 = 0 is equivalent to π∗1 + π1∗ = 1.

Therefore, our approach can potentially allow us to examine a full range of correlation values

between -1 and +1. As we vary correlation, suppose we change the value of π00, the fraction of the

planning horizon when none of the brands is available. However, as π00 increases, the cumulative

profit earned through the sale of the product over all the variants decreases. Since the design and

launch costs remain unaffected, the total variety must decrease as π00 increases. Therefore, changing

the value of π00 produces a confounding effect in the experiment. To exclude this effect, we set it to

zero. As a consequence, we are able to consider only negative values of the failure correlation.

For the plots in Figures 2(c), 4(a) and 5(c), we set π10 = 0.25 and vary the sum of π11 and π01

between 0 and 0.75 to conduct the analysis.

9 Comparison of Optimal Number of Variants for the Responsive

and Static Pricing Models

In Table 4, we present the optimal number of variants for each brand in the responsive and static

pricing models as a function of four parameters: µ, ω10, ρ, and γ.
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µ
Responsive pricing Static pricing

n∗
1 n∗

2 n∗
1 n∗

2

0.1 0.1101 0.0952 0.1100 0.0952
0.7 0.4757 0.4155 0.4756 0.4153
1.3 0.7569 0.6477 0.7566 0.6474
1.9 1.0953 0.8966 1.0948 0.8958
2.5 1.6262 1.2100 1.6253 1.2074

ω10

1 3.3323 0.3710 3.2758 0.3983
4 2.0431 0.6750 2.0398 0.6769
7 0.8354 1.0563 0.8343 1.0557
10 0.3270 1.2426 0.3263 1.2427
13 0.1912 1.2957 0.1909 1.2957

ρ

-1.0000 0.5318 1.5250 0.5318 1.5250
-0.6647 0.7125 1.3860 0.7114 1.3857
-0.4616 0.8705 1.1940 0.8695 1.1936
-0.2977 1.0503 0.9475 1.0499 0.9469
-0.1015 1.2684 0.6494 1.2686 0.6486

γ

2 0.6448 0.3124 0.6448 0.3123
3 1.4690 1.2653 1.4677 1.2633
4 1.7999 1.6075 1.7971 1.6036
5 1.9761 1.7878 1.9724 1.7826
6 2.0855 1.8992 2.0811 1.893

Table 4: Optimal Number of Variants of Each Brand for Responsive and Static Pricing Models

Since we assume product variety to be continuous for analytical convenience, we keep that

assumption in our numerical experiments as well. The optimal product variety values that fall

between 0 and 1 are still qualitatively indicative of how model parameters influence the optimal

variety decision.

10 Additional Figures

In this section, we present three figures corresponding to the responsive variety strategy. The

figures describe the percent profit improvement (PIP) due to the responsive variety strategy, the

optimal number of variants for each brand in different states, and the optimal price for each brand

in different states as a function of customer heterogeneity (µ), utility of outside option in state 10

(ω10), correlation (ρ), and brand disparity (γ). All the model parameters remain same as in Table 2

except a2, which now is equal to 6. For this value of a2, the difference in optimal decisions for the

responsive pricing and responsive variety strategies is clearer, which allows us to develop additional

insights.
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Figure 6: Profit Improvement due to Responsive Variety as a Function of Model Parameters
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Figure 7: Number of Variants for Each Brand in the Responsive Pricing (RP) and Responsive
Variety (RV) Models as a Function of Model Parameters
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Figure 8: Optimal Prices in Responsive Pricing (RP) and Responsive Variety (RV) Models as a
Function of Model Parameters
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