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Abstract

A self-interested expert obtains evidence and takes actions on behalf of many clients. Af-

terward, the expert justifies these actions to an auditor who has limited expertise. The auditor

verifies that the expert’s justification is consistent with the evidence and that the actions were

in the clients’ best interest. We explore how this ex-post scrutiny disciplines the expert. The

constraint of justifying actions to an auditor, even an auditor with little expertise, can force the

expert to act in the best interest of all clients under certain conditions. When these conditions do

not hold, the expert devises a justification that makes the expert’s selfish actions appear client-

optimal. In this justification, the expert inflates the strength of weak evidence and deflates the

strength of strong evidence. Moreover, an increase in the auditor’s expertise can reduce clients’

aggregate payoff.
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1 Introduction

This paper is about self-interested experts. In day-to-day life, experts act on behalf of clients. For

example, surgeons make medical decisions for patients, and financial advisors choose investments for

investors. Even when all the data essential for making decisions is available to clients, the expert

possesses knowledge and models that allow the expert to precisely interpret this data and make

better decisions. For example, patients require a surgeon to interpret medical records and assess

the need for surgery. Investors need a financial advisor to interpret financial data and choose invest-

ments. This inability of clients to interpret commonly observable data can reduce the effectiveness

of outcome-dependent contractual and reputational tools used for disciplining experts.

In the absence of such disciplining tools, a self-interested expert may be tempted to further her

own interest at the clients’ expense. However, the expert in these settings is often legally or ethically

required to act in the clients’ best interests. This institutional constraint, usually called a “fiduciary

duty,” makes the expert answerable to auditors and regulators who safeguard clients’ interests. As

we discuss later in the introduction, the auditor may still lack the expertise in interpreting the data

compared to the expert. However, the auditor observes the expert’s behavior across a spectrum of

clients and can use it to scrutinize the expert’s decisions. If the auditor detects that the expert

advanced her own interests instead of clients’, he can use extreme measures to punish the expert.

Thus, we see medical boards revoking the license of surgeons who fail to justify their medical choices

and the Securities and Exchange Commission (SEC) charging financial advisors for the breach of

fiduciary duty.1 Because of such severe consequences, it becomes imperative for the expert to appear

selfless to the auditor.

Motivated by these observations, this paper considers a self-interested expert who takes binary

decisions for a unit mass of clients. After taking decisions for clients, the expert must justify these

decisions to an auditor with limited expertise. We study if this ex-post requirement of justifying

decisions to an auditor can discipline the expert to act in the clients’ best interest.

The auditor in the model observes all the data that the expert uses in the decision-making.

The auditor, however, has limited expertise in interpreting this commonly observable data. Such

asymmetry in the expertise of the auditor and expert may exist due to various factors. For exam-

1An example of the cancellation of a medical license for unnecessary intervention can be found at

https://www.baltimoresun.com/news/bs-xpm-2011-07-13-ms-md-midei-license-revoked-20110713-story.html. For an

example of SEC charges filed for not acting in clients’ best interest, see https://www.sec.gov/news/press-release/2018-

137.
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ple, the auditor usually operates in time and resource-constrained environments. He has to audit

several experts who usually have stronger incentives and better resources to keep up with the latest

technological advances than the auditor. To capture this asymmetry, we consider an auditor who

does not know the distribution of data in one of the two states of the world. However, the auditor

understands that this missing piece from his knowledge must satisfy a monotonicity property and

must integrate across all data realizations to one. A “justification” is then modeled as this missing

piece that the expert reports to the auditor to rationalize her decisions in the data. Even though

the auditor cannot verify the expert’s report, he can check if the offered distribution satisfies the

above-mentioned consistency properties. Thus, focusing on asymmetric expertise allows us to pro-

pose a tractable framework where one player offers a “justification” for commonly observable data,

and the other player evaluates its “coherence.”

The interaction between players has two stages. In the first stage, the expert acts on behalf of

a continuum of clients. Each client is associated with an unknown binary state of the world, i.e., a

high or a low state. The expert’s task is to diagnose the unknown state of each client and take a

matching action. If the expert takes high action for a client in the low state, a type-I error occurs

(for example, the surgeon performs an unnecessary surgery). In this case, the client gets a payoff

−c. The unit mass of clients differ in this payoff parameter c and are distributed uniformly on [0, c].

On the other hand, the expert gets a larger payoff −c + b, where b > 0 measures the conflict of

interest between the client c and the expert. The interests of the expert and a client are perfectly

aligned for other combinations of the client’s state and the expert’s action. To diagnose the unknown

state associated with client c, the expert obtains evidence xc ∈ [0, 1]. The informational content of

this evidence is summarized by the likelihood ratio L(xc) = f(xc|h)/f(xc|l), where f(xc|ω) is the

density function in the state ω. Function L is non-decreasing, implying that a higher realization of

evidence xc is more indicative of the high state of the world. As we show later in the paper, it is

without loss of generality to assume that evidence is distributed uniformly in the low state of the

world. Thus, likelihood ratio is a non-decreasing function L(xc) = f(xc|h) that integrates across all

evidence realizations to one.

A decision rule summarizes the expert’s behavior in the first stage and specifies the chance that

the expert takes the high action for any given client and evidence pair. The conflict of interest

between the expert and any given client implies that an unrestricted expert’s threshold evidence for

the high action is smaller than that of the client’s.

In the second stage, the expert must justify her decisions to an auditor who observes all her
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decisions and all the evidence used while making them. The auditor, however, has limited expertise

in interpreting this data. This is because the auditor does not know the distribution L(xc) = f(xc|h)

of the evidence in the high state of the world. However, the auditor knows that L is non-decreasing

and integrates to one across all evidence realizations. The act of justifying decisions requires the

expert to provide a likelihood ratio function J (justification) that makes her decisions in the data

appear client-optimal. The justification J , however, cannot be arbitrary. It must be feasible, i.e., it

has to be non-decreasing and must integrate to one.2

As long as the expert can provide a feasible justification that rationalizes her decisions in the

data, she passes the auditor’s scrutiny and avoids severe consequences. A justifiable decision rule

guarantees that for any plausible realization of data, the expert can always come up with a feasible

justification. We study the expert’s behavior when she optimally chooses a justifiable decision rule

that maximizes her payoff from interaction with clients.

The first step in solving the expert’s problem is understanding the restrictions imposed by a

justifiable decision rule on the expert’s behavior. A technical result shows that when the expert uses

a justifiable decision rule d, she can provide the same feasible justification Jd for every realization of

the data and Jd completely characterizes her behavior. Consequently, for any evidence realization x,

the expert takes the high action for clients with payoff parameter in [0,min{Jd(x), c}]. Otherwise,

she takes the low action. Panel (a) in Figure 1 depicts this behavior for evidence realizations x1

and x2. Using this result, we transform the expert’s problem of finding the optimal justifiable

decision rule into a problem of identifying an optimal feasible justification J∗. We term it strategic

justification.

To understand the trade-off faced by the expert in determining the strategic justification J∗, fix

an evidence realization x. The auditor wants the expert to take high action for clients with payoff

parameter in [0,min{L(x), c}]. The expert, on the other hand, prefers to take the high action for a

larger set of clients [0,min{L(x)+b, c}]. If L(x) < c, then conflict between the expert and auditor is

given by the set of clients (L(x),min{L(x)+b, c}]. To further her own interest at evidence realization

x, the expert wants to take high action for as many clients as possible in this interval. However, to

make these selfish actions appear client-optimal, the expert must appropriately inflate J∗(x) above

the actual likelihood ratio L(x). Consider the case where the actual likelihood ratio function is

2For most of the paper, the auditor does not draw inference from the choice of the expert’s justification and deems

a justification feasible as long as it satisfies specific consistency properties. We later show that our analysis and

insights extend even when the auditor reasons strategically and uses a more stringent criterion to assess the feasibility

of justifications.
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Figure 1: Graphical illustration of intuition (Evidence realization is plotted on the horizontal axis, while

the vertical axis has payoff parameter c.)

such that the condition L(x) < c holds for all evidence realizations (for example, L1 in Panel (b) of

Figure 1). In this case, the expert wants to inflate J∗ at all evidence realizations. However, such

global inflation is not feasible because the resulting justification does not integrate to one and may

lead to non-justifiable decisions. Thus, the expert must decide on which evidence realizations and

how much to inflate J∗. In this case, we show that the expert’s strategic justification J∗ coincides

with the actual likelihood ratio function L almost everywhere. The expert, therefore, acts in the

best interest of all clients.

Suppose that L(x) ≥ c for evidence realizations [x∗, 1], where 0 < x∗ < 1 (for example, L2 in

Panel (b) of Figure 1). For these evidence realizations, there is no conflict between the expert and

the auditor. This is because both of them want the high action for all clients [0, c]. Thus, the conflict

of interest between the expert and the auditor exists only on evidence realizations [0, x∗). In this

case, we establish that there exists an evidence realization xT ≥ x∗ such that the expert’s strategic

justification J∗(x) is above the actual likelihood ratio L(x) for evidence realizations smaller than

xT , and otherwise, the order is reversed. This strategic justification allows the expert to take selfish

decisions and mask them as client-optimal.

In situations where the expert can successfully justify her selfish decisions as client-optimal, we
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study the role of the auditor’s expertise in improving clients’ payoffs. Contrary to the expectation,

we show that more expertise of the auditor can reduce clients’ aggregate payoff. To facilitate this

comparative statics exercise, we consider an auditor with more expertise than just knowing a few

consistency properties of the evidence-generating process. For example, the surgeon on the medical

board may have had experience interpreting certain symptoms and test results. Such additional

expertise of the auditor is modeled through a finite set of anecdotes. Formally, anecdotes are

evidence realizations where the auditor knows the value of L precisely, and therefore, has the same

expertise as the expert in interpreting these evidence realizations. However, for the remaining

evidence realizations, the auditor can infer L only imperfectly. Panel (b) of Figure 1 illustrates set

{x1, x2} of anecdotes when the actual likelihood ratio function is L2.

We identify conditions under which providing an auditor with more anecdotes can reduce clients’

aggregate payoff. The direct effect of an additional anecdote is that it restricts the expert’s ability

to inflate the strategic justification J∗ at evidence realizations in the vicinity of the anecdote. The

indirect effect comes through a change in the expert’s strategic justification at evidence realizations

that are not in the vicinity of the anecdote. At these evidence realizations, J∗ may move away

from L, causing harm to the clients. This indirect effect dominates the direct effect and reduces the

clients’ aggregate payoff.

Literature review: Our paper relates to the literature on mechanism design and particularly

to the literature on delegation (Holmstrom (1978), Melumad and Shibano (1991), Alonso and Ma-

touschek (2008)). The principal in these papers decides how much discretion to give to an informed

agent. Such settings assume that the principal has the same expertise but observes fewer data. In

contrast, our paper focuses on settings with asymmetric expertise between the principal (client)

and the agent (expert), where it is as if the expert has all the discretion. In such settings, we show

that the institutional constraint of “fiduciary duty,” modeled as ex-post justification, can discipline

a self-interested expert.3

The mechanism through which the expert is disciplined in our paper is similar to the “quota”

mechanisms of Jackson and Sonnenschein (2007), Frankel (2014, 2016). These mechanisms align

the preferences of the principal and the agent when the agent privately observes data drawn from

a commonly known distribution. Our approach identifies a similar mechanism that works in the

presence of asymmetric expertise and commonly observed data. However, for this mechanism to

3A recent paper by Bhattacharya, Illanes and Padi (2020) empirically investigates the effectiveness of fiduciary

duty in improving the quality of financial advice.
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work, only specific properties of the data generating process rather than the complete details need

to be common knowledge among the players.

Spiegler (2002) is an early contribution that studies the effects of ex-post justifications on strate-

gic interactions. A critic with preferences identical to the player finds the player’s strategies jus-

tifiable if the player can answer his criticism. In contrast, the auditor in our paper acts based

on different preferences than the expert’s and deems a justification feasible if it satisfies specific

consistency properties.4

The literature on information transmission asks if and how the expert can influence decisions

of less-informed players (Crawford and Sobel (1982), Milgrom (1981), Grossman (1981), Kamenica

and Gentzkow (2011), and Rayo and Segal (2010)). In this large literature, our paper relates to

papers on boundedly rational persuasion. Eliaz, Spiegler and Thysen (2021) consider a sender who

persuades a receiver by providing messages as well as their interpretations. In contrast, the expert

in our model provides interpretation for data that originates during the decision-making process.

The paper that is closest in terms of how we model expertise is Schwartzstein and Sunderam (2021).

They also model the sender’s expertise as the knowledge of the distribution of evidence in different

states of the world. Their sender persuades a receiver by providing these distributions that the

receiver evaluates based on how well they fit the data before using them for decision making. Unlike

their model, our auditor evaluates the feasibility of the distribution using its specific consistency

properties.

The paper is organized as follows. Section 2 presents the model and states the expert’s problem.

Section 3 simplifies and restates the expert’s problem in terms of justifications. In Section 4,

we characterize the expert’s strategic justifications. Section 5 studies the impact of the auditor’s

additional expertise on the expert’s strategic justification and the clients’ aggregate payoff. We

consider an auditor who reasons strategically in Section 6, and conclude with Section 8. Appendices

A-D contain proofs of results and lemmas that do not appear in the main text.

2 Model

There is an expert (she), an auditor (he), and a unit mass of clients. Each client has a type (c, ωc),

where c ∈ C = [0, c] and ωc ∈ {l, h}. The first element c, observable to both the expert and

the auditor, is a payoff relevant parameter that differs across clients. We assume that clients are

4See Lehrer and Teper (2011), Cherepanov, Feddersen and Sandroni (2013) for decision theoretic analysis of

justifiable preferences.
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distributed uniformly on C. The second element ωc, unknown to all players, is the state of the

world associated with the client c. This state is equally likely to be low (l) or high (h) and is drawn

independently of the parameter c and states of other clients.5 For each client c, the expert’s task is

to diagnose the unknown state ωc and take action ac ∈ {L,H}, where we refer L as low action.

Payoffs: Payoffs for client c depend on whether the expert’s action ac matches the client’s

unknown state ωc. Whenever there is a mismatch, the client gets non-zero payoffs. In particular, if

the expert takes action H for a client with ωc = l (type-I error), then the client gets a payoff of −c.

However, when a type-II error happens, the client gets a payoff of −1. The second entry in each

cell of the following table gives the payoff of client c.

Action\State l h

L 0, 0 −1,−1

H −c+ b,−c 0, 0

The expert’s payoffs depend on whether her action matches the client’s state and whether she

can justify her decisions to the auditor. If the expert fails to justify her decisions, she gets a payoff

of −∞. Otherwise, her interaction with clients determines her payoffs. When the expert interacts

with client c, her payoffs are identical to that of the client, except when the type-I error occurs. In

this case, the expert gets a larger payoff −c+ b, where b > 0 captures the conflict of interest. These

payoffs are listed as the first entry in each cell of the above table. Unlike the expert and clients, the

auditor has no preferences of his own and only performs an audit duty using clients’ payoffs.

Information: Both the expert and the auditor know that ωc is equally likely to be low or

high. To estimate this unknown state ωc associated with client c, the expert obtains a signal

(evidence) yc ∈ [0, 1]. If ωc = l, then the signal yc is drawn from a distribution that has full

support and a differentiable cumulative distribution function (CDF) Fl such that F
′
l (yc) 6= 0. If

ωc = h, the realization yc is drawn from a distribution with a differentiable CDF Fh. Moreover,

the associated density functions fl, fh have the Monotone Likelihood Ratio Property (MLRP) and

fl(yc)/fh(yc) ≤M .6 The draw yc is independent of the draws of other clients.

The expert knows the signal generating process and, therefore, can perform Bayesian inference

after observing yc. On the other hand, the auditor, who also observes yc, has limited expertise in

interpreting it. This is because the auditor does not know the distribution of yc in the high state

of the world. The auditor is only aware that it is some distribution with a differentiable CDF. This

5The analysis does not rely on the probabilities of both states being equal. They only have to be non-zero.
6For analytical convenience, we assume M > c.
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missing piece from the auditor’s knowledge of the signal generating process restricts his ability to

interpret commonly observable data. Thus, the expert and the auditor have asymmetric expertise

in interpreting commonly observable data.

Relabeling xc = Fl(yc) ∈ X = [0, 1] yields an equivalent and analytically convenient reformu-

lation of the above signal generating process: In the low state, signal xc is drawn from U [0, 1].

In the high state, it is drawn from a distribution that has a continuous CDF F = Fh(F−1l (xc)).

Moreover, the associated density f(xc) = fh(F−1l (xc))
dF−1

l (t)

dt

∣∣∣
t=xc

is non-decreasing and bounded

(f(xc) ≤ M).7 Observe that density function f is also the likelihood ratio function in the current

context, and it has MLRP. Intuitively, a higher signal realization xc is indicative of the higher state

of the world. Henceforth, we refer to the function f as density.

As before, the expert completely understands the reformulated signal generating process. The

auditor knows that xc is drawn from U [0, 1] in the low state. However, in the high state, he only

knows that it is drawn from some distribution that has a non-decreasing density J .8 This density is

bounded (J(xc) ≤M) and is atomless (has a continuous CDF). Thus, density J is the part missing

from the auditor’s knowledge of the signal generating process. Because of such limited knowledge,

the auditor only understands the qualitative property that a higher signal realization is indicative

of the higher state of the world but does not know the precise extent to which the signal favors one

state over the other. Throughout the paper, we impose the restriction that the distribution of xc

in the high state, i.e., F , differs from the uniform distribution.

Expert’s decision rule and associated payoffs: The expert makes decision for a client c

based on the observed signal xc. This decision-making can be summarized using a decision rule

d : C × X → [0, 1], where d(c, x) denotes the probability of the action H. If the expert follows a

decision rule d, then the expected payoff of the expert from client c is

πE(c, f, d) = −1

2

∫ 1

0
(c− b)d(c, x)dx︸ ︷︷ ︸

Payoff from action H

−1

2

∫ 1

0
(1− d(c, x))f(x)dx︸ ︷︷ ︸

Payoff from action L

. (1)

The first integral is the payoff associated with type-I error, and the second integral corresponds to

the payoff from type-II error. The total expected payoff of the expert is

ΠE(f, d) =
1

c

∫ c

0
πE(c, f, d)dc. (2)

7It is straightforward to verify that xc ∼ U [0, 1]. The CDF F is continuous because it is a composition of two

continuous functions. Moreover, differentiability properties of Fl and Fh ensure that f(xc) is well-defined. Finally,

the equality f(xc) = fh(yc)/fl(yc) implies that f is non-decreasing and bounded.
8We abuse the convention and refer to a density function with a capital letter.
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For client c, the expected payoff π(c, f, d) is obtained by equating b = 0 in Equation (1). For an

arbitrary density function J and a client c, a decision rule that maximizes π(c, J, d) is denoted

by d∗J(c, ·). Since decision problems of clients are independent of each other, the decision rule d∗J

maximizes the payoff of all clients and is therefore termed as client-optimal decision rule.

Timing of interaction and expert’s problem: There are three stages to the interaction

between the expert, the auditor, and clients.

1. Choice of a decision rule: The expert fixes a decision rule d : C × X → [0, 1].

2. Expert’s decision making: For each client c, the nature draws the state of the world ωc. If

ωc = l, then a signal realization xc is drawn from the distribution U [0, 1]. Otherwise, a signal

realization xc is drawn from the distribution F . The expert observe xc and uses the decision

rule d to take the action ac(d, xc) ∈ {L,H}. Payoffs are accrued to the expert and the client.

This decision-making statge gives rise to the data D = {xc, ac(d, xc)}c∈C that is observed by

the auditor.

3. Auditor’s scrutiny: The expert provides a justification J : X → R for the data D =

{xc, ac(d, xc)}c∈C , and the auditor verifies if data D is justifiable by the reported justification

J . If data D is justifiable by J , the interaction ends with the expert getting the payoff

accrued in the previous stage of the interaction. Otherwise, the expert gets a payoff of −∞.

To complete the description of the interaction, consider the following definition.

Definition 1 (Justifiable Data). Data D is justifiable by a justification J : X → R if

a) Feasibility: J is a non-decreasing density function that is bounded and atomless,

b) Consistency with clients’ interests: there exists a client-optimal decision rule d∗J such that

for every xc ∈ D, the expert’s action ac(d, xc) belongs to the support of d∗J(c, xc).

Thus, a justification J is the expert’s claim about the distribution of signal xc conditional on the

state of the world being high. The auditor is boundedly rational, relying on the expert’s justification

to learn the relevant distribution. First, the auditor verifies if this justification is consistent with

his knowledge about f . A justification that passes this first round of scrutiny is termed a feasible

justification. Then, the auditor uses the signal generating process obtained using justification J to

verify if the expert’s behavior in data is consistent with the maximization of clients’ interests.

The auditor’s reliance on the expert to fill the gap in his knowledge may be due to his lack of

ability or resources to obtain the necessary knowledge. Moreover, this reliance may also result from

rules and protocols that prevent the auditor from using her personal beliefs during scrutiny and

restrict him to use only the objective data and the expert’s claim.
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The expert wants to choose a decision rule in the first stage of the interaction that maximizes

her payoff in the second state while ensuring that the expert always passes the auditor’s scrutiny.

To avoid the severe penalty associated with failing the expert’s scrutiny the expert must choose a

decision rule that always gives rise to a justifiable data D.

Definition 2 (Justifiable Decision Rule). A decision rule d is justifiable if each data D originating

from it is justifiable by some justification JD.

Thus, the expert’s problem is

max
d

ΠE(f, d)

subject to d is justifiable. (3)

The set of justifiable decision rules is non-empty as it contains d∗f : the expert always follows the

client-optimal decision rule with respect to the actual density f and reports it truthfully as a

justification.

In the remaining paper, we ask if and when the restriction of using only justifiable decision rules

forces the self-interested expert to act in the client’s best interest.

3 Simplifying expert’s problem

This section characterizes the expert’s behavior permissible under a justifiable decision rule. For

this purpose, we examine two benchmark decision rules associated with the actual density f : the

client-optimal decision rule d∗f , and the expert’s unconstrained optimal decision rule dEf . This

section establishes that these rules are threshold rules and uses their threshold nature to simplify

the expert’s problem.

Let density J be any non-decreasing, bounded density that has a continuous CDF. Henceforth,

we refer to it either as a feasible density or as a feasible justification. The following observation

obtains the two benchmark decision rules for any feasible density J .

Observation 1. Fix a feasible density J .

a) The expert’s unconstrained optimal decision rule is a threshold rule

dEJ (c, x) =


1 c ≤ J(x) + b

0 c > J(x) + b

.

11



1

𝑐

𝑥

𝑐

𝑓 𝑥 + 𝑏

𝐿

𝐻

𝑓(𝑥)

0 𝑥′

Panel (a): Benchmark decision rules

𝑐

𝑓#(𝑥)

𝑥0 1

𝑥∗

𝑓*(𝑥)
𝐿

𝐻

Panel (b): Value of knowledge

Figure 2: Graphical illustration of benchmark decision rules.

b) The client-optimal decision rule is a threshold rule

d∗J(c, x) =


1 c ≤ J(x)

0 c > J(x)

.

Proof. Observe that the total payoff of the expert (Equation (2) for the valid density J) is an

uniform aggregation of πE(c, J, d) across all clients. Thus, it suffices to find a decision rule that

maximizes πE(c, J, d), where

πE(c, J, d) =

∫ 1

0

[
−1

2
(c− b)d(c, x)− 1

2
J(x)(1− d(c, x))

]
dx.

For a fixed signal realization x, the integrand in the above expression is a convex combination of

−1
2(c − b) and −1

2J(x). The decision rule dEJ puts all the weight on the larger term and resolves

indifference in favor of action H. Since the decision rule dEJ point-wise maximizes the integrand, it

also maximizes πE(c, J, d). Part (b) is obtained by letting b = 0 in part (a).

Panel (a) in Figure 2 pictorially depicts the expert’s unconstrained optimal decision rule dEf

and the client-optimal decision rule d∗f for the actual density f . For any given signal realization x,

the expert has a threshold client f(x) + b such that the expert prefers action H for all clients with
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payoff parameters smaller than the threshold. Otherwise, the expert prefers action L. Similarly,

the auditor prefers action H for clients weakly below f(x).

Any decision rule that differs from d∗J on a set of signal realizations with zero Lebesgue measure

is also client-optimal. However, to maintain the tractability, we assume that the auditor considers

d∗J as the only client-optimal decision rule, and the expert is aware of the auditor’s considerations.

This focus on deterministic threshold rules has three important implications.

First, the unconstrained expert prefers to take action H for a weakly larger set of clients than

the auditor for any signal realization x. For example, the zone of conflict between the expert and

the auditor is given by the area between two curves, f(x) and f(x) + b, in Panel (a) of Figure 2.

To see the second implication of the threshold rule, consider the following definition. The expert’s

knowledge is valuable for a signal realization x if there exists a client c such that ac(d
∗
f , x) = L. For

example, in Panel (b) of Figure 2, the expert’s knowledge of fa is valuable at all signal realizations

x < x∗. However, if x ≥ x∗, then the high action is client-optimal for all clients c ∈ C. In

other words, the expert’s discriminating knowledge is of no use to clients for these latter signal

realizations. Using this definition of a valuable signal realization, we define the following property

that will eventually characterize the expert’s optimal behavior.

Definition 3 (Always Valuable Knowledge). The expert’s knowledge is always valuable on [x, x] ⊂

[0, 1] if it is valuable for signal realizations [x, x).

For the density fb, shown in Panel (b) of Figure 2, the expert’s knowledge is always valuable on

[0, 1]. For any subset [x, x] ⊂ [0, 1], the density f is such that either the expert’s knowledge is always

valuable on [x, x], or it is not. In section 4, we will show that this classification will characterize

the expert’s behavior.

To see the third and final implication of the deterministic threshold rule, fix a justifiable decision

rule d. And, define data D(x′) = {xc = x′, ac(d, x
′)}c∈C using a signal realization x′. The dotted

line in Panel (a) of Figure 2 graphically represents the first argument of this data. Since data D(x′)

originates from a justifiable decision rule d, it is justifiable with some feasible justification JD(x′)

that makes actions {ac(d, x′)}c∈C appear as client-optimal. We know from part (b) of Observation

1 that in any client-optimal decision rule the threshold-client is given by J(x). Thus, we must have

ac(d, x
′) = H for all c ≤ JD(x′) and ac(d, x

′) = L for all c > JD(x′). In other words, the decision rule

d must be deterministic threshold rule as stated in the following observation.
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Observation 2. Fix a justifiable decision rule d and a signal realization x′ ∈ [0, 1]. Then,

ac(d, x
′) =


H c ≤ JD(x′)(x

′)

L c > JD(x′)(x
′)

.

To see a deeper implication of the above observation, consider the function Ĵ(x) = JD(x)(x),

obtained by point-by-point piecing feasible densities {JD(x)}x∈[0,1]. For a given signal realization

x, comparing the threshold client JD(x)(x) in Observation 2 to the threshold client of d∗J (part (b)

of Observation 1) suggests that a justifiable decision rule d can be thought of as a client-optimal

decision rule for the function Ĵ(x). Thus, if the function Ĵ turns out to be a feasible density function,

then the expert using the decision rule d can provide Ĵ as a justification for all realizations of the

data. Equivalently, the decision rule d satisfies the following stronger notion of justifiability.

Definition 4 (Ex-ante Justifiable Decision Rule). A decision rule d is ex-ante justifiable if every

data D originating from it is justifiable by the same justification J .

To understand why this is a stronger notion, recall that the definition of a justifiable decision

rule d allowed the expert to report different feasible densities (justifications) for different data

realizations. The ex-ante justifiability, on the contrary, means that the expert can report the same

feasible density J as a justification for all possible realizations of the data. The following theorem

asserts that the weaker notion of justifiability implies ex-ante justifiability.

Theorem 1. If a decision rule d is justifiable then it is ex-ante justifiable.

The proof of the above theorem involves showing that the function Ĵ indeed a feasible justifica-

tion and is relegated to the Appendix C. The above theorem captures the restrictions imposed on

the expert’s behavior by a justifiable decision rule. Intuitively, the use of justifiable decision rules

forces the expert to follow the client-optimal decision rule d∗J , albeit with any feasible density J and

not necessarily f . Thus, we can restate the expert’s problem (3) as

max
J

1

c

∫ c

0
πE(c, f, d∗J)dc

subject to J is a non-decreasing, bounded, and atomless function (4)∫ 1

0
J(x)dx = 1.

Using the definition of the client-optimal decision rule d∗J stated in Observation 1, we can further

simplify the expert’s problem.

14



Observation 3. The expert’s optimization problem can be written as

max
J
−
∫ 1

0

[
Jc(x)

(
Jc(x)

2
− b
)

+ (c− Jc(x))f(x)

]
dx (P)

subject to J is a non-decreasing, bounded, and atomless function, (monotonicity)∫ 1

0
J(x)dx = 1, (aggregate consistency)

where Jc(x) = min{J(x), c}.

Section 4 discusses the solution to the above problem, and we refer to it as the expert’s strategic

justification. Before moving towards identifying the strategic justification, we examine cases of

few feasible and infeasible justifications. Observe that the justification J = f satisfies both the

monotonicity and aggregate consistency constraint and thus is feasible. Justification J(x) = f(x)+b

satisfies monotonicity but violates aggregate consistency. In fact, aggregate consistency precludes

justifications obtained by inflating f on a positive Lebesgue measure of signal realizations. Thus, if

a strategic justification lies above f at some signal realizations, then it must lie below f for some

other signal realizations.

4 Strategic justifications

This section analyzes the expert’s strategic justifications. It identifies necessary and sufficient con-

ditions for the strategic justification to equal the actual density f almost everywhere. Consequently,

it answers if and when the constraint of using justifiable decision rules forces the expert to act in

the clients’ best interest.

To obtain the strategic justification, we start by generalizing the problem in Observation 3 in two

aspects. First, we focus attention on any sub-interval [x, x] ⊂ [0, 1] of the signal realizations. Second,

the expert’s justification is allowed to integrate to m, where
∫ x
x f(x)dx ≤ m ≤

∫ x
x min{f(x)+b, c}dx.

These bounds eliminate values of m that are irrelevant for an optimizing expert. The following

theorem characterizes the shape of the strategic justification on the interval [x, x].

Theorem 2. Suppose that the expert’s knowledge is always valuable on [x, x]. Then the expert’s

strategic justification J∗(x) : [x, x]→ R+ is given by

J∗(x) = min {f(x) + b+ λ, c} , (5)

where −b ≤ λ ≤ 0 and
∫ x
x J
∗(x)dx = m.
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Figure 3: Strategic justification when the expert’s knowledge is always valuable on [0, 1].

The thick curve (red) in Panel (a) of Figure 3, pictorially illustrates the form of strategic

justification J∗(x) for x = 0, x = 1 and appropriate 1 < m < 1+b. The strategic justification J∗(x)

is obtained by projecting the function f(x) + b + λ on the area below level c, where the constant

λ is chosen such that the aggregate consistency constraint is satisfied. Henceforth, JmS (x) denotes

the strategic justification obtained by applying Theorem 2 to interval S ⊂ [0, 1] with mass m.

To understand why translation λ is a constant and not some arbitrary function of signal real-

ization x, consider the case x = 0, x = 1 and f(1) + b < c. Panel (b) of Figure 3 illustrates these

conditions graphically. Moreover, 1 < m < 1 + b. In this case, the expert has a mass m−1 that can

be used to inflate the justification above the density f at various signal realizations. For any signal

realization x, inflating the strategic justification above the density f allows the expert to replace

action L (type-II error) with more profitable action H (type-I error). The marginal benefit of such

switch can be shown to equal the difference f(x) + b−J(x). In the strategic justification the expert

equates this marginal benefit across all signal realizations and spreads the mass m−1 evenly. Thus,

λ = m− 1− b < 0

In the above intuition, if m = 1, then the expert has no additional mass to inflate the strategic

justification above the actual density f . Thus, the strategic justification collapses to the actual
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density f , and the expert acts in the best interest of all clients. Thus,

Proposition 1. If the expert’s knowledge is always valuable on [0, 1], then the expert’s strategic

justification coincides with f almost everywhere on [0, 1].

Proof. Since the expert’s knowledge is always valuable on [0, 1], we have f(x) < c for x ∈ [0, 1).

Applying Theorem 2 for the interval [0, 1] and m = 1, we obtain

J∗(x) = min{f(x) + b+ λ, c},

where −b ≤ λ ≤ 0 and
∫ 1
0 J
∗(x)dx = 1. To complete the proof, observe that any λ 6= −b violates

the aggregate consistency.

When the expert’s knowledge is always valuable, the expert wants to inflate the justification

above the actual density f at all signal realizations. However, such a justification violates the

aggregate consistency constraint. Thus, if a strategic justification lies above f on a non-zero measure

of signal realizations, then it must lie below f for a non-zero measure of signal realizations. As the

discussion following Theorem 2 suggests, such a justification obtained by simultaneously inflating

and deflating density f is not optimal because it does not equate the marginal benefit f(x)+b−J(x)

across all signal realizations. Therefore, the strategic justification equals the actual density f almost

everywhere, and the expert acts in the clients’ best interest. In other words, a link is created across

various decisions (identified by the pair (c, xc)) of the expert by the consistency requirements of a

feasible justification. This link is “perfect” when the expert’s knowledge is always valuable on [0, 1].

The mechanism behind Proposition 1 is reminiscent of the “quota” mechanisms (Jackson and

Sonnenschein (2007)). In the context of asymmetrically observed data, these mechanisms link

the expert’s incentives across many independent copies of the same decision problem. However,

they rely on the auditor perfectly knowing the entire generating process of the expert’s privately

observed data and therefore are not robust. Proposition 1 identifies sufficient conditions for a similar

mechanism to work in the context of symmetrically observed data and asymmetric expertise. This

mechanism works even when only specific properties of the data generating process rather than the

complete process are common knowledge among the players.

We now show that if the expert’s knowledge is not always valuable on [0, 1] and f is “generic”,

the link created by justifiable decision rules is “imperfect.” The expert can further own interest

while maintaining justifiability.
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Suppose that the expert’s knowledge is not always valuable on [0, 1]. Let V = {x : f(x) < c},

denote the set of signal realizations where the expert’s knowledge is valuable. Since f is non-

decreasing, the set V is given by either V = [0, x∗) or V = [0, x∗], where x∗ < 1. For brevity, we

henceforth assume that V = [0, x∗).9 We say f is generic if it satisfies the following assumption.

Assumption 1. f is such that x∗ > 0 and f differs from c on V c.10

The density function fa in panel (b) of Figure 2 satisfies the above assumption. If x∗ = 0, then

the first part of Assumption 1 is violated and set V is empty. In this case, f(x) ≥ c for every

x ∈ [0, 1]. Thus, for any signal realization x, both the expert and the auditor want the same action

H for all clients in set C. In other words, there is no effective conflict between the expert and clients,

and the expert always acts in the clients’ best interest.

When f satisfies the first part of the Assumption 1, both V and V c are non-empty intervals.

For a signal realization x ∈ V c, the expert does not benefit by inflating the justification above the

actual density f . This is because there are no clients with parameter c > f(x) for whom the expert

can take her preferred action. In fact, the expert can deflate the justification up to the level c and

still continue to take her preferred action H for all clients. By performing such deflation for all

signal realizations in set V c, the expert can create a supply of the misrepresentation

S(f) =

∫ 1

x∗
(f(x)− c) dx ≥ 0.

The second part of Assumption 1 guarantees that supply S(f) is non-zero. The expert can possibly

use some of the mass S(f) to inflate the justification above the actual density f for signal realizations

in set V . Such operation increases the expert’s payoff as it allows her to take her preferred action

H on larger mass of (c, xc) pairs. Thus, the expert’s demand of misrepresentation on these signals

is given by

D(f) =

∫ x∗

0
(min{f(x) + b, c} − f(x)) dx ≥ 0.

The first part of Assumption 1 ensures that the Demand D(f) is non-zero. The following proposition

shows that the expert’s strategic justification J∗ transfers mass ∆ = min{D(f), S(f)} from signal

realizations V c to signal realizations V . And, spreads the mass m =
∫
V f(x)dx + ∆ on signal

realizations V using the optimal justification JmV obtained through Theorem 2.

9All the results and their proofs readily extend to the case V = [0, x∗].
10Function h differs from function g on set A ⊂ [0, 1] if they differ on a subset of A that has a positive Lebesgue

measure.
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Figure 4: Strategic justification when the expert’s knowledge is not always valuable on [0, 1].

Proposition 2. Suppose the expert’s knowledge is not always valuable on [0, 1] and f is generic.

Then there exists xT ≥ x∗, such that the expert’s strategic justification J∗ lies above the actual

density f for signal realizations smaller than xT and otherwise lies weakly below f . In particular,

(a) If D(f) ≤ S(f), then J∗(x) = f(x) + b for x such that f(x) + b < c. Moreover, xT ≥ x∗.

(b) If D(f) > S(f), then xT = x∗ and

J∗(x) =


JmV (x) x < x∗

c x ≥ x∗,

where m =
∫
V f(x)dx+ ∆.

The thick (red) curve in Panel (a) of Figure 4 exhibits the strategic justification J∗ when the

expert (with b > 0) is demand-constrained (D(f) ≤ S(f)). The part of the strategic justification

corresponding to signal realizations larger than x̂ can be any non-decreasing function that lies above

c and respects the aggregate consistency constraint. If the expert (with b′ > b) is supply-constrained,

then the thick (red) curve in Panel (b) of Figure 4 exhibits the associated strategic justification.
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In both these strategic justifications, the expert inflates the strength of the evidence weaker than

xT , and deflates the strength of the evidence stronger than xT . Such a misrepresentation harms a

client c with borderline signal realizations xc ∈ [f−1(c− b), f−1(c)).

Proof of Proposition 2. Suppose D(f) ≤ S(f). For any signal realization x ∈ V c, the expert wants

to take action H for all clients in set C. Doing so in a justifiable manner, however, requires

only a mass c(1 − x∗). Since this mass is strictly smaller than
∫ 1
x∗ f(x)dx (Assumption 1), there

exists a supply S(f) > 0 of mass. On the other hand, taking the unconstrained optimal action

on signal realizations in the set V in a justifiable manner requires a mass of
∫ x∗
0 f(x)dx + D(f).

Since D(f) ≤ S(f), the expert can transfer mass D(f) to signal realizations in set V and take

her unconstrained optimal actions for every (c, xc) ∈ C × X . In particular, J∗(x) = f(x) + b for

x < x̂, where x̂ is the smallest signal realization such that f(x) + b = c. For signal realizations

x ≥ x̂, the strategic justification J∗ distributes the remaining mass 1 −
∫ x̂
0 (f(x) + b)dx using any

non-decreasing, bounded and atomless function g(x) that satisfies the following conditions. First,

g(x) ≥ c for x ≥ x̂. Second, the resulting J∗ must respect the aggregate consistency constraint.

The threshold signal realization xT ≥ x∗ depends on the exact details of g(x).

Now consider the case, D(f) > S(f). Let J be a feasible justification such that J(x) > c on a

non-empty interval I ⊂ [0, 1]. Since the expert is supply-constrained, there exist a positive mass of

signal realizations in V where J(x) < min{f(x)+ b, c}. Reducing J(x) to c on I and using the mass∫
I J(x)dx− c|I| to inflate the justification on aforementioned signal realizations in V increases the

expert’s payoff. Therefore, J is dominated. This observation implies that the strategic justification

must satisfy J∗(x) ≤ c for all x ∈ [0, 1). Using Lemma 5, the strategic justification has the form

J∗(x) = min{f(x) + b+ λ, c}, where −b ≤ λ ≤ 0 and
∫ 1
0 J
∗(x)dx = 1.

We must have −b < λ < 0. The left inequality holds because for λ = −b the aggregate

consistency constraint is violated. To see why, notice that the inequality J∗(x) ≤ f(x) holds for

all x ∈ [0, 1], and holds strictly for x ∈ V c. Similarly, λ = 0 contradicts that the expert is supply-

constrained. We complete the proof by showing that the strategic justification J∗ matches the form

proposed in the statement of the proposition, when −b < λ < 0.

Since f(x) ≥ c for x ≥ x∗, and λ+ b > 0, we have f(x) + b+ λ > c. Thus, J∗(x) = c on [x∗, 1].

With strategic justification J∗(x), the expert frees up a mass of S(f) by deflating the density f on

[x∗, 1]. The strategic justification J∗ must spread the mass m =
∫
V f(x)dx + S(f) in an optimal

manner on V . By Theorem 2, the strategic justification that spreads of mass m on V = [0, x∗) in

an optimal manner is given by JmV (x). Thus, J∗(x) = JmV (x) on [0, x∗).
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We conclude our discussion of the expert’s strategic justifications by answering the following

question. When does the restriction of using only justifiable decision rules force the self-interested

expert to take the client-optimal action for almost all clients-signal-realization pairs? Putting

Propositions 1 and 2 together, we obtain

Corollary 1. Suppose f is generic. Then the expert takes the client-optimal action for almost all

clients-signal-realization pairs iff the expert’s knowledge is always valuable on [0, 1].

Proof. To complete the proof, it suffices to show that f satisfies Assumption 1 if the expert’s

knowledge is always valuable on [0, 1]. Suppose that the expert’s knowledge is always valuable on

[0, 1]. Then, we either have V = [0, 1) or V = [0, 1]. In the first case, V c has zero Lebesgue measure.

Moreover, V c is empty in the latter case. Thus, f is generic.

5 Value of auditor’s expertise

So far, we considered an auditor who deemed any justification J as a feasible justification as long as

it satisfied specific consistency properties (Part (a) in Definition 1). However, the auditor may know

more about the distribution of the signal in the high state of the world than just a few consistency

properties. For example, the surgeon on the medical board may have had experience interpreting

certain symptoms and test results. A key feature of such additional knowledge usually obtained

through case studies and past experiences is that it makes the auditor more confident in interpreting

certain signal realizations than others. To model the auditor’s expertise that is variable across signal

realizations, we equip the auditor with a set K of anecdotes. Formally, K = {x1, x2, · · ·, xk}, where

k is finite and xk = 1. Anecdotes are signal realizations where the auditor knows the value of f

precisely, and therefore, has the same expertise as the expert in interpreting these signal realizations.

However, for intermediate signal realizations, the auditor can only infer f imperfectly. We assume

that the expert knows the auditor’s set of anecdotes K.

In this section, we first identify the expert’s strategic justifications when the auditor has anec-

dotes. Section 5.1 shows that the key results of the previous section extend to this setting with

anecdotes. We then explore whether increasing the expertise of the auditor through more anecdotes

benefits clients’. The auditor’s anecdotal expertise has no benefit when the expert’s knowledge is al-

ways valuable on [0, 1]. This is unsurprising as the expert’s strategic justification coincided with the

actual density f even without anecdotes. However, the analysis is more nuanced when the expert’s
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Figure 5: Graphical representation of bounds f , f , and modified bounds fx∗ and f
x∗

.

knowledge is not always valuable on [0, 1]. Section 5.2 identifies conditions on the configuration of

the additional anecdotes such that they reduce clients’ aggregate payoff.

5.1 Strategic justifications with anecdotes

An auditor with anecdotes in set K requires a feasible justification, in addition to the requirements

of part (a) of Definition 1, to satisfy J(x) = f(x) for x ∈ K. This additional restriction strengthens

the definition of justifiable data. To see how anecdotes restrict the set of feasible justifications,

consider the inference conducted by the auditor who combines anecdotes with the fact that f is a

non-decreasing function. Such auditor infers that f must fall between two functions, f(x) and f(x).

Panel (a) in Figure 5 pictorially depicts f and f for K = {x1, x2, x3, x4 = 1}. The dashed (green)

step function is f(x), whereas the solid (brown) step function illustrates f(x). The formal definitions

of these functions depend on the set of anecdotes K and are given in Appendix A. Observe that

both these functions, f and f , coincide at x ∈ K. Even in the presence of these anecdotes, we can

write the expert’s problem in terms of justification.

Observation 4. The expert’s optimization problem is obtained by adding the following constraint
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to the problem (P) stated in Observation 3.

f(x) ≤ J(x) ≤ f(x) for x ∈ [0, 1]. (local consistency)

The constraint in Observation 4 is termed local consistency because it captures each anecdote’s

local effect in combination with the monotonicity property of feasible justification. This constraint

severely restricts the expert’s ability to inflate the strategic justification at the anecdote and at

signal realizations just below it. The affine nature of local consistency allows us to extend Theorem

2 to the setting with anecdotes. The following theorem gives the expert’s strategic justification on

the interval [x, x] for
∫ x
x f(x)dx ≤ m ≤

∫ x
x min{f(x) + b, f(x), c}dx.

Theorem 2A. Suppose that the expert’s knowledge is always valuable on [x, x]. Then the expert’s

strategic justification J∗(x) : [x, x]→ R+ is given by

J∗(x) = min
{
f(x) + b+ λ, f(x), c

}
, (6)

where −b ≤ λ ≤ 0 and
∫ x
x J
∗(x)dx = m.

The solid (red) curve in Panel (a) of Figure 6, pictorially illustrates the form of strategic justifi-

cation J∗(x) for x = 0, x = 1 and appropriate m > 1. The strategic justification J∗(x) is obtained

using projecting the function f(x) + b + λ on the area below the curve min{f(x), c}. To see how

anecdotes change the strategic justification, compare solid (red) curves in Panel (a) of Figure 3 and

Figure 6. The direct effect of the anecdotes brings the strategic justification closer to the actual

density f at the anecdote and at signal realizations just below it. However, to maintain the ag-

gregate consistency, the strategic justification may move away from the actual density f at signal

realizations away from the anecdotes. Thus, the net effect is given by the combination of the direct

and the indirect effect.

The interplay of both these effects is most visible when the expert’s knowledge is not always

valuable on [0, 1]. This is because, if the expert’s knowledge is always valuable on [0, 1], then the

strategic justification coincides to the actual density f even without anecdotes. Thus, Proposition

1 continues to hold even with anecdotes. To study the interplay of the direct and the indirect effect

of anecdotes, the remaining section considers the case when the expert’s knowledge is not always

valuable on [0, 1].

If the expert’s knowledge is not always valuable on [0, 1], then there exists x∗ < 1 such that

V = [0, x∗)11. We modify bounds f and f to obtain a new lower bound f
x∗

(x) and an upper bound

11As before, we omit the case where V = [0, x∗] for the brevity.
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Figure 6: Shape of strategic justifications with anecdotes

fx∗ in the following manner. Let x∗ ∈ (xj−1, xj ], where j ≤ k and xj−1, xj ∈ K. If j = 1 then

xj−1 = 0. Define

f
x∗

(x) =


max{c, f(x)} V c ∩ (xj , xj+1]

f(x) otherwise

fx∗(x) =


min{c, f(x)} x ∈ V ∩ (xj , xj+1]

f(x) otherwise

.

Panel (b) in Figure 5 graphically illustrates f
x∗

(x) and fx∗ . In this case, j = 3 and x∗ ∈ (x2, x3].

Observe that the definition of f
x∗

differs from f only on (x∗, x3]. Similarly, definition of fx∗ differs

from f only on (x2, x
∗]. To obtain the expert’s strategic justification in this case, assume that f

satisfies the following assumption (letter A stands for anecdotes) analogous to Assumption 1.

Assumption 1A. f is such that x∗ > 0. Moreover, f differs from fx∗(x) on [0, x∗) and from

f
x∗

(x) on [x∗, 1].

The density f in the Panel (b) of Figure 5 satisfies the above assumption. Any f that satisfies

Assumption 1A has the D(K, f), S(K, f) > 0, where

D(K, f) =

∫ x∗

0

(
min{f(x) + b, fx∗(x)} − f(x)

)
dx, S(K, f) =

∫ 1

x∗

(
f(x)− f

x∗(x)
)
dx.
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As before, the expert does not benefit by inflating the justification above the actual density f on

signal realizations x ≥ x∗. Thus, the expert can transfer mass ∆ = min{D(K, f), S(K, f)} from

signal realizations V c to signal realizations V . And can spread the mass m =
∫
V f(x)dx + ∆

optimally on signal realizations V using the justification JmV (obtained by applying Theorem 2A

to set V with mass m). The following proposition shows that such a heuristic yields the expert’s

strategic justification.

Proposition 2A. Suppose the expert’s knowledge is not always valuable on [0, 1] and f satisfies

Assumption 1A. Then there exists xT ≥ x∗, such that the expert’s strategic justification J∗ lies above

the actual density f for signal realizations smaller than xT and otherwise lies weakly below f . In

particular,

(a) If D(K, f) ≤ S(K, f), then J∗(x) = min{f(x)+b, fx∗(x)} for x such that min{f(x)+b, fx∗(x)} <

c. Moreover, xT ≥ x∗.

(b) If D(K, f) > S(K, f), then xT = x∗ and

J∗(x) =


JmV (x) x < x∗

f
x∗

(x) x ≥ x∗,

where m =
∫
V f(x)dx+ ∆.

Panel (b) in Figure 6 graphically illustrates the strategic justification J∗ for the part (b) of the

above proposition. As before, the expert inflates the strength of the evidence weaker than x∗, and

deflates the strength of the evidence stronger than x∗. And, such a misrepresentation harms a client

c with borderline signal realizations xc ∈ [f−1(c− b), f−1(c)) if (c, xc) does not belong to triangular

regions located at kinks of J∗. These triangular regions highlight client and signal realization pairs

(c, xc) that benefit from the the auditor’s anecdotes.

Expert’s strategic justification suggests that providing the auditor with more anecdotes on sig-

nal realizations larger than x∗ cannot harm clients. Such anecdotes change the strategic justifi-

cation on set V c without changing the expert’s actions. Moreover, they weakly reduce the mass

∆ = {D(K, f), S(K, f)} by weakly reducing the supply S(K, f). Thus, strategic justification with

additional anecdotes comes closer to the actual density on signal realizations smaller than x∗.

The analysis is more nuanced when all the additional anecdotes are smaller than x∗. These

anecdotes reduce the demand D(K, f) which may or may not reduce the effective demand ∆ =

{D(K, f), S(K, f)}. However, the kinks at these additional anecdotes change how the new mass m′
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is spread across signal realizations in set V . Thus, the net effect depends on a reduction in ∆ and

the shape of new strategic distribution Jm
′

V . The next subsection analyzes this setting.

5.2 Harmful expertise

The set K ′ contains more anecdotes than set K and all the additional anecdotes are smaller than

x∗. Thus Kx∗ = K
′
x∗ , where Kx∗ = {xj ∈ K : xj ≥ x∗}. The latter assumption implies that

S(K, f) = S(K ′, f). The comparison of aggregate payoffs of clients for auditors K and K ′ depends

on whether the expert is demand or supply-constrained.

Proposition 3. (a) If D(K, f) ≤ S(K, f), then aggregate payoff of clients for the auditor K ′ is

weakly larger than that for auditor K. (b) If D(K ′, f) > S(K ′, f), then aggregate payoff of clients

for the auditor K is weakly larger than that for auditor K ′.

Proof. For part (a), the expert is demand-constrained with auditor K, i.e., D(K, f) ≤ S(K, f). Ob-

serve that D(K ′, f) ≤ D(K, f), the new anecdotes on [0, x∗) locally constrain the expert and weakly

reduce the demand of misrepresentation. Thus, the expert is demand-constrained, D(K ′, f) <

S(K ′, f), even for auditor K ′. Observing that the strategic justification for the auditor K ′ point-

wise dominates that for the auditor K completes the proof.

For part (b), observe that an expert who is supply-constrained for the auditor K ′ is also supply-

constrained for auditor K. Thus, in both cases, the expert’s strategic justification integrates to the

same number
∫ x∗
0 f(x)dx+ S(K, f) on the interval [0, x∗). However, both these strategic justifica-

tions distribute this mass differently on [0, x∗) (due additional anecdotes in K ′). To compare the

clients’ aggregate payoff ΠAgg across these two strategic justifications, we rewrite the expression as

ΠAgg(K, f) = − 1

2c

∫ x∗

0

[
J∗(x)

(
J∗(x)

2

)
+ (c− J∗(x))f(x)

]
dx− c(1− x∗)

4

=(a) ΠE(K, f)− b

2c

∫ x∗

0
J∗(x)dx− b(1− x∗)

2
.

Equality (a) follows from adding and subtracting the last two terms. Since the expert earns weakly

larger payoff when the auditor has less anecdotes (ΠE(K, f) ≥ ΠE(K ′, f)), we obtain the ranking

of clients’ aggregate payoffs proposed in the statement of the proposition.

To see the intuition for the part (b), consider the direct effect of the additional anecdotes. They

restrict the expert’s ability to inflate the justification above the actual density f but only locally.

The indirect effect comes through a change in the expert’s strategic justification. The expert’s
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new strategic justification moves away from actual density f at signal realizations farther from the

anecdotes. This indirect effect dominates the direct effect and reduces the clients’ aggregate payoff.

The above analysis considered all cases except D(K ′, f) < S(K, f) < D(K, f). In this case, the

expert is supply-constrained with the auditor K but becomes demand-constrained for the auditor

K ′. In this case, the mass m spread on signal realizations smaller than x∗ and its distribution

JmV changes. Since both factors have opposite consequences, the comparison depends on the exact

details of K,K ′, and f .

6 Strategic consistency

In previous sections, the expert passed the auditor’s scrutiny as long as the expert’s justification

J was a non-decreasing, bounded, and atomless density function such that J(x) = f(x) for x ∈

K. This section considers an auditor who reasons strategically and uses a stringent criterion for

evaluating the feasibility of justifications. Such an auditor requires the expert’s justifications J to

satisfy the following additional property.

Definition 5 (Strategic Consistency). If J is the actual density, then an expert with payoff param-

eter b must report a justification that coincides with J almost everywhere on [0, 1].

Strategic consistency avoids suspicion of the auditor who is aware of the qualitative properties

of the strategic justification and knows that a self-interested expert has incentives to deviate from

the actual density f . Proposition 1S (where S stands for strategic consistency) below shows that

Proposition 1 extends with this stringent definition of feasible justification if the auditor knows that

the expert’s knowledge is always valuable on [0, 1].

Proposition 1S. Suppose that the expert’s knowledge is always valuable on [0, 1], and the auditor

is aware of it. Then the expert’s strategic justification coincides with f almost everywhere on [0, 1].

Proof. If the expert’s knowledge is always valuable on [0, 1] then by Proposition 1 the expert’s

strategic justification equals f almost everywhere. Since the auditor knows that the expert’s knowl-

edge is always valuable on [0, 1], he also knows that the reported justification coincides with f

almost everywhere. Thus, the strategic justification satisfies strategic consistency.

We make the following assumptions, in addition to Assumption 1A, to analyze the case when

the expert’s knowledge is not always valuable on [0, 1].
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Assumption 2. f is continuous at x∗ and x∗ ∈ K.

The first part of the above assumption implies that f(x∗) = c. Moreover, V = {x : f(x) < c} =

[0, x∗). The second part implies that the auditor knows f(x∗) = c. Such knowledge of the auditor

could result from knowing the client-optimal decision rule for the highest client c. The following

assumption, says that for any given density f and payoff parameter b > 0, the auditor’s anecdotes

in K are close enough so that min{f(x) + b, fx∗(x)} = fx∗(x) for x < x∗.

Assumption 3. For any signal realization x < x∗, fx∗(x)− f
x∗

(x) ≤ b.

Proposition 2S below shows that the qualitative properties of the expert’s strategic justification

continue to hold even with the stringent criterion of strategic consistency.

Proposition 2S. Suppose the expert’s knowledge is not always valuable on [0, 1] and f satisfies

Assumptions 1A, 2 and 3. Then the expert’s strategic justification J∗ lies above the actual density

f for signal realizations smaller than x∗ and otherwise lies weakly below f . In particular,

(a) If D(K, f) ≤ S(K, f), then J∗(x) = fx∗(x) for x < x∗.

(b) If D(K, f) > S(K, f), then

J∗(x) =


JmV (x) x < x∗

f
x∗

(x) x ≥ x∗,

where m =
∫
V f(x)dx+ ∆.

Proof. Suppose, D(K, f) ≤ S(K, f). By Proposition 2A, the expert’s strategic justification is such

that J∗(x) = min{f(x) + b, fx∗(x)} for x < x̂, where x̂ is the smallest signal realizations satisfying

min{f(x) + b, fx∗(x)} = c. Assumption 3 implies that min{f(x) + b, fx∗(x)} = fx∗(x). Thus,

J∗(x) = fx∗(x) for x < x̂. For x ∈ [x̂, x∗), we must have J∗(x) = fx∗(x) = c. To see why, observe

that the auditor knows that f(x∗) = c (Assumption 2). Therefore, the expert cannot report a

justification that is strictly above c for x < x∗ without violating the monotonicity property. To

complete the proof it suffices to show that any justification with the proposed form satisfies strategic

consistency. Suppose J∗ is the actual density. Then,

D(K,J∗) =

∫ x∗

0

(
min{J∗(x) + b, fx∗(x)} − J∗(x)

)
dx =

∫ x∗

0

(
fx∗(x)− fx∗(x)

)
dx = 0.

Thus, the expert cannot inflate the justification above J∗ without violating feasibility. Therefore,

have no incentive to deviate from J∗.
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Consider the case D(K, f) > S(K, f). Then by Proposition 2A, the expert’s strategic justifica-

tion is such that f
x∗

(x) for x ≥ x∗. We complete the proof by by showing that J∗ with the proposed

form satisfies strategic consistency. Since the auditor knows that f(x∗) = c (Assumption 2), the

expert cannot report a justification that is strictly below f
x∗

(x) for x ≥ x∗. Thus, S(K,J∗) = 0

and the expert has no incentive to deviate from J∗.

7 Alternatives

The auditor may lack the knowledge about the properties of the likelihood ratio. Such an auditor

may ask the expert to report use marginal distribution tally the of signals with reported

8 Conclusion

This paper considered a self-interested expert who was required to justify her decisions to an auditor.

Even though the auditor had very little expertise, he could verify the logical consistency of the

expert’s justifications. It showed that providing logically coherent justification for past decisions

sometimes is sufficient to force the expert to act in the clients’ best interest. Otherwise, the expert

devised a justification that manipulated the strength of the evidence and made the expert’s selfish

actions appear client-optimal. For the latter case, the paper established that increasing the auditor’s

expertise, which only locally improved the auditor’s interpretation skills, could backfire and reduce

the aggregate payoff of clients.

This paper proposed a tractable framework to study incentive conflict in a setting of asymmetric

expertise. It exhibited how thinking about expertise as a non-verifiable function, which satisfies

specific logical consistency properties, can give new and exciting results. Moreover, it shed light

on the workings of the institutional arrangement of fiduciary duty. We believe tools and modeling

ideas developed in this paper could prove beneficial in understanding the role of justifications and

stories in organizations. We plan to explore these ideas in a separate project.
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Appendix A states definitions of functions f and f . Appendix B lists mathematical concepts

that are essential for the analysis and proofs. An extensive treatment of these concepts can be found

in standard text-books like Royden and Fitzpatrick (1988) and Ok (2011). Appendix C contains

proofs that do not appear in the main text. Appendix D contains technical lemmas used throughout

the Appendix C.

A Definitions of bounds

The lower bound f and the upper bound f are defined below for x ∈ [0, 1].

f(x) =



0 0 ≤ x < x1

f(x1) x1 ≤ x < x2

·

f(xk−1) xk−1 ≤ x < xk

f(xk) x = xk

f(x) =



f(x1) 0 ≤ x ≤ x1

f(x2) x1 < x ≤ x2

·

f(xk−1) xk−2 < x ≤ xk−1

f(xk) xk−1 < x ≤ xk

.

B Mathematical preliminaries

Let 1 ≤ p < ∞. A Lebesgue measurable function h defined on [x, x] is said to belong to the space

Lp = Lp[x, x] if
∫ x
x |h(x)|pdx <∞. Lp space is a complete normed linear space, i.e., a Banach space

with the norm

‖h‖p =

{∫ x

x
|h(x)|pdx

}1/p

.

Similarly, L∞ is the space of bounded Lebesgue measurable (henceforth ‘measurable’) functions on

[x, x]. The associated norm is

‖h‖∞ = inf{M : µ{x : h(x) > M} = 0},

where µ is the Lebesgue measure. Unless mentioned otherwise, we consider convergence and conti-

nuity with respect to the topology of the norm ‖·‖p.

Fréchet derivatives: Consider a function φ : Lp → V , where V is a Banach space with norm

‖·‖q and 1 ≤ q <∞. Function φ is Fréchet differentiable at J ∈ Lp if there exists a bounded linear

operator φ′J : Lp → V such that

lim
t→0

‖φ(J + t)− φ(J)− φ′J(t)‖q
‖t‖p

= 0,
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where φ′J is bounded if there is constant M such that ‖φ′J(f)‖q ≤ M‖f‖p. The linear operator

φ′J is called the Fréchet derivative of φ at J . Moreover, Fréchet differentiability of φ at J implies

continuity of φ at J . We say that function φ is Fréchet differentiable on Lp if it is differentiable at

every J ∈ Lp. In this case, φ′ denotes the Fréchet derivative. We will use the following result to

establish the continuity of φ′.

Result 1. If φ is Fréchet differentiable at every J ∈ Lp, then φ is continuously Fréchet differentiable.

The above result follows from well-known theorem of Banach: A linear operator on a normed

linear space is continuous iff it is bounded.

Dual representation: Let X ⊂ Lp, where 1 ≤ p < ∞. The space of all bounded linear

functional F on X is termed as a dual spaces of X, and is denoted as X∗. Define

Result 2. Let X = Lp and q be such that 1/p + 1/q = 1. Then each function g ∈ Lq defines a

bounded linear functional F on Lp

F (φ) =

∫ x

x
φ(x)g(x)dx.

Moreover, ‖F‖ = ‖g‖q.

C Proofs not in the main text

Proof of Theorem 1. Fix a justifiable decision rule d. The proof constructs a feasible justification

J such that ac(d, xc) = ac(d
∗
J , xc) for every (c, xc) pair. Consider the function Ĵ(x) = JD(x)(x),

where JD(x)(x) was defined in the discussion leading to Observation 2. Let V = {x : Ĵ(x) < c}.

First, we state some properties of function Ĵ in relation to the decision rule d. Observation 2

implies that the decision rule d satisfies

ac(d, x) =


H x ∈ V and c ≤ Ĵ(x)

L x ∈ V and c > Ĵ(x)

H x ∈ V c

.

Lemma 1 exhibits that Ĵ(x) is non-decreasing on V , where V = [0, x∗) or V = [0, x∗] and x∗ ≤ 1.

Since Ĵ(x) is constructed from the point-by-point piecing of bounded and atomless functions, it also

satisfies these properties.

Suppose x∗ = 1. By properties stated in the previous paragraph, the function J(x) = Ĵ(x) is a

non-decreasing, bounded, and atomless function that satisfies ac(d, xc) = ac(d
∗
J , xc) for every (c, xc)
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pair. Thus, to complete the proof it suffices to show that
∫ 1
0 Ĵ(x)dx = 1. Lemma 2 establishes the

same.

Suppose x∗ < 1. We define the feasible density J as

J(x) =


Ĵ(x) x ∈ V

g(x) x ∈ V c

.

Here g is a feasible density such that g(x) ≥ c for x ∈ V c, and
∫
V c g(x)dx = 1 −

∫
V Ĵ(x)dx. Such

a function g exists as per Lemma 3. Observe that J(x) is a feasible density function as it is a

non-decreasing, bounded, and atomless function that integrates to 1. The proof is completed by

observing that for any given pair (c, xc), we have ac(d, xc) = ac(d
∗
J , xc).

Proof of Observation 3. Suppose that the expert follows a justifiable decision rule d. Then, the

expert’s total expected payoff is

ΠE(d, f) =
1

c

∫ c

0
πE(c, f, d)dc

=(a) −
1

2c

∫ c

0

∫ 1

0
[(c− b)d(c, x) + f(x)(1− d(c, x))] dx dc

=(b) −
1

2c

∫ 1

0

[∫ c

0
(c− b)d(c, x)dc+

∫ c

0
f(x)(1− d(c, x))dc

]
dx

=(c) −
1

2c

∫ 1

0

[∫ min{J(x),c}

0
(c− b)dc+

∫ c

min{J(x),c}
f(x)dc

]
dx

= − 1

2c

∫ 1

0

[
Jc(x)

(
Jc(x)

2
− b
)

+ (c− Jc(x))f(x)

]
dx.

Equality (a) is obtained by substituting equation (1) from Section 2. Whereas, equality (b) is

obtained by changing the order of integral. Such a change of order is a valid operation because

signal realization xc is independent of the identifier c as well as signal realizations of other clients.

By Theorem 1, there exists a feasible density J such that the expert takes action H iff c ≤ J(x).

Thus, Equality (c) follows. Finally, by writing Jc(x) = min{J(x), c} and omitting the leading

constant, the objective function in the statement of the observation is obtained.

Proof of Theorem 2. Following the discussion leading to the statement of Theorem 2, the ex-
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pert’s problem can be written as

max
J
−
∫ x

x

[
Jc(x)

(
Jc(x)

2
− b
)

+ (c− Jc(x))f(x)

]
dx

subject to J is a non-decreasing, bounded, and atomless function, (monotonicity)∫ x

x
J(x)dx = m, (aggregate consistency)

where Jc(x) = min{J(x), c} and
∫ x
x f(x)dx ≤ m ≤

∫ x
x min{f(x) + b, c}dx. Suppose m equals the

upper bound. In this case, the expert has the necessary mass to inflate the justification at all signal

realizations and follow the unconstrained optimal decision rule for all feasible (c, x) pairs. Observing

that the proposed J∗ in the theorem statement coincides with the unconstrained optimal decision

rule for λ = 0 completes the proof.

Suppose,
∫ x
x f(x)dx ≤ m <

∫ x
x min{f(x) + b, c}dx. Before solving the expert’s problem, we

make the following changes to it. Consider a feasible justification J such that J(x) > c on a non-

empty interval I ⊂ [x, x] of non-zero length. Since m is strictly smaller than the upper bound,

there exist a positive mass of signal realizations where J(x) < min{f(x) + b, c}. Reducing J(x) to

c on I and using the mass
∫
I J(x)dx − c|I| to inflate the justification at other signal realizations

allows the expert to move closer to her unconstrained optimal decision rule and increases her payoff.

Therefore, J is dominated. This observation implies that imposing the constraint J(x) ≤ c in the

above problem does not change the optimal solution. Moreover, the new constraint allows us to

write Jc(x) = J(x) in the objective function. Finally, relaxing the constraint “J is non-decreasing

and atomless function” and incorporating the constraint “J is a bounded function” through the set

B = {J : |J(x)| ≤M ∀x ∈ [0, 1]}, we obtain

min
J∈L1∩B

H(J) :=

∫ x

x

[
J(x)

(
J(x)

2
− b
)

+ (c− J(x))f(x)

]
︸ ︷︷ ︸

h(J)

dx (MP)

subject to u(J) := J(x)− c ≤ 0 ∀ x ∈ [x, x], (affine constraint)

e(J) := m−
∫ x

x
J(x)dx = 0. (aggregate consistency)

Notice that we have stated the above problem as a minimization problem. In the remaining proof,

we use theory of Lagrange multipliers on functional spaces to solve the relaxed problem (MP) and

show that the solution is a “non-decreasing and atomless function.”

Let Y denote the set of viable functions that satisfy the constraints of problem (MP). The

solution proposed in the statement of the Theorem 2 satisfies J∗ ∈ Y. Observe that the constraints
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of set Y are linear, and the set Y is convex. Moreover, H(J) is continuous (Lemma 7) and strictly

convex (Lemma 6) in J . Thus, for any J ∈ Y to be the global solution of the problem (MP), the

first-order Karush-Kuhn-Tucker (KKT) conditions are both necessary and sufficient. The remaining

proof shows that J∗ satisfies KKT conditions and that the problem (MP) has only one global

minimizer in the almost everywhere sense. Thus, J∗ is an unique solution.

Observe that H : L1 ∩B → R is a functional. Let K = {v ∈ L2 : v(x) ≤ 0} be a closed convex

cone. Then the function u : L1 ∩ B → K represents an infinite-dimensional affine constraint. For

any given J ∈ Y, we denote the value of constraint u at a given x by u(J)(x). Finally, the equality

constraint can be thought as e : L1 ∩ B → {0}. Let K+ = {v ∈ L2 : v(x) ≥ 0} and define a

Lagrangian function L : L1 ×R×K+ → R such that

L(J, λ, ηu) = H(J) + λ(e(J)) +

∫ x

x
ηu(x)u(J)(x)dx.

Lemma 7 states that functionals H, e, and U =
∫ x
x ηu(x)u(J)(x)dx are continuously Fréchet differ-

entiable on L1 ∩ B, a closed and convex set. Their Fréchet derivatives are H ′J(φ) =
∫ x
x (J(x)− b−

f(x))φ(x)dx, e′J(φ) = −
∫ x
x φ(x)dx, and U ′J(φ) =

∫ x
x ηu(x)φ(x)dx. Since J∗ satisfies certain regu-

larity conditions (Lemma 8), Theorem 1.56 in Hinze et al. (2008) implies that there exist Lagrange

multipliers λ ∈ R and ηu ∈ K+ such that∫ x

x
[J∗(x)− b− f(x)− λ+ ηu(x)]︸ ︷︷ ︸

g(x)

φ(x)dx = 0 for any φ ∈ L1 (FOC)

e(J∗) = 0 and u(J∗)(x) ≤ 0 ∀ x ∈ [x, x] (Original Constraints)

ηu(x) (u(J∗)(x))) = 0 a.e. x ∈ [x, x]. (Complementary Slackness)

(FOC) gives the first-order stationarity condition obtained using Fréchet derivatives of the functional

L. It can be restated as

J∗(x)− b− f(x)− λ+ ηu(x) = 0 a.e. x ∈ [x, x]. (FOC-M)

To show that J∗ is indeed a solution, it remains to be shown that it satisfies the above necessary

conditions. First, notice that J∗ satisfies (Original Constraints). Let ηu(x) = max{f(x) + b + λ −

J∗(x), 0}. Observe that ηu(x) ≥ 0 for any x ∈ [x, x] and thus belongs to K+. Moreover, J∗ and

ηu satisfy (Complementary Slackness) and the stationarity condition (FOC-M). Observe that the

constraints on m imply that −b ≤ λ ≤ 0. Finally, the strict convexity of H(J) implies that J∗ is a

unique global minimizer (Lemma 9).
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We complete the proof by observing that J∗ satisfies the relaxed constraint as it is a non-

decreasing function. Moreover, it is obtained by piecing f(x) + b+ λ and c that do not have jumps

of positive Lebesgue measure.

Proof of Theorem 2A. Using Observation 4 and the discussion leading to the statement of The-

orem 2A, the expert’s problem can be written as

max
J
−
∫ x

x

[
Jc(x)

(
Jc(x)

2
− b
)

+ (c− Jc(x))f(x)

]
dx

subject to J is a non-decreasing, bounded, and atomless function, (monotonicity)

f(x) ≤ J(x) ≤ f(x) for x ∈ [x, x], (local consistency)∫ x

x
J(x)dx = m, (aggregate consistency)

where Jc(x) = min{J(x), c}.

First, we argue that replacing the constraint J(x) ≤ f(x) with the constraint J(x) ≤ min{f(x), c}

does not change the solution of the above problem. Suppose f(x) ≤ c. Then, f(x) ≤ c for all

x ∈ [x, x] and the required result follows. If f(x) > c, then consider a feasible justification J such

that J(x) > c on a non-empty interval I ⊂ [x, x] of non-zero length. Since m ≤
∫ x
x min{f(x) +

b, f(x), c}dx, there exist a positive measure of signal realizations where J(x) < min{f(x)+b, f(x), c}.

Reducing J(x) to min{f(x), c} on I and using the mass
∫
I

(
J(x)−min{f(x), c}

)
dx to inflate the

justification at aforementioned signal realizations allows the expert to move closer to her uncon-

strained optimal decision rule and increases her payoff. Therefore, J is dominated. In other words,

replacing the constraint J(x) ≤ f(x) with the constraint J(x) ≤ min{f(x), c} does not change the

solution of the above problem. Moreover, it also allows us to write Jc(x) = J(x) in the objective

function.

Using the discussion in the previous paragraph, we write the expert’s problem as

max
J
−
∫ x

x

[
J(x)

(
J(x)

2
− b
)

+ (c− J(x))f(x)

]
dx

subject to J is a non-decreasing, bounded, and atomless function, (monotonicity)

f(x) ≤ J(x) ≤ min{f(x), c} for x ∈ [x, x], (modified local consistency)∫ x

x
J(x)dx = m. (aggregate consistency)

To solve this problem, we relax the constraint J(x) ≥ f(x) for all x ∈ [x, x]. The resulting problem

is analogous to the problem (MP) with the difference that the affine constraint is now changed to
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J(x) ≤ min{f(x), c}. Thus, the proof of Theorem 2 can be used to show that J∗ proposed in the

statement of the Theorem 2A is a solution. To complete the proof, observe that this J∗ respects

the relaxed constraint J(x) ≥ f(x).

Proof of Proposition 2A. Part (a) holds by a reasoning similar to the proof of part (a) in Propo-

sition 2. The only difference is that the strategic justification in the current case also respects the

local consistency constraint.

Now consider the case, D(K, f) > S(K, f). Let J be a feasible justification such that J(x) >

f
x∗

(x) on a non-empty interval I ⊂ V c of non-zero length. Since the expert is supply-constrained,

there exist a positive mass of signal realizations in V where J(x) < min{f(x)+b, fx∗(x)}. Reducing

J(x) to f
x∗

(x) on I and using the mass
∫
I

(
J(x)− f

x∗
(x)
)
dx > 0 to inflate the justification on

aforementioned signal realizations in V increases the expert’s payoff. Therefore, J is dominated.

This observation implies that the strategic justification must satisfy J∗(x) ≤ f
x∗

(x) for all x ∈ V c.

Suppose, x∗ ∈ (xj−1, xj ] where j ≤ k and xj−1, xj ∈ K. If j = 1 then xj−1 = 0. The auditor

knows that any feasible density cannot be smaller than f
x∗

= f for x ∈ [xj , 1]. Thus, J∗(x) = f
x∗

(x)

for x ∈ [xj , 1]. Now consider x ∈ [x∗, xj). For these signal realizations, f
x∗

(x) = c. Thus, we can

conclude that strategic justification must satisfy J∗(x) ≤ c for x ∈ [0, xj). Let m = 1−
∫ 1
xj
f
x∗

(x)dx.

Observe that ∫ xj

0
f(x)dx ≤ m ≤

∫ xj

0
min{f(x) + b, f(x), c}dx.

The left inequality holds because
∫ 1
xj
f
x∗

(x)dx ≤
∫ 1
xj
f(x)dx. The right inequality is true because

the expert is supply-constrained.

Lemma 10 implies that the strategic justification has the form J∗(x) = min{f(x)+b+λ, f(x), c}

on the interval x ∈ [0, xj), where −b ≤ λ ≤ 0 and
∫ xj
0 J∗(x)dx = 1 −

∫ 1
xj
f
x∗

(x)dx. By arguments

similar to those in the last two paragraphs of the proof of Proposition 2, we obtain the desired

result.

D Proofs of lemmas

Lemma 1. Ĵ(x) is non-decreasing on V . Moreover, set V is either a right-closed [0, x∗] or a

right-open [0, x∗) interval, where x∗ ≤ 1.

Proof. To prove the first part, assume to the contrary that Ĵ(x) is a not non-decreasing function

on V . Then there exist x1, x2 ∈ V such that x1 < x2 and Ĵ(x1) > Ĵ(x2). We use the existence of

such x1, x2 to show that the decision rule d is not justifiable, thus yielding a contradiction.
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Let c = Ĵ(x1) and c′ = Ĵ(x2) + ε, where ε < Ĵ(x1) − Ĵ(x2). Consider any data D containing

points (xc = x1, ac(d, x1)) and (xc′ = x2, ac′(d, x2)). By definition of Ĵ , the decision rule d is such

that ac(d, x1) = H whereas ac′(d, x2) = L. Thus, any feasible justification J for data D must satisfy

J(x1) ≥ Ĵ(x1) and J(x2) < Ĵ(x2) + ε. These two inequalities imply that J is not a non-decreasing

function, which contradicts the fact that the decision rule d is justifiable.

To prove the second part, again assume for a contradiction. Thus, there exist x1 < x2 such

that x1 ∈ V c, x2 ∈ V and Ĵ(x1) > Ĵ(x2). Using argument similar to the first part, we show that

decision rule d is not justifiable.

Lemma 2. If x∗ = 1 then
∫ 1
0 Ĵ(x)dx = 1.

Proof. Assume for a contradiction, i.e.,
∫ 1
0 Ĵ(x)dx 6= 1. First, consider the case

∫ 1
0 Ĵ(x)dx > 1. We

construct data D = {xc, ac(d, xc)}c∈C that originates from the decision rule d and is not justifiable.

We start by considering a function J̃(x), the inverse of which will be used to construct the desired

data D.

Let V+ = {x ∈ V : Ĵ(x) > 0} be the set of signal realizations where Ĵ(x) is strictly positive. The

set V+ = [s, 1] denotes the closure of set V+, where s ≥ 0. Let ε be such that 0 < ε <
∫ 1
0 Ĵ(x)dx−1.

By Lemma 4, there exists a function J̃(x) defined on the set (s, 1] such that

1. J̃(x) is strictly increasing and continuous on (s, 1] with J̃(1) = J̃(1−),

2. J̃(x) ≤ Ĵ(x) for all x ∈ (s, 1],

3.
∫ 1
s J̃(x)dx >

∫ 1
s Ĵ(x)dx− ε > 1,

where J̃(x−) denotes the left-hand limit of J̃(·) at x. Panel (a) in Figure 7, qualitatively illustrates

the function J̃(x) on the interval (s, 1]. The definition of J̃ can be extended to all x ∈ [0, 1] by

letting J̃(x) = Ĵ(x) for all x ∈ [0, s) and J̃(s) = min{Ĵ(s), J̃(s+)}. Notice that the extended J̃

satisfies Property 2 and Property 3 on [0, 1].

Using the function J̃ , we construct data D that is not justifiable. Consider

D =


(s, ac(d, s))) c ∈ [0, J̃(s+)](
J̃−1(c), ac(d, J̃

−1(c))
)

c ∈ R = (J̃(s+), J̃(1)]

(1, ac(d, 1)) c ∈ (J̃(1), c]

.

Property 1 implies that J̃(x) is strictly increasing and continuous on (s, 1], and therefore the inverse

J̃−1(c) is well-defined for all c ∈ R.

To see why data D is not justifiable, fix a client c ∈ R = (J̃(s+), J̃(1)]. For the client c, the

signal realization xc is such that c = J̃(xc) ≤ Ĵ(xc). The last inequality follows from Property
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Figure 7: Graphical illustration of function J̃ in Lemmas 2 and 3.

2. Therefore, the action associated with client c in data D is ac(d, xc) = H. In other words, any

feasible density function J that justifies D must be weakly larger than J̃(x). Thus,
∫ 1
0 J(x)dx ≥∫ 1

0 J̃(x)dx >
∫ 1
0 Ĵ(x)dx−ε > 1, where the second inequality follows from Property 3. This inequality

contradicts that the justification J is feasible and that the decision rule d is justifiable. Proof for

the case
∫ 1
0 Ĵ(x)dx < 1 mirrors the above argument.

Lemma 3. If x∗ < 1 then there exists a feasible density g such that g(x) ≥ c for x ∈ V c, and∫ 1
0 J(x)dx = 1, where

J(x) =


Ĵ(x) x ∈ V

g(x) x ∈ V c

.

Proof. Assume for contradiction. Then for all feasible densities g such that g(x) ≥ c for x ∈ V c we

must have
∫ 1
0 J(x)dx > 1. In particular,

∫
V c cdx > 1−

∫
V Ĵ(x)dx. We use this latter inequality to

construct a data realization D that is not justifiable.

Let V+ = {x ∈ V : Ĵ(x) > 0} be the set of signal realizations where Ĵ(x) is strictly positive.

The set V+ = [s, x∗] denotes the closure of set V+, where s ≥ 0. Let ε > 0 be such that ε <∫ x∗
0 Ĵ(x)dx+

∫ 1
x∗ cdx− 1. By Lemma 4, there exists a function J̃(x) defined on the set (s, x∗] such
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that

1. J̃(x) is strictly increasing and continuous on (s, x∗] with J̃(x∗) = J̃((x∗)−),

2. J̃(x) ≤ Ĵ(x) for all x ∈ (s, x∗],

3.
∫ x∗
s J̃(x)dx >

∫ x∗
s Ĵ(x)dx− ε/2.

The definition of J̃ can be extended to all x ∈ [0, x∗] by letting J̃(x) = Ĵ(x) for all x ∈ [0, s) and

J̃(s) = min{Ĵ(s), J̃(s+)}.

If J̃(x∗) < c, then we extend the definition of J̃ to [x∗, 1] by letting J̃ = h. Function h is strictly

increasing, and satisfies h(x∗) = J̃((x∗)−) and h(1) = c. Moreover,
∫ 1
x∗ h(x)dx > c(1 − x∗) − ε/2.

Notice that J̃ is strictly increasing and continuous on (s, 1] (Property 1). In addition, J̃(x) ≤ Ĵ(x)

for x ∈ [0, 1] (Property 2). Finally,
∫ 1
0 J̃(x)dx >

∫ x∗
0 Ĵ(x)dx +

∫ 1
x∗ cdx − ε > 1 (Property 3). The

right inequality in Property 3 follows from the choice of ε. Panel (b) in Figure 7, qualitatively

illustrates the function J̃(x) on the interval (s, 1].

To complete the proof, we construct data D that is not justifiable. Consider the following data

D =


(s, ac(d, s)) c ∈ [0, J̃(s+)](
J̃−1(c), ac(d, J̃

−1(c))
)

c ∈ R = (J̃(s+), J̃(1)]

Property 1 implies that J̃(x) is strictly increasing and continuous on (s, 1], and therefore the inverse

J̃−1(c) is well defined for all c ∈ R.

To see why data D is not justifiable, fix a client c ∈ R = (J̃(s+), J̃(1)]. For the client c, the

signal realization xc is such that c = J̃(xc) ≤ Ĵ(xc). The last inequality follows from Property

2. Therefore, the action associated with client c in data D is ac(d, xc) = H. In other words, any

feasible density function J that justifies D must be weakly larger than J̃(x) on [0, 1]. Thus,∫ 1

0
J(x)dx ≥

∫ 1

0
J̃(x)dx >

∫ x∗

0
Ĵ(x)dx+

∫ 1

x∗
cdx− ε > 1

The last inequality follows from the Property 3. This inequality contradicts that the justification

J is feasible and that the decision rule d is justifiable.

Lemma 4. Let 0 < ε <
∫ x∗
0 Ĵ(x)dx +

∫ 1
x∗ cdx − 1. Then there exists a strictly increasing function

J̃ on x ∈ V+ = (s, x∗] such that

1. J̃(x) is strictly increasing and continuous on (s, x∗] with J̃(x∗) = J̃((x∗)−),

2. J̃(x) ≤ Ĵ(x) for all x ∈ (s, x∗],

3.
∫ x∗
s J̃(x)dx >

∫ x∗
s Ĵ(x)dx− ε/2.
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Proof. By Lemma 1, the function Ĵ is non-decreasing on (s, x∗]. Thus, it has at-most countable

number of discontinuities on (s, x∗]. Let {In = (an, bn)}n∈N⊂N be the countable collection of inter-

vals such that Ĵ is continuous on (an, bn), and is discontinuous at both the end-points.

Function J̃ is constructed on (s, x∗] using the following procedure. For each n ∈ N , consider the

interval In = [an, bn]. Define J̃(an) = Ĵ(a−n ) if an > s. And, J̃(bn) = Ĵ(b−n ) if bn < x∗. Moreover,

let J̃(x∗) = J̃((x∗)−). For all x in the interior, choose J̃ to be any strictly increasing, continuous

function such that J̃(x) ≤ Ĵ(x) and
∫
In
J̃(x)dx >

∫
In
Ĵ(x)dx− ε

2n+1 .

Construction of J̃ implies that it satisfies Properties 1 and 2. To complete the proof, it suffices

to show that Property 3 holds.∫ x∗

s
J̃(x)dx =

∑
n∈N

∫
In

J̃(x)dx >
∑
n∈N

∫
In

Ĵ(x)dx−
∑
n∈N

ε

2n+1
=

∫ x∗

s
Ĵ(x)dx− ε/2.

Lemma 5. If the strategic justification J∗(x) ≤ c for all x ∈ [0, 1), then the expert’s strategic

justification is given by J∗(x) = min{f(x) + b+ λ, c}, where −b ≤ λ ≤ 0 and
∫ 1
0 J
∗(x)dx = 1.

Proof. The expert’s problem is given by

max
J
−
∫ 1

0

[
Jc(x)

(
Jc(x)

2
− b
)

+ (c− Jc(x))f(x)

]
dx (1)

subject to J is a non-decreasing, bounded, and atomless function, (monotonicity)∫ 1

0
J(x)dx = 1, (aggregate consistency)

where Jc(x) = min{J(x), c}. If the strategic justification J∗(x) ≤ c for all x ∈ [0, 1), then adding

the constraint J(x) ≤ c to the expert’s problem does not change the optimal solution. Moreover, it

allows us to write Jc(x) = min{J(x), c} = J(x) in the objective function. These modifications to

the expert’s problem reduce it to the problem (MP) with x = 0, x = 1 and m = 1. Thus, using the

proof of Theorem 2, we obtain J∗ proposed in the statement of the lemma.

Lemma 6. The objective function H(J) is strictly convex in J .

Proof. Fix a feasible density J . Observe that H(J) is a linear function of h(J(x)). Therefore, it

suffices to show that the h(J(x)) is strictly convex in z = J(x). The proof is completed by observing

that for any given x, the function h(z) = z( z2 − b) + (c− z)f(x) is strictly convex in z.

Lemma 7. Functionals H, e and U =
∫ x
x ηu(x)u(J)(x)dx are continuously Fréchet differentiable on

L1 ∩B.
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Proof. Recall Result 1 in Appendix B: φ is continuously Fréchet differentiable on L1 ∩ B if φ

is Fréchet differentiable at every J . Thus, it suffices to show that functionals mentioned in the

statement of the lemma are Fréchet differentiable at every J ∈ L1 ∩B.

Consider the functional H : L1 ∩ B → R and fix J ∈ L1 ∩ B. Let g(x) = J(x) − f(x) − b.

Since J(x), f(x) ≤ M for some M > 0, function g(x) ∈ L∞. By Result 2 in the mathematical

preliminaries, function g defines a bounded linear functional H ′J(φ) =
∫ x
x g(x)φ(x)dx. Below, we

establish that H ′J is the Fréchet derivative of H at J .

lim
t→0

|H(J + t)−H(J)−H ′J(t)|
‖t‖1

= lim
t→0

1

‖t‖1

∣∣∣∣∫ x

x

[h(J + t)− h(J) + (J(x)− f(x)− b)] t(x)dx

∣∣∣∣
= lim

t→0

1

‖t‖1

∣∣∣∣∫ x

x

[t(x)/2] t(x)dx

∣∣∣∣ .
≤(a) lim

t→0

‖t‖1‖t‖∞
2‖t‖1

= lim
t→0

‖t‖∞
2

= 0.

Where inequality (a) is obtained by Hölder’s inequality. As t approaches 0 in L1, the Lebesgue

measure of points where t(x) takes non-zero values also approaches to 0. In other words, ‖t‖∞ =

inf{M : µ{x : t(x) > M} = 0} approaches 0. Thus, H is Fréchet differentiable on L1 ∩B.

In a similar manner, functionals e and U are continuously Fréchet differentiable on L1 ∩ B. In

particular, e′J(φ) =
∫ x
x φ(x)dx and U ′J(φ) =

∫ x
x ηu(x)φ(x)dx.

Lemma 8. Function J∗ proposed in the statement of Theorem 2 satisfies regularity conditions.

Proof. The following result (Lemma 1.14 on Page 85 of Hinze et al. (2008)) states the sufficient

conditions for J∗ to satisfy regularity conditions.

Lemma. J∗ is a regular point if e′J∗ : L1 → R is surjective and if there exists J̃ ∈ L1 ∩B such that

e′J∗(J̃ − J∗) =(a) 0,

u(J∗) + u′J∗(J̃ − J∗) ∈(b) int(K),

where K = {v ∈ L2 : v(x) ≤ 0}.

By the last line in the proof of Lemma 7, the Fréchet derivative e′J∗(φ) = −
∫ x
x φ(x)dx. Fix

r ∈ R and let φ = −(x− x)r. Since e′J∗(φ) = r the requirement of surjectivity is satisfied.

Let J̃ ∈ L1 ∩ B be a function such that
∫ x
x J̃(x)dx = m and J̃(x) < c for all x ∈ [x, x]. This

function satisfies condition (a). Since u′J∗(φ) = φ, the left hand side of equation (b) becomes

J∗(x)− c+ J̃(x)− J∗(x) < 0. Therefore, equation (b) is also satisfied.
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To complete the proof, it suffices to show that the function J̃ with the proposed properties exists.

Since m <
∫ x
x min{f(x) + b, c}dx, we have m < c(x − x). Thus, the constant function J̃ = m

x−x

satisfies the proposed properties.

Lemma 9. J∗ is a unique solution to Problem (MP).

Proof. Since J∗ is a solution to the Problem (MP), there exists a ε > 0 such that the following

statement holds: For any J̃ ∈ Y that satisfies ‖J − J̃‖1 < ε, we have H(J∗) ≤ H(J̃).

Suppose Ĵ that differs from J∗ on [x, x] is also a solution to the Problem (MP). Thus H(J∗) =

H(Ĵ). Consider the function J̃ = (1− µ)J∗ + µĴ , where µ > 0 is such that µ‖J∗ − Ĵ‖1 < ε. Since

the constraint set Y is convex, function J̃ ∈ Y. In addition, J̃ satisfies ‖J∗ − J̃‖1 < ε. By the strict

convexity of H in J (Lemma 6), we obtain the inequality H(J̃) < (1− µ)H(J∗) + µH(Ĵ) = H(J∗).

This latter inequality contradicts to the fact that J∗ is a solution. Thus, there does not exists

Ĵ 6= J∗ that is also a solution to the Problem (MP).

Lemma 10. Let m = 1−
∫ 1
xj
f
x∗

(x)dx. If the strategic justification J∗(x) ≤ c for all x ∈ [0, xj), then

the expert’s strategic justification is given by J∗(x) = min{f(x) + b+ λ, f(x), c}, where −b ≤ λ ≤ 0

and
∫ xj
0 J∗(x)dx = m.

Proof. Consider the expert’s problem

max
J
−
∫ xj

0

[
Jc(x)

(
Jc(x)

2
− b
)

+ (c− Jc(x))f(x)

]
dx (P-A)

subject to J is a non-decreasing, bounded & atomless function, (monotonicity)

f(x) ≤ J(x) ≤ f(x) for x ∈ [0, xj), (local consistency)∫ xj

0
J(x)dx = m, (aggregate consistency)

where Jc(x) = min{J(x), c}.

Since the optimal solution J∗(x) ≤ c for all x ∈ [0, xj), replacing the affine constraint J(x) ≤

f(x) with the affine constraint J(x) ≤ min{f(x), c} does not change the optimal solution. Moreover,

it allows us to write Jc(x) = min{J(x), c} = J(x) in the objective function. Before solving this

modified problem, we relax the constraint J(x) ≥ f(x). The resulting problem is analogous to the

problem (MP) with the difference that the affine constraint is now changed to J(x) ≤ min{f(x), c}.

Moreover, x = 0, x = xj , and m = 1 −
∫ 1
xj
f
x∗

(x)dx. Thus, using the proof of Theorem 2, we

obtain J∗ on the interval [0, xj). To complete the proof of Lemma 10, observe that the proposed

J∗ satisfies J∗(x) ≥ f(x) ≥ f(x) for x ∈ [0, xj).
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