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Abstract

We study queueing problems in which agents have heterogeneous per-period
waiting costs (their private information), which can vary with queue position
and are thus dynamic. Our goal is to implement a Rawlsian allocation rule that
minimises the maximum of individual waiting costs among all agents. Under
complete information, we introduce the Just Algorithm, a simple method that
always selects a Rawlsian queue. However, in settings with incomplete informa-
tion where agents possess multidimensional private types i.e., the vector of their
per-period waiting costs for each period, we prove that no Dominant Strategy
Incentive-Compatible (DSIC) mechanism can implement the Rawlsian queueing
rule over an unrestricted domain of agent types. This result underscores the chal-
lenges of implementing allocational fairness in multidimensional environments
even with quasi-linear utility structure. To address this impossibility, we explore
the necessary domain restrictions that allow for the existence of deterministic
DSIC mechanisms. We use the Weak-Monotonicity condition from Bikhchan-
dani et al. (2006) to do this. This condition is both necessary and sufficient for
deterministic DSIC mechanisms to exist in our convex domain setting. Further,
we restrict the domain to one-dimensional private information, where agents’
per-period waiting costs evolve according to publicly known agent-specific func-
tions of their privately known first-period waiting costs. With this restriction,
we construct a DSIC mechanism that implements the Just Algorithm, thereby
ensuring that the allocational fairness objective is achieved. The results pre-
sented add to the growing literature on mechanism design in queueing problems
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by providing insights into the necessary and sufficient conditions for achieving
fairness under strategic behaviour with heterogeneous waiting costs. This work
highlights the complexities involved in mechanism design with multidimensional
types and offers a viable solution within a significant and non-trivial restricted
multidimensional domain with one-dimensional private information.

Keywords: Queueing, Dominant Strategy Implementation, Rawlsian

JEL Classification: D63 , D72 , D81

1 Introduction

Queueing theory, a fundamental area within operations research, examines the intri-

cate dynamics of service systems where jobs are sequentially processed by servers. In

the mechanism design approach to queueing problems, jobs are modelled as strate-

gic agents possessing private information about their characteristics, particularly their

waiting costs. Monetary transfers are allowed and agents have a quasilinear utility.

Because agents incur disutility while waiting, they may strategically report their types

to gain an advantage under the mechanism. This poses challenges for designing mech-

anisms that may aim to optimise aggregate welfare or achieve allocational fairness or

any other desideratum.

Models of queueing have been studied extensively from various game-theoretic per-

spectives. In particular, a growing literature (see Subsection 1.1) on queueing problems

with one-dimensional agents’ types offers insight into mechanisms that are optimal,

fair, or both. Under a similar setup to ours, Mitra (2001) investigate the existence of

dominant strategy incentive-compatible (DSIC) mechanisms under which allocational

efficiency is achievable along with budget-balancedness. A well established notion of

allocational fairness or justice proposed by John Rawls (see in Rawls (1971)) is now

called the Rawlsian allocation. De and Mitra (2017) provides a justification of Rawl-

sian allocation in sequencing problems with each agent having a constant private
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per-period opportunity cost. They introduce an algorithm that proposes an order con-

sistent with Rawlsian fairness.

We consider queueing problems involving a finite set of agents characterised by agent-

specific (hence heterogeneous) waiting cost vectors representing their opportunity

costs. The waiting cost for each agent evolves over discrete periods or queue posi-

tions (hence, dynamic). Notice that an unrestricted cost vector, meaning specifying

one scalar per agent would not allow for a computation of the vector for the agent,

represents the multidimensional type of the agent.

In each period they wait, an agent incurs a (possibly different) cost, and the total

waiting cost is the sum over all periods until service. The agents’ utility is quasi-

linear in total waiting time and monetary transfers. Our initial goal is to introduce

an algorithm which ensures that the allocation is Rawlsian, minimising the maximum

individual waiting cost among all agents.

Under complete information, we develop the Just Algorithm, a simple method that

identifies a Rawlsian queue.

Under incomplete information, the problem essentially becomes one of multidimen-

sional private information. This poses a significant challenge for dealing with unilateral

manipulation. The strategy space of multidimensional-type agents is more sophisti-

cated than the one-dimensional agents case, and hence achieving the objective is a

difficult task. We demonstrate the impossibility of any Dominant Strategy Incentive-

Compatible (DSIC) mechanism implementing our algorithm when agents’ types are

unrestricted. This result thus underscores the difficulty of achieving fairness in multi-

dimensional settings, even within quasi-linear environments like ours.

To address this challenge, we restrict the domain to one-dimensional private infor-

mation1, where agents’ per-period waiting costs evolve according to publicly known,

agent-specific functions based on their initial private cost. This approach allows agents’

opportunity costs to remain heterogeneous and dynamic while simplifying the strategic

1This is because even with two dimensions, the problem still persists. See Example 4.
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complexity of the problem. Within this restricted domain, we propose a DSIC mecha-

nism that successfully implements the Just Algorithm, thereby ensuring the realisation

of the Rawlsian queue.

We present Example 1 to demonstrate the difference between an aggregate cost min-

imising i.e., efficient queue and a maximum individual cost minimising i.e., Rawlsian

queue.

Example 1 Consider a three-agent case, N = {i, j, k}. Let the reported waiting cost vectors

be θi = (2, 11, 1), θj = (3, 4, 1), and , θk = (5, 9, 1). The profile is given by:

θ =


θi

θj

θk

 =


2 11 1

3 4 1

5 9 1

 (1)

Table 1 summarises the problem.

Queue(s)→ ijk ikj jik jki kij kji∑σi

h=1 θih 2 2 13 14 13 14∑σj

h=1 θjh 7 8 3 3 8 7∑σk

h=1 θkh 15 14 15 14 5 5

maxl∈N

∑σl

h=1 θlh 15 14 15 14 13 14∑
l∈N

∑σl

h=1 θlh 24 24 31 31 26 26

Table 1 Individual costs, aggregate costs, and maximum
individual costs in all possible queues for the given θ.

There are a total of six possible queues. Queue ijk means that agent-i is served first, followed

by agent-j in the second position and agent-k in the third position. Whenever agent-i is served

in the first position (in queues ijk and ikj), the cost incurred is equal to the first column entry

in row-i of profile θ, i.e., 2; whenever agent-i is served in the second position (in queues jik and

kij), the cost incurred is equal to the sum of the first column and second column entry in row-

i of profile θ, i.e., 2+11=13; and whenever agent-i is served in the third position (in queues

jki and kji), the cost incurred is equal to the sum of the entries in the first three columns

in row-i of profile θ, i.e., 2+11+1=14. The cost for other agents and queues is calculated
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similarly. Table 1 lists all possible queues in columns and the costs incurred by each of the

agents in that queue. For each of the six queues, we calculate maxl∈N
∑σl

h=1 θlh, which is

the maximum individual cost incurred by any agent in that queue in corresponding rows. For

instance, in the queue kji, agent-i incurs a cost of 14, which is the maximum individual cost

in that queue. There is only one Rawlsian queue: kij ∈ argminσ∈Σ(N) maxl∈N
∑σl

h=1 θlh.

Note that there are two efficient queues: ijk and kij ∈ argminσ∈Σ(N)

∑
l∈N

∑σl

h=1 θlh, but

they are not Rawlsian.

Example 1 demonstrates the distinction between efficient and Rawlsian queues.

In our set-up, an individual, by changing his reports can alter not only his but other

agents allocations including the relative positions of two other agents. Therefore, we

are dealing with a problem with severe externality imposable by agents on the society

of agents. Further, not all queue positions may be accessible to an agent, as his type

is varied over all possible types (where the agent does not get a positive utility from

waiting), keeping the types of other agents fixed. In other words, the cut-off vector for

an agent can have any number of points, and agents may differ in the dimensionality

of their respective cut-off vectors. Example 5 illustrates such a case. Also, one agent

can determine for another agent, several of the cut-off points of that other agent’s

type for distinct queue positions.

Investigating the existence of first best mechanisms under a similar set-up, Mitra

(2001) highlights the importance of Independence Property : In the reduced problem

obtained by making one agent absent from the problem, the relative position of any

other two distinct agents cannot change under the same queueing rule. For queueing

problems with heterogeneous and dynamic costs mechanisms employing the Rawlsian

queueing rule violate the Independence Property. Example 2 demonstrates a three

agent case where the mechanism employing an efficient queueing rule satisfies Inde-

pendence Property while a mechanism employing the Rawlsian queue selected by the

Just algorithm violates it. For the purpose of Example 2, we request the reader to
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accept our claims about which queue is selected by the Just Algorithm. The validity

of claims is very obvious after the definition of the algorithm.

Example 2 Consider the following three agent profile. Let the tie-breaking rule be ≻TB :=

b ≻TB a ≻TB c.

θ =


2 6 10

3 5 7

8 4 2

 →


2 8 18

3 8 15

8 12 14

 (2)

The Just Algorithm selects the queue σJust(θ) := bac. If agent-a is absent from the problem,

then σJust(θ−a) := cb. The presence or absence of agent-a can flip the relative positions of

agent-b and agent-c in the Just queue. Therefore, the Independence Property is violated for

the Rawlsian queue.

Now consider the aggregate cost minimising queue σ∗(θ) := abc. If agent-a is absent from

the problem, then σ∗(θ−a) := bc. Similarly, σ∗(θ−b) := ac and σ∗(θ−c) := ab. Therefore,

the profile θ is an example where the efficient queue satisfies the Independence Property but

Rawlsian queue violates it.

This completes the example.

It would be interesting to identify the exact largest domain restriction under which

the Just Algorithm works in such a way that the queueing problem with heterogeneous

and dynamic opportunity costs satisfies the Independence property. But supposing

that we retain the dynamic nature of per-period costs but homogenise the evolution of

costs across all agents and then assume naturally that the evolution of costs is known

except a one dimensional private information which can be without loss of generality

the first period waiting cost, then the severity goes away, as well as each agent’s cut-

off vector will have one point less than the number of agents, meaning that all queue

positions will be accessible to every agent when his type is varied keeping others fixed.

A natural consequence is that if the evolution of costs has any weakly monotonic prop-

erty along the private dimension then sorting agents in non-increasing order of their
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private type would yield a Rawlsian queue. Moreover, such a queue would also be

an aggregate cost minimising i.e., efficient queue. Following Holmström (1979), such

queues can be implemented if and only if the transfers are VCG transfers. Further-

more, following Mitra (2001), we also know the domain restrictions under which first

best mechanisms are guaranteed. There is not much to inquire once the heterogeneity

in agents’ evolution of types is assumed away. If we assume away the dynamic nature

of costs, we go back to the constant per period waiting cost queueing problems that

began this literature. Heterogeneity and dynamic nature of costs are therefore collec-

tively important.

Example 5 illustrates that, under our domain restriction, agents may be constrained

in the queue positions they can obtain due to the interplay between their cost func-

tions and those of other agents. It highlights that even with one-dimensional private

information, the heterogeneity of agents’ cost evolutions can prevent certain queue

positions from being accessible. This underscores the importance of carefully design-

ing mechanisms that account for these limitations while striving to implement the

Rawlsian queue.

The findings presented here lay the groundwork for a comprehensive exploration of

fair mechanisms in queueing problems with multidimensional private information. Our

work contributes to the literature by highlighting the limitations of implementing

fairness in complex settings and providing a viable solution within a restricted but

significant domain. The rest of the paper is organised as follows. In subsection 1.1,

we review the existing literature to place our work in context, highlighting how our

contributions extend the current understanding of queueing problems and mechanism

design. Section 2 explains the framework of queueing problems with heterogeneous

waiting costs along with some necessary definitions. In Section 3, we develop the

Just Algorithm. Subsection 3.1 contains our impossibility result for the unrestricted
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domain. Section 5 introduces the necessary and sufficient domain restriction charac-

terised by the Weak-Monotonicity condition presented in Bikhchandani et al. (2006).

We propose a transfer rule that implements a Rawlsian queueing rule in dominant

strategies. Section 6 concludes.

1.1 Related Literature

In this subsection, we survey the existing literature on mechanism design in queue-

ing problems, focusing on both strategic and fairness considerations. The mechanism

design literature for optimal resource allocation rules (mechanisms) is rich. Myerson

(1981) studies optimal mechanisms for single-item auctions and one-dimensional con-

tinuous type spaces of agents. In Hartline and Karlin (2007), the authors introduce

optimal mechanism design with one-dimensional continuous types under Dominant

Strategy Incentive Compatibility. The literature covers queueing problems involving

strategic as well as fairness considerations.

Works such as Chun (2006b), Moulin (2007), Mishra and Rangarajan (2007), Maniquet

(2003), Chun (2006a), and Chun (2011) study fairness aspects. These works address

concepts like equitable sequencing, consistency in allocation, and the design of rules

that satisfy various fairness criteria.

We apply the Rawlsian principle of minimising the maximum individual waiting cost.

There is a large literature on social welfare rankings of society’s income that applies

this Rawlsian difference principle (see Barbarà and Jackson (1988), Moulin (1988),

D’Aspremont and Gevers (1977), Hammond (1976), and Sen (1970)).

From a strategic standpoint, researchers have investigated mechanisms that encourage

truthful reporting and efficient outcomes. Mitra (2001) examines efficient and budget-

balanced mechanisms in queueing models, demonstrating that first best outcomes are

attainable under certain conditions when agents have private information about their

waiting costs. Similarly, Dolan (1978) and Suijs (1996) contribute to understanding

8



incentive-compatible mechanisms in queueing systems, focusing on how to align indi-

vidual incentives with social efficiency. Mitra (2002) explores the implementation of

efficient allocation rules when agents have private waiting costs, emphasising the chal-

lenges of designing mechanisms that are both efficient and strategy-proof.

In the mechanism design literature with transfers, this compatibility of incentives and

justice is indeed rare. Conclusions of Deb and Mishra (2014), and Lavi et al. (2003)

show that the Rawlsian allocation is incompatible with implementability in dominant

strategies. Velez (2011) studies the house allocation problems and shows a compati-

bility between incentives and justice. Velez (2011) show that the Generalised Money

Rawlsian Fair solution implements the no envy solution as Nash and Strong Nash

equilibria. Thus, in Velez (2011), incentive compatibility is achieved in the Nash sense

and not in the dominant strategies sense like ours.

However, much of the existing literature tends to focus on agents with one-dimensional

types, where each agent’s private information is represented by a single parameter, typ-

ically their constant per-period waiting cost. This simplification facilitates the design

of mechanisms but does not capture the complexity inherent in scenarios where agents

have multidimensional private information. One departure from this is the work by

Mitra (2001), which addresses efficient and budget-balanced mechanism design in a

multidimensional queueing model. In their study, agents’ waiting costs depend on their

position in the queue, introducing a multidimensional aspect to their private informa-

tion. However, even in Mitra (2001), an unrestricted domain does not admit first best

mechanisms, and two conditions, Independence Property and Combinatorial Property,

characterise the domain admitting first best mechanisms.

Duives et al. (2015) examines the problem in a setting where the optimal mecha-

nism minimises the total expected transfers to all jobs while being Bayesian-Nash

incentive-compatible. Recent progress in deriving optimal mechanisms for multidimen-

sional settings often assumes that the type space is discrete. For example, Armstrong
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(2000) investigates multi-object auction models where valuations are additive and

drawn from a binary distribution (i.e., high or low), highlighting the challenges inher-

ent in multidimensional, discrete type spaces. Similarly, Malakhov and Vohra (2009),

Pai and Vohra (2014), Cai et al. (2012), and Hoeksma and Uetz (2013) make advances

in optimal mechanism design under the assumption of discrete types, acknowledg-

ing the increased complexity compared to one-dimensional cases. Mishra and Roy

(2013) consider deterministic dominant strategy implementation in multidimensional

dichotomous domains with private values and quasi-linear utility, providing insights

into mechanism design when agents have limited types.

The cut-off-based mechanisms are prevalent in varied mechanism design contexts (see

Milgrom (2004), Börgers (2015), and Myerson (1985)). Such cut-off-based mechanisms

were also derived for scheduling problems with multiple machines and varying speed by

Mishra and Mitra (2010) and for multi-dimensional dichotomous domains by Mishra

and Roy (2013).

The complexity of optimal mechanism design with multidimensional types is well-

established, and the challenges are compounded when agents’ private information is

continuous, making strategic reporting a significant challenge. In such environments,

designing mechanisms that are incentive-compatible and satisfy additional desiderata

becomes significantly more difficult. It is not uncommon to find cut-off(s)-based mech-

anisms in settings with multidimensional types. Armstrong (2000) discusses how the

seller can use personalised pricing schemes (akin to cut-off(s)) to maximise revenue.

The mechanisms involve setting different prices or cut-off points for different bid-

ders based on their multidimensional types. Armstrong and Rochet (1999) provides a

comprehensive guide to multidimensional screening models, where a principal designs

mechanisms to screen agents with private information along multiple dimensions. The

authors discuss how cut-off strategies can be employed when agents have heteroge-

neous types and how these cut-off(s) can vary among agents. Thanassoulis (2004)
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examines bargaining and mechanism design when agents have private information

about substitutable goods. The mechanisms involve setting individualised thresholds

for agreement, which can be interpreted as agent-specific cut-off(s). Manelli and Vin-

cent (2007) study revenue-maximising mechanisms in a multi-good monopoly setting.

They show that optimal mechanisms may require offering menus of options (contracts)

where different agents self-select based on their types, leading to differing cut-off(s).

While Mussa and Rosen (1978) is a classic paper on quality differentiation, it intro-

duces the concept of screening consumers through non-linear pricing, which effectively

sets different cut-off(s) for consumers based on their willingness to pay. Other valu-

able works shedding light on personalised threshold mechanisms, which are essentially

cut-off(s)-based mechanisms, include Wilson (1993), Jehiel et al. (1999), etc. These

studies demonstrate that personalised mechanisms are a common feature in such set-

tings. In complex mechanism design problems involving multidimensional types, it is

common for agents to have different numbers of cut-off points due to heterogeneity in

their private information and the design of optimal contracts. In Armstrong (1996),

the optimal pricing scheme involves offering a menu of bundles with different prices,

effectively creating different cut-off(s) for different consumers. The number of cut-off

points (i.e., the number of bundles or pricing tiers) can vary depending on the het-

erogeneity of consumer types. In Rochet and Choné (1998), the optimal mechanism

partitions the type space into different regions (akin to cut-off points). Due to the mul-

tidimensionality and heterogeneity of agents’ types, the number and structure of these

regions can differ among agents, implying that agents may face different numbers of

cut-off(s). In our paper as well, although the private information is restricted to the

first-period waiting cost, the evolution of costs remains heterogeneous across agents,

and hence, the cut-off(s) of agent types to obtain queue positions is not the same. In

fact, there may be agents who can obtain only a subset of the queue positions. Given

the other agents’ types, the functions determining the evolution of costs for an agent
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may exclude him from getting some of the queue positions, no matter what his type

turns out to be. In the queueing and sequencing problems literature, this variation in

cut-off(s) and the variation in the number of cut-off(s) for different agents is a novel

feature. It follows from the heterogeneity of agents’ waiting costs.

Our work contributes to this line of research by exploring fair mechanisms for queue-

ing problems where agents have heterogeneous and position-dependent waiting costs,

which is a setting where agents’ types are multidimensional and continuous. Unlike

previous studies that prioritise efficiency or budget balance, we aim to implement a

Rawlsian allocation rule that minimises the maximum individual waiting cost among

all agents. This focus on Rawlsian fairness distinguishes our work from that of Mitra

(2001), who primarily seek to identify cost structures that enable first best imple-

mentability in terms of aggregate cost minimisation. We present an example to

distinguish the two kinds of queuing rules in Example 1.

Consequently, implementing fairness notions like the Rawlsian criterion in multidi-

mensional settings is difficult and less explored. Bikhchandani et al. (2006) show that

a necessary condition for the existence of deterministic DSIC mechanisms is that the

social choice rule satisfies weak monotonicity (W-Mon) on its domain. Furthermore,

on convex domains, Saks and Yu (2005) establish that W-Mon is also sufficient for

the existence of deterministic DSIC mechanisms implementing the rule. In the context

of queueing problems with unrestricted multidimensional types, which form a convex

set as noted in Mitra (2001), the Rawlsian allocation rule does not satisfy the W-Mon

condition. This lack of compliance leads to the impossibility of designing DSIC mech-

anisms that implement the Rawlsian queueing rule in such settings.

To overcome this impossibility, we introduce a domain restriction to one-dimensional

private information, allowing agents’ per-period waiting costs to evolve according to

publicly known, agent-specific functions based on their initial private cost. This restric-

tion maintains the heterogeneity and dynamic nature of agents’ waiting costs while
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simplifying the mechanism design problem. By doing so, we can design a DSIC mecha-

nism that implements the Rawlsian queue, contributing to the broader understanding

of mechanism design in complex, multidimensional environments.

Our study not only highlights the limitations of implementing fairness in multidimen-

sional settings but also provides a viable solution within a significant and nontrivial

restricted domain. This work opens avenues for further research into necessary and

sufficient conditions for the existence of DSIC mechanisms in such contexts, poten-

tially aligning with the weak monotonicity conditions identified by Bikhchandani et al.

(2006) and others.

2 The Framework

Consider a finite set of agents N = {1, 2, . . . , n} who need to get their jobs processed

using a single server. The server can serve only one agent at a time, and a job, once

started, cannot be stopped unless finished. Each agent’s job takes one unit of time to

get processed. Hence, the server needs to design a queue, which is an assignment of

agents to queue positions 2.

Each agent incurs disutility while waiting for their job to be processed. The cost

incurred by every agent in every period is variable and is the private information of

the agents. A representative agent-i has per-period waiting cost θi1 in the first period,

θi2 in the second period, and so on. θik ∈ R++
3 indicates the kth period unit waiting

cost of agent-i. The vector θi = (θi1, θi2, . . . , θin) ∈ Rn
++ is the waiting cost vector of

agent-i. If agent-i is served in the kth period (or position), his disutility is given by

the sum of waiting cost incurred in each period until job completion, i.e.,
∑k

j=1 θik.

The n×n positive matrix θ = [θik]1≤i,k≤n is called the waiting cost profile. Let Σ(N)

denote the set of all n! possible orderings (queues) over N . We denote by σ(θ) ∈ Σ(N)

2Throughout the paper we only consider assignments that are feasible and maximal. Every agent is
assigned to a position. One and only one agent is assigned to each position. We will refer to these simply
as queues.

3R++ denotes the positive orthant of real line R.
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a particular queue and write σi(θ) = k to mean that agent-i has position k in the

queue σ(θ). A queueing rule is a function σ : Rn×n
++ → Σ(N) that specifies, for each

profile θ, a unique order σ(θ) = (σ1(θ), . . . , σn(θ)) ∈ Σ(N) 4. A transfer rule is a

function τ : Rn×n
++ → Rn that specifies for each profile θ ∈ Rn×n

++ a transfer vector

τ(θ) = (τ1(θ), . . . , τn(θ)) ∈ Rn, where τi(θ) ∈ R is the monetary transfer made to the

agent. The term τi(θ) is negative if the agent pays and positive if he receives mone-

tary compensation.

A mechanism µ = (σ, τ) constitutes a queueing rule σ and a transfer rule τ . The

bundle of any agent-i under the mechanism µ at the reported profile θ is written as

µi(θ) = (σi(θ), τi(θ)).

The agents have quasi-linear utility functions of the form ui(µi(θ)) = −
∑σi(θ)

k=1 θik +

τi(θ). For any mechanism µ = (σ, τ), if the reported profile is (θ̂i, θ−i)
5 when the true

waiting cost vector of agent-i is θi, then the utility of agent-i is ui(µi(θ̂i, θ−i); θi) =

−
∑σi(θ̂i,θ−i)

k=1 θik + τi(θ̂i, θ−i).

QD denotes the class of queueing problems with heterogeneous waiting costs, and

QD(N) denotes an instance of such a problem with a given set of agents (hence pro-

file). If ∀j, k ∈ N, θik = θij , then agent-i has a constant per-period waiting cost. If all

agents have constant per-period waiting cost, we have the class of queueing problems

Q ⊂ QD with constant per-period waiting cost.

The heterogeneous waiting cost setting implies that each agent-i ∈ N reports a vector

θi = (θi1, θi2, . . . , θin) ∈ Rn
++. Hence, the agents are multidimensional, and QD are

problems in multidimensional mechanism design. The profile θ ∈ Rn×n
++ can be visu-

alised as an n× n matrix where agents are labelled along the rows and periods along

4Since the queueing rule is a function and not a correspondence, tie-breaking may be required at some
profiles.

5Here, θ−i ∈ Rn×(n−1)
++ is the set of waiting cost vector announcements by the other (n − 1) agents in

N \ {i}.
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the columns. Thus agent-i’s report is row-i in the matrix.

[θ] =



θ1

θ2
...

θn


=



θ11 θ12 . . . θ1(n−1) θ1n

θ21 θ22 . . . θ2(n−1) θ2n
...

...
. . .

...
...

θn1 θn2 . . . θn(n−1) θnn


(3)

We focus our attention on the queueing rule σR ∈ Σ(N), which minimises the max-

imum waiting cost incurred by any agent out of all possible orders. We call such

a queueing rule Rawlsian in keeping with Rawls’ Maxi-Min6 Principle (see Rawls

(1971)).

Definition 1 Rawlsian queueing rule σR: A queueing rule σR is called a Rawlsian queueing

rule if, for every profile θ ∈ Rn×n
++ , we have:

σR(θ) ∈ arg min
σ(θ)∈Σ(N)

max
i∈N

σi(θ)∑
k=1

θik.

For an example of a queueing problem with heterogeneous waiting costs and identifi-

cation of a Rawlsian queue, see Example 1.

We now turn our attention to defining mechanisms µ = (σ, τ) that implement the

queueing rule σ. As we are interested in truth-telling mechanisms, by the revelation

principle we restrict attention to direct mechanisms. Implementation of a rule σ in

Dominant Strategies via a mechanism (σ, τ) requires that the transfer rule τ be such

that for any agent, truthful reporting (weakly) dominates false reporting irrespective of

what others report. A mechanism µ = (σ, τ) is called a Dominant Strategy Incentive-

Compatible (DSIC) Mechanism if it implements the queueing rule σ in Dominant

Strategies.

6The Maxi-Min Principle seeks to maximise the minimum utility obtained by any agent. In the case of
disutility, it seeks to minimise the maximum disutility obtained by any agent.
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Definition 2 Dominant Strategies Implementation: A mechanism µ = (σ, τ) is Dom-

inant Strategy Incentive-Compatible (DSIC) implementable if ∀i ∈ N , ∀θi, θ̂i ∈ Rn
++, and

∀θ−i ∈ Rn×(n−1)
++ :

ui(µi(θi, θ−i); θi) ≥ ui(µi(θ̂i, θ−i); θi)

3 Unrestricted Domain

In order to implement the Rawlsian queueing rule, we need an algorithm to identify

a Rawlsian queue at all profiles. In algorithm 1, we propose a method that always

selects a unique queue σJA(θ) given any profile θ. This is followed by example 3 to

demonstrate the working of the algorithm in a 4-agent case. It is easy to verify that

the algorithm would select the queue kij when applied to example 1.

Algorithm 1 Just Algorithm

Tie-breaking rule
1: The tie-breaking order is given by ≻TB := 1 ≻TB 2 ≻TB . . . ≻TB n. For any

m ∈ {1, . . . , n}, if

Pn−m+1 ⊆ arg min
j∈Nn−m+1(θ)

m∑
l=1

θjl,

then σJA
i (θ) = m whenever i ∈ Pn−m+1 and either |Pn−m+1| = 1, or ∀j ∈

Pn−m+1, such that j ̸= i, j ≻TB i.
First step

2: Let N1(θ) = N be the set of agents and θ1 = θ be the reported profile for step-1.
Let i ∈ P 1 := argminj∈N1(θ)

∑n
l=1 θjl, such that either |P 1| = 1, or ∀j ∈ P 1, such

that j ̸= i, j ≻TB i. Assign σJA
i (θ) = n. Let N2(θ) = N1(θ) \ {i}. Update θ1 to

θ2 by deleting the last column of θ1 and the row corresponding to such agent-i.
kth step (2 ≤ k ≤ n− 1)

3: Nk(θ) = N \
⋃

i{i} : σJA
i (θ) ∈ {n+ 2− k, n}. Let i ∈ Pn−k+1 :=

argminj∈Nk(θ)

∑n−k+1
l=1 θjl, such that either |Pn−k+1| = 1, or ∀j ∈ Pn−k+1, such

that j ̸= i, j ≻TB i. Assign σi(θ) = n− k + 1. Update θk to θk+1 by deleting the
last column of θk and the row corresponding to such agent-i.
nth step

4: Nn(θ) = N \
⋃

i{i} : σJA
i (θ) ∈ {2, n}. ||Nn(θ)|| = 1. For i ∈ Nn(θ), assign

σJA
i (θ) = 1.
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Example 3 Working of Just Algorithm: Consider a four-agent case. N1(θ) = N =

{i, j, k, l}. Let the reported profile be θ. We use the tie-breaking rule i ≻TB j ≻TB k ≻TB l.

θ = θ1 =



θi

θj

θk

θl


=



3 2 3 4

1 2 3 4

1 2 3 1

1 2 3 4


→



3 5 8 12

1 3 6 10

1 3 6 7

1 3 6 10


= θ̄1 (4)

We have transformed the matrix θ into θ̄1 as follows: ∀p ∈ N,∀q ∈ {1, 2, 3, 4}, θ̄1pq =∑q
m=1 θpm. The cost incurred by agent-p ∈ N when served in period q ∈ {1, 2, 3, 4} can be

read off directly as θ̄1pq. The algorithm works as follows.

In the first step, we calculate each agent’s cumulative waiting costs if served last. Agent-k

has the lowest total cost of 7, so agent-k is assigned to the last position. Thus, σJA
k (θ) = 4.

N2(θ) = N1(θ) \ {k} = {i, j, l}. We update θ1 to θ2 by removing the agent-k row and last

column of θ1.

θ2 =


θi

θj

θl

 =


3 2 3

1 2 3

1 2 3

 →


3 5 8

1 3 6

1 3 6

 = θ̄2 (5)

In the second step, the algorithm calculates the cost of serving each remaining agent in the

third period. The minimum cost that will be incurred by any agent getting served in the last

period is 6 if either agent-j or agent-l is served in period 3. The tie-breaking rule, i ≻ j ≻

k ≻ l, favours agent-j, so he continues to be in the problem for an earlier period assignment,

and agent-l losing the tie is awarded the third position, σJA
l (θ) = 3. We update θ2 to θ3 by

removing the agent-l row and last column of θ2.

θ3 =

θi
θj

 =

3 2

1 2

 →

3 5

1 3

 = θ̄3 (6)

In the third step, agent-j is assigned to period two since 1 + 2 < 3 + 2. Thus, σJA
j (θ) = 2.

There is one remaining agent, and the agent is served in the first period, σJA
i (θ) = 1.

The maximum cost is incurred by agent-k in the queue σJA(θ) and is equal to 7. Of the

24 possible queues, it is easily verified that there are six queues that serve agent-3 in period

four, and the maximum cost in the other 18 queues will be either 12 or 10 depending upon
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which of the other agents, i, j, or l, is served last. All six queues serving agent-k in period

4 are Rawlsian queues, and the Just Algorithm for perceptive agents selected a queue that is

Rawlsian. This example demonstrates that the Just Algorithm systematically assigns positions

to minimise the maximum individual waiting cost, resulting in a Rawlsian queue.

Example 3 demonstrates the step-by-step working of the Just Algorithm, including a

tie-breaking situation for queue position 3 between agents j and l.

Proposition 1 The Just Algorithm always selects a Rawlsian queue.

Proof Consider the set of agents N , with any reported profile θ ∈ Rn×n
++ . Let σJA(θ) be

the queue selected by the Just Algorithm. Let p = argmaxi∈N
∑σJA

i (θ)
k=1 θik. Let agent-p,

incurring the maximum cost in σJA, be served in position-q, i.e. σJA
p (θ) = q.

For brevity of notation, we write ci(σ(θ)) to denote the cost incurred by agent-i in the

queue σ(θ). Suppose that σJA(θ) is not a Rawlsian queue. Let σ(θ) ̸= σJA(θ) be one of

the Rawlsian queues such that the maximum of individual cost borne by agents in σ(θ) is

less than cp(σ
JA(θ)). Suppose cr(σ(θ)) < cp(σ

JA(θ)), where r = argmaxi∈N ci(σ(θ)) =

argmaxi∈N
∑σi(θ)

k=1 θik.

We have the following cases:

Case 1 Given σ(θ) ̸= σJA(θ), let σp(θ) ≥ q. Then, by definition, cr(σ(θ)) = maxi∈N ci(σ(θ)),

and hence, cr(σ(θ)) ≥ cp(σ(θ)). But, cp(σ(θ)) =
∑σp(θ)

k=1 θpk ≥
∑q

k=1 θpk =
∑σJA

p (θ)

k=1 θpk.

This contradicts the claim that cr(σ(θ)) < cp(σ
JA(θ)), thus completing the proof.

Case 2 Let σp(θ) < q. Then at least one of the predecessors of agent-p in the queue σJA(θ)

is served in a position s ≥ q. Let agent-m( ̸= p) be such an agent, i.e., σm(θ) = s ≥ q.

Then, cr(σ(θ)) = maxi∈N ci(σ(θ)) ≥ cm(σ(θ)) =
∑σm(θ)

k=1 θmk =
∑s

k=1 θmk ≥
∑q

k=1 θmk ≥∑q
k=1 θpk. The last inequality follows from the algorithm. This contradicts the claim that

cr(σ(θ)) < cp(σ
JA(θ)).

This completes the proof. □
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3.1 Impossibility Results

Are there DSIC mechanisms that implement the queueing rule σJA? With the unre-

stricted type spaces, no such DSIC mechanism exists.

To demonstrate the impossibility of designing a Dominant Strategy Incentive-

Compatible (DSIC) mechanism under unrestricted types, consider Example 4 with

only two agents.

Example 4 Consider a two-agent case, N = {1, 2}, with reported waiting cost vectors

θ1 = (8, 3) and θ2 = (7, 3). The Just Algorithm assigns σJA
1 (θ) = 1. The utility of agent-1

is u1(σ
JA(θ), τ(θ)) = −(8) + τ1((8, 3), (7, 3)). Suppose agent-1 were to misreport the wait-

ing cost vector as θ̃1 = (5, 4). σJA
1 (θ̃1, θ2) = 2. Therefore, u1(σ

JA(θ̃1, θ2), τ(θ̃1, θ2)) =

−(8 + 3) + τ1(θ̃1, θ2). Implementation in Dominant Strategies demands: u1(σ
JA(θ), τ(θ)) ≥

u1(σ
JA(θ̃1, θ2), τ(θ̃1, θ2)) ≡ 3 ≥ τ1(θ̃1, θ2)− τ1((8, 3), (7, 3)).

If the true waiting cost vector of agent-1 is (5, 4) and the misreport is (8, 3), then imple-

mentation in Dominant Strategies demands: u1(σ
JA(θ̃1, θ2), τ(θ̃1, θ2)) ≥ u1(σ

JA(θ), τ(θ)) ≡

τ1(θ̃1, θ2) − τ1((8, 3), (7, 3)) ≥ 4. One and only one of the two conditions can hold, and

therefore, it is impossible to find any transfer rules τ(θ), τ(θ̃1, θ2)) satisfying both conditions

simultaneously.

Example 4 confirms that, even in a simple two-agent scenario, no transfer rule can

satisfy the conditions required for DSIC implementation when agents have unre-

stricted types. It highlights the challenges of achieving fairness in multi-dimensional

settings and motivates the need for domain restrictions.

Theorem 1 Consider any problem QD(N), where N is the set of agents with reported profile

θ ∈ Rn×n
++ . There is no DSIC mechanism µ = (σJA, τ).
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Proof We prove this by construction of a generic counter-example.

Consider the set of agents N = {1, . . . , n}. Arbitrarily choose any agent-i from N . Con-

struct an admissible waiting cost vector θi ∈ Rn
++ such that θi(k+1) − θik > 0 for some

k ∈ {1, . . . , n − 1}. Because of the unrestricted domain, such construction is allowed. Let

ϵ =
θi(k+1)−θik

5 > 0. We can write θi = (θi1, . . . , θik, θik + 5ϵ, θi(k+2), . . . , θin). Construct

θm = (θi1, . . . , θi(k−1), θik + 4ϵ, θik + 2ϵ, θi(k+2), θin). Construct θ̂i = (θi1, . . . , θi(k−1), θik +

3.5ϵ, θik + 3.5ϵ, θi(k+2), θin)). The vectors θm, θ̂i, and θi differ only in the kth and (k + 1)th

coordinate. Let the report θ−i−m ∈ Rn×(n−2)
++ of agents other than agent-i and agent-m be

such that 8, 7, and 9 hold.

Consider the profiles profile θ = (θi, θm, θ−i−m) and another profile θ̂ = (θ̂i, θm, θ−i−m).

i = arg min
j∈Nn−k(θ)

k+1∑
l=1

θjl =⇒ σJA
i (θ) = k + 1 (7)

m = arg min
j∈Nn−k+1(θ)

k∑
l=1

θjl =⇒ σJA
m (θ) = k (8)

m = arg min
j∈Nn−k(θ)\{i}

k+1∑
l=1

θjl (9)

Equation 7 means that, under the Just Algorithm, when queue position (k + 1) is to be

assigned to one of the agents in the set Nn−k(θ), agent-i has the least cost of getting served

in period (k + 1) amongst the agents in Nn−k. Equation 8 means that at the stage when

queue position k is to be assigned to one of the agents in the set Nn−k+1(θ) = Nn−k(θ)\{i},

agent-m has the least cost of getting served in period k amongst the agents in Nn−k+1(θ).

Equation 9 states that if agent-i had not been present in the set Nn−k(θ), agent-m would

have been the minimum cost agent to get served in period (k + 1).

Note θml = θ̂il, for any l ∈ {1, 2, . . . , k − 1, k + 2, . . . , n}. Given equation 9 is true, 10 holds

because σJA
i (θ̂) > k + 1 cannot be true and

∑k+1
l=1 θ̂il = ϵ +

∑k+1
l=1 θml >

∑k+1
l=1 θml. Also,

given that 8 holds and
∑k

l=1 θ̂il =
∑k

l=1 θml − 0.5ϵ, 11 holds.

m = arg min
j∈Nn−k(θ̂)

k+1∑
l=1

θjl =⇒ σJA
m (θ̂) = k + 1 (10)

i = arg min
j∈Nn−k+1(θ̂)

k∑
l=1

θjl =⇒ σJA
i (θ̂) = k (11)
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Implementation in Dominant Strategies requires 12 ≥ 13 and 14 ≥ 15. Both conditions

together demand: θik + 3.5ϵ = θ̂i(k+1) ≥ τi(θ)− τi(θ̂) ≥ θi(k+1) = θik + 5ϵ.

ui(µi(θ); θi) = −
k+1∑
l=1

θil + τi(θ) (12)

ui(µi(θ̂); θi) = −
k∑

l=1

θil + τi(θ̂) (13)

ui(µi(θ̂); θ̂i) = −
k∑

l=1

θ̂il + τi(θ̂) (14)

ui(µi(θ); θ̂i) = −
k+1∑
l=1

θ̂il + τi(θ) (15)

For any ϵ > 0, it is impossible to find any functions τi(θ), τi((̂θ)) satisfying the implementation

conditions. Hence, for the constructed profiles, allowed by an unrestricted domain, no DSIC

mechanism can exist.

This completes the proof. □

In the following subsection, we identify domain restrictions on the agents’ types that

allow for the existence of DSIC mechanisms.

4 Domain Restrictions: Necessary

While we have achieved a negative result for the existence of DSIC mechanisms

implementing Rawlsian queueing, it is well known that Rawlsian queueing can be

implemented by DSIC mechanisms when the types of agents are restricted to have only

constant per-period waiting costs (see, for example, De and Mitra (2017)). Exactly

what domain restrictions are necessary for the existence of DSIC mechanisms?

Social choice rules that allow the existence of deterministic mechanisms must satisfy a

necessary condition outlined in Bikhchandani et al. (2006) as the Weak-Monotonicity

(W-Mon) condition. While Bikhchandani et al. (2006) establish the necessity of W-

Mon, Saks and Yu (2005) establish the sufficiency of W-Mon over convex domains.

Hence, for queueing problems with unrestricted multidimensional types (which are
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convex as noted in Mitra (2001)), W-Mon is a necessary and sufficient condition for

the existence of deterministic DSIC mechanisms. The W-Mon requirement is the fol-

lowing: If changing one agent’s type (while keeping the types of other agents fixed)

changes the outcome under the social choice function, then the resulting difference in

utilities of the new and original outcomes evaluated at the new type of this agent must

be no less than this difference evaluated at the original type of this agent.

We present below the definition of W-Mon borrowed from Bikhchandani et al. (2006),

in line with our notation. Then, we apply this definition to the utility structure of

agents within the mechanism (σJA, τ) and obtain the necessary and sufficient condi-

tion for the domain of type of agents for which the rule σJA satisfies W-Mon because

we know it does not satisfy W-Mon over an unrestricted domain.

Definition 3 Weak-Monotonicity (W-Mon): A social choice function σ(·) is weakly

monotone (W-Mon) if, for every i ∈ N , θi, θ
′
i ∈ Θi, and every θ−i ∈

∏
j∈N\{i} Θj ,

Ui(σ(θ
′
i, θ−i); θ

′
i)− Ui(σ(θi, θ−i); θ

′
i) ≥ Ui(σ(θ

′
i, θ−i); θi)− Ui(σ(θi, θ−i); θi) (16)

Bikhchandani et al. (2006) prove (Theorem 2 in their paper) that a social choice

function on a completely ordered, bounded domain is truthful if and only if it is

weakly monotone. The bounded restriction implies that θij is finite ∀i ∈ N and ∀j ∈

{1, . . . , |N |}. The complete ordering restriction is already satisfied for our framework.

All agents prefer a queue position earlier than later.7 We let the rule be σJA and

restrict θi, θ
′
i ∈ Θi ⊂ (0,∞)n, then condition 16 requires, for every i ∈ N , θi, θ

′
i ∈ Θi,

and every θ−i ∈
∏

j∈N\{i} Θj ,

−
σJA
i (θ′

i,θ−i)∑
k=1

θ′ik − (−
σJA
i (θi,θ−i)∑

k=1

θ′ik) ≥ −
σJA
i (θ′

i,θ−i)∑
k=1

θik − (−
σJA
i (θi,θ−i)∑

k=1

θik) (17)

7If for some period some agent has unit waiting cost zero, this does not hold, but such indifference must
hold for all types of agents to contradict complete ordering, which is not the case.
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σJA
i (θi,θ−i)∑

k=σJA
i (θ′

i,θ−i)+1

θ′ik ≥
σJA
i (θi,θ−i)∑

k=σJA
i (θ′

i,θ−i)+1

θik (18)

Without loss of generality, let σJA
i (θ′i, θ−i) < σJA

i (θi, θ−i), then condition 18 must

hold ∀k ∈ {σJA
i (θ′i, θ−i) + 1, σJA

i (θi, θ−i)}. It is necessary that this be true for k =

σJA
i (θ′i, θ−i)+1 = σJA

i (θi, θ−i). That is θ
′
ik ≥ θik. If it holds for all such k ∈ {2, . . . , n},

then it is straightforward to show that condition 18 must be satisfied. Notice that the

W-Mon condition does not include transfers, and especially in the case of quasi-linear

utilities, all types of agents evaluate every equal difference in transfer exactly the same.

The Bikhchandani et al. (2006) result tells us the restriction of types for which σJA is

implementable but does not tell us anything about the transfer. Since the result must

hold for all profiles θ−i, we can always construct profiles for which σJA
i (θi, θ−i) can

take any value from {2, . . . , n}. Whenever σJA
i (θ′i, θ−i) + 1 = σJA

i (θi, θ−i), we must

have θ′ik ≥ θik, ∀k ∈ {2, . . . , n}. These restrictions do not apply to agents’ reports for

the first period. Hence, we let the agents be multidimensional but restrain the private

information to first-period waiting costs only. In subsection 4.1, we propose a sufficient

restriction on their admissible types, which allows for the existence of deterministic

DSIC mechanisms.

4.1 One-Dimensional Private Information: Necessary and

Sufficient Condition

Consider the set of agentsN = {1, . . . , n}. The agents can report their one-dimensional

type θi ∈ Θi ⊆ R++ \ {∞} and cost function fi(k, θi), where k is the period for

which cost is being reported. If fi(·, θi) is unrestricted, an agent can simply report

fi(k, θi) = θik as in the preceding discussion. We allow different agents to have different

cost functions, but these are assumed to be public information and hence not a part

of agents’ strategic reports.
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Proposition 2 For a queueing problem QD, with a set of agents N , each with a type θi ∈

Θi ⊆ R++ \ {∞} and cost functions fi(k, θi) where k ∈ {1, . . . , n}, the queueing rule σJA(θ)

is implementable in Dominant Strategies if and only if, ∀i ∈ N, k ∈ {1, . . . , n}, θ−i ∈
∏

j ̸=i Θj

and ∀ θi, θ
′
i ∈ Θi, the functions fi(k, θi) : {1, . . . , n} ×Θi → R++ \ {∞} satisfy:

σJA
i (θi, θ−i) > σJA

i (θ′i, θ−i) =⇒
σJA
i (θi,θ−i)∑

k=σJA
i (θ′

i,θ−i)+1

fi(k, θ
′
i) ≥

σJA
i (θi,θ−i)∑

k=σJA
i (θ′

i,θ−i)+1

fi(k, θi) (19)

Proof From the restriction θi ∈ Θi ⊆ R++ \ {∞}, the domain of types is bounded and

complete, so the necessity and sufficiency of W-Mon follows from the (Theorem 2) result of

Bikhchandani et al. (2006). The sufficiency of W-Mon also follows from the result of Saks and

Yu (2005) since our domain is convex, as already noted in Mitra (2001) for the unrestricted

domain. It only remains to prove that the queueing rule σJA, which is deterministic, satisfies

W-Mon if condition 19 holds. Suppose the antecedent σJA
i (θi, θ−i) > σJA

i (θ′i, θ−i) is true,

then
∑σJA

i (θi,θ−i)
k=1 fi(k, θi) ≤

∑σJA
i (θi,θ−i)

k=1 fi(k, θ
′
i), in accordance with the algorithm. If

condition 19 holds, then we have:

σJA
i (θi,θ−i)∑

k=σJA
i (θ′

i,θ−i)+1

fi(k, θ
′
i) ≥

σJA
i (θi,θ−i)∑

k=σJA
i (θ′

i,θ−i)+1

fi(k, θi)

−
σJA
i (θ′

i,θ−i)∑
k=1

fi(k, θ
′
i) +

σJA
i (θi,θ−i)∑

k=1

fi(k, θ
′
i) ≥ −

σJA
i (θ′

i,θ−i)∑
k=1

fi(k, θi) +

σJA
i (θi,θ−i)∑

k=1

fi(k, θi)

Ui(σ
JA
i (θ′i, θ−i); θ

′
i)− Ui(σ

JA
i (θi, θ−i); θ

′
i) ≥ Ui(σ

JA
i (θ′i, θ−i); θi)− Ui(σ

JA
i (θi, θ−i); θi)

In the last step of the calculation, we add the transfer terms τi(θ
′
i, θ−i)− τi(θi, θ−i) to both

sides. Irrespective of the true type of agent-i, this transfer difference is evaluated as the same

difference in utility by any agent type. If condition 19 holds, then the queueing rule σJA

satisfies W-Mon.

This completes the proof. □
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The necessary restrictions on the domain obtained by us are not easy to use in the

search for mechanisms. More structure over the domain is needed to be able to iden-

tify mechanisms that are DSIC and implement the rule σJA. Section 5 furthers the

discussion in this regard.

5 Domain Restriction: One-Dimensional Private

Information

When per-period waiting costs are constants, i.e., for all agents i ∈ N , θik = θi ∈ R+

for all k ∈ {1, 2, . . . , n}, then the Rawlsian queueing rule (which coincides with the

aggregate cost-minimising queueing rule) can be implemented by DSIC mechanisms

(see Mitra (2001), Chun (2006a), Hashimoto and Saitoh (2012), etc.).

5.1 Domain Restriction

We restrict the domain to a one-dimensional private-information setting but not

constant per-period costs. We use the notation fi(k, θi) > 0 to denote the kth-

period waiting cost of agent-i of one-dimensional private-type θi ∈ R+. F k
i (θi) =∑k

l=1 fi(l, θi) denotes the total waiting cost of agent-i when he waits for k ∈ {1, . . . , n}

periods. We put the following restrictions:

1. (public-information) The functions fi(k, ·) are public information for all periods

k ∈ {1, . . . , n} and all agents i ∈ N . In general, fi(k, θi) ̸= fj(k, θi) for two distinct

agents i and j 8.

2. (private-information) The only private information is the first-period waiting

cost for all agents, i.e., fi(1, θi) = θi for all agents-i ∈ N .

8Since fi(k, ·) ̸= fj(k, ·) in general, the functions also specify a type for each agent, but this is public
information.
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3. (per-period costs) The functions fi(k, ·) are continuous and non-decreasing in

their second argument, satisfying lim
θi→0

fi(k, θi) → 0 for all agents i ∈ N and for all

periods k ∈ {2, . . . , n}.

The literature on evolving opportunity costs can benefit by restricting attention to

simpler functions such as linear or quadratic. However, we do not put any further

restrictions on the cost structures for two reasons: one, that the heterogeneity or

dynamism of cost structure leaves almost nothing to explore for a Rawlsian queue

in light of the discussion in Section 1, and second, in healthcare, triage scheduling,

dynamic pricing for ride sharing apps etc. there are cost structures that evolve with

not much discipline. Further, as in Mitra (2001), who investigates large classes of cost

structures, we see no motivation to limit our inquiry, except perhaps some plausible

particular application where cost structures are known to be of a certain kind.

5.2 Domain Restriction: Implications

The class of queueing problems with the restricted domain is QD =<

N , {fi(k, ·)}i∈N >. Given our domain restriction, the Just Algorithm works as fol-

lows: σJA
i (θi, θ−i) = n if i = argminj∈N Fn

j (θj), where tie(s) are assumed to be

resolved. Then, σJA
k (θi, θ−i) = n− 1 if k = argminj∈N\{i} F

n−1
j (θj), where tie(s) are

assumed to be resolved. By looking at the allocation of positions, we cannot decide

the order between Fn−1
i (θi) and Fn−1

k (θk). Suppose agent-i reports a very high type

θ̄i such that for some fixed θ−i, σi(θ̄i, θ−i) = 1. Such θ̄i exists because F k
i (θi) are

increasing functions of θi for all periods k ∈ {1, . . . , n} and θ−i is fixed. Similarly,

since ∀i ∈ N , lim
θi→0

Fn
i (θi) → 0 has full range in R+, for some arbitrarily small θi,

σJA
i (θi, θ−i) = n. However, unlike a queueing problem with constant per-period costs,

such domain restriction does not guarantee, for a fixed θ−i, that agent-i can obtain

every queue position by reporting some waiting cost. Example 5 illustrates a case

where agent-3 can never get queue position-2.
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Example 5 An Illustration of Limited Accessibility to Queue Positions Consider a

set of three agents, N = {1, 2, 3}. Let the tie-breaking rule be 1 ≻TB 2 ≻TB 3. Fix θ1 = 5

and θ2 = 7. The cost functions are given by:

• Agent 1: f1(2, θ1) = θ1, f1(3, θ1) = 18θ1.

• Agent 2: f2(2, θ2) = 2θ2, f2(3, θ2) = 11θ2.

• Agent 3: f3(2, θ3) = 3θ3, f3(3, θ3) = 3θ3.

We examine how agent 3’s reported type θ3 affects their position in the queue.

θ =


5

7

θ3

 =


5 5 90

7 14 77

θ3 3θ3 3θ3

 →


5 10 100

7 21 98

θ3 4θ3 7θ3


If agent-3 reports his cost of waiting for three periods more than 98, only then will he not be

served in the third position. If he is not served third, then agent-2 will be served third.

Agent-3 cannot be served in the second position if he reports a waiting cost for two periods

totalling more than 10. But as agent-3 changes his reports from zero to any arbitrarily large

number, he crosses the threshold waiting cost of 10 for position-2 before he can cross the

threshold waiting cost of 98 for position-3. An agent can be served in an earlier position only

if he reports his total waiting cost for all later positions more than the respective threshold

waiting costs.

This example demonstrates that agent 3 cannot access position 2 regardless of their reported

type. The structure of the cost functions and the agents’ reported types result in agent 3 being

assigned either to position 3 (when θ3 ≤ 14) or position 1 (when θ3 > 14), but never to

position 2. This concludes the example.

Consider the profile (θ̄i, θ−i) with σJA
i (θ̄i, θ−i) ̸= n. For every agent k ̸= i, let

σJA
k (θ̄i, θ−i) = k̂. The cost cut-off(s) of agent-i for all positions k̂ ∈ {2, . . . , n} are

defined as the costs of the agent getting served in position-k̂ (=F k̂
k (θk)). Since θ−i is

fixed, we suppress the dependence of cut-off on θ−i for ease of notation. We now define

a cost cut-off for agent i for queue positions k̂.
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Definition 4 (Cost Cut-off of agent-i for position k̂) For a given θ−i and per-period cost

functions fj(k̂, θk) for all agents j ∈ N and all positions k̂ ∈ {2, . . . , n}, the cost cut-off of

agent-i for position-k̂ is (F k̂
k (θk)).

For every position k̂ ∈ {2, . . . , n}, we can calculate agent-i’s type cut-off as the highest

type that agent-i should have been so that he could obtain position k̂ in the sequence

or the lowest type that he should have been to obtain a position earlier than k̂. This

type is found by equating agent-i’s cost of waiting for k̂ periods to the cost cut-off for

that position.

Definition 5 (Type Cut-off of agent-i for position k̂) For a given θ−i and per-period cost

functions fj(k̂, θk) for all agents j ∈ N and all positions k̂ ∈ {2, . . . , n}, the type cut-off of

agent-i for position-k̂ is θk̂i = (F k̂
i )

−1(F k̂
k (θk)).

Agent-i can obtain a position earlier than k̂ only if his reported type θi ≥ θk̂i
9.

However, this is not sufficient. Because of the way that the Just Algorithm works, an

agent cannot get a position k̂ − 1 before passing the cost cut-off(s) for all positions

k̂, . . . , n. If agent-i reporting θi obtains a position k̂ − 1, then it must be the case

that θi ≥ θpi for all p ∈ {k̂, . . . , n}. Given θ−i, the set of type cut-off of agent-i for all

positions is the set = {θni , . . . , θ2i }. But there is no position-based ordering of the cut-

off(s). For any report, θi ∈ [0, θk̂i ), agent-i cannot get a position earlier than position

k̂, which means that if θk̂i ≤ θni , then as agent-i’s report increases from zero to θni ,

his position continues to be position-n, and if his report increases any further, he has

already crossed the cost cut-off for period k̂. Therefore, he never obtains position k̂ for

any of his possible reports. Agent-i may be the agent with the lowest cost in position

k̂ for his report θi ∈ [0, θk̂i ], but the agent only obtains the last position for all of his

reports θi ∈ [0, θni ]. If θ
k̂
i ≤ θni , then [0, θk̂i ] ⊆ [0, θni ]. Every type cut-offs of agent-i

9In case of a tie, the tie-breaking rule decides the position of the agent. But the type cut-off(s) can be
calculated without considering explicitly how ties are resolved.
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for all positions k̂ satisfying θk̂i ≤ θni are irrelevant. Since F k
i (θi) =

∑k
l=1 fi(l, θi) =

θi +
∑k

l=1 fi(l, θi) is increasing in θi, every agent-i, for any θ−i, can also obtain the

first position in the sequence selected by Just Algorithm. Consider the set of type cut-

off(s) of agent-i for all positions := {θni , . . . , θ2i }. We order this set in decreasing order

of sequence positions to obtain the vector (θni , . . . , θ
2
i ). From this vector, we delete all

irrelevant type cut-off(s) θk̂i ≤ θni to obtain the reduced vector (θm0
i = θni , . . . , θ

s
i ) for

some s ∈ {2, . . . , n−1} where the elements are ordered in decreasing order of sequence

positions. Let θm1
i be the second element in the reduced vector (θm0

i = θni , θ
m1
i , . . . , θsi ).

From this reduced vector, we preserve θm0
i = θni and delete all irrelevant type cut-

off(s) θk̂i ≤ θm1
i to obtain the reduced vector (θni , . . . , θ

s
i ) for some s ∈ {2, . . . , n − 1}

where the elements are ordered in decreasing order of sequence positions. We continue

such reduction iteratively until we get a vector (θni = θm0
i , θm1

i , . . . , θ
mM(i)

i ) for some

M(i) ∈ {0, . . . , n− 2} where the elements are ordered in decreasing order of sequence

positions and θml
i < θ

ml+1

i for all l ∈ {0, . . . ,M(i)− 1}. This is the type cut-off vector

for agent-i. Next, we transform these cost cut-offs into type cut-offs by inverting the

function F k̂
i .

Definition 6 (Type Cut-off vector of agent-i) For all agents j ∈ N , a given θ−i, per-period

cost functions fj(k̂, θk), and all positions k̂ ∈ {2, . . . , n}, agent-i’s type cut-off vector is defined

as θcfsi := (θni = θm0
i , θm1

i , . . . , θ
mM(i)

i ) where every θml
i is a type cut-off of agent-i for some

position m̂l ∈ {2, . . . , n} satisfying m̂l > m̂l+1 and θml
i < θ

ml+1

i for all l ∈ {0, . . . ,M(i)−1}.

Every agent can obtain the first and the last position for some report. The number of

positions that agent-i can obtain by varying his reports is equal toM(i)+2. If agent-i’s

report θi ∈ [0, θni ]
10, he is served last. If θi ∈ (θml

i , θ
ml+1

i ), then σJA
i (θi, θ−i) = m̂l+1

because agent-i has more than the minimum cost in all positions after m̂l+1, and

he has the minimum cost for that position. The case presented in Example 5 is one

10If his reported cost is tied with any cut-off, the tie-breaking rule ≻TB allocates the position to agent-i.
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where agent-3 has only one type Cut-off which is 14. As a result only two positions

are obtainable by agent-3. Whenever his type is below 14 he is served last, else first.

We define the transfer rule τJA below.

Definition 7 The transfer rule τJA(θi, θ−i) for any profile (θi, θ−i) ∈ Rn
+, every agent-i ∈ N

with cut-off(s) vector θcfsi := (θni = θm0
i , . . . , θ

mM(i)

i ), and arbitrary hi(θ−i) : Rn−1
+ → R is

defined as:

τJAi (θ) =


hi(θ−i) if σJA

i (θ) = n

hi(θ−i) −
∑l

r=1

∑m̂r−1

j=m̂r+1 fi(j, θ
mr−1

i ) if σJA
i (θ) = m̂l

(20)

The transfer of agent-i according to the rule τJA is the following:

• If the agent is served last, he gets an arbitrary amount h(θ−i).

• If his position (say position-k = m̂r) is not the last position, then for each position

k + 1, k + 2, . . . , m̂r−1 where θ
mr−1

i is the lowest type for which agent-i could get

position m̂r, he pays the cost
∑m̂r

j=k+1 fi(j, θ
mr−1

i ), for all positions m̂r−1+1, m̂r−1+

2, . . . , m̂r−2, the lowest type he should have been to be served in position m̂r−1 is

the cut-off θ
mr−2

i , so he pays the cost
∑m̂r−2

j=m̂r−1+1 fi(j, θ
mr−2

i ), and so on.

We state our main result as Theorem 2.

Theorem 2 For any QD =< N , {fi(k, ·)}i∈N > and any profile θ ∈ Rn
+, the mechanism

µJA = (σJA, τ) is DSIC if and only if the transfer rule is τJA.

Proof For any arbitrary agent i, fix any θ−i ∈ Rn−1
+ . Consider any mechanism µ = (σJA, τ).

Let µi(θ) = (σJA
i (θ), τi(θ)) denote agent-i’s bundle under the mechanism µ when profile θ

is reported. Let ui(µi(θ
′
i, θ−i); θi) denote the utility of agent-i from the bundle µi(θ

′
i, θ−i)

when his true type is θi and he reports θ′i.

For any k ∈ {1, . . . , n}, let θki , θ̂
k
i ∈ R+ be any two reports of agent-i such that σJA

i (θki , θ−i)
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=σJA
i (θ̂ki , θ−i) = k 11.

ui(µi(θ
k
i , θ−i); θ

k
i ) = −F k

i (θ
k
i ) + τi(θ

k
i , θ−i) (21)

ui(µi(θ̂
k
i , θ−i); θ

k
i ) = −F k

i (θ
k
i ) + τi(θ̂

k
i , θ−i) (22)

ui(µi(θ̂
k
i , θ−i); θ̂

k
i ) = −F k

i (θ̂
k
i ) + τi(θ̂

k
i , θ−i) (23)

ui(µi(θ
k
i , θ−i); θ̂

k
i ) = −F k

i (θ̂
k
i ) + τi(θ

k
i , θ−i) (24)

τi(θ
k
i , θ−i) = τi(θ̂

k
i , θ−i) (25)

If the mechanism µ implements the queueing rule σJA in Dominant Strategies, then 21 ≥ 22

and 23 ≥ 24. The transfer of any agent must be independent of his own report if his position

in the queue does not change, i.e., condition 25 is necessary.

We now consider an agent’s reports when the reports lead to different queue positions. Since

θ−i is fixed, there is some agent j satisfying: j = argminl∈N\{i} F
n
l (θl)

12. Let θni be the

highest report. θi ∈ R+ such that i ∈ argminl∈N Fn
l (θl)

13. Notice that θni is the lowest report

for which agent-i can obtain a better position than the last position if the tie-breaking rule

favours him. Therefore Fn
i (θni ) = Fn

j (θj) = minl∈N Fn
l (θl), and hence θni = Fn−1

i (Fn
j (θj) -

the cut-off for agent-i for position-n. Implementation in Dominant Strategies would demand

that the utility of agent-i be the same no matter how the tie is resolved, i.e., the mechanism

be essentially single-valued. If this is not true, then agent-i can misreport to be in a tie (or

not in a tie) to get the advantage (or avoid the disadvantage) of the tie-breaking rule. Hence

we can calculate his utility i at position-n and the position he would get if the tie is resolved

differently. The tie-breaking rule is the same, but with an arbitrary choice of agent-i and

arbitrary θ−i, all cases need consideration. Let m̂1 denote the position of agent-i if the tie is

resolved in his favour. This demands that the utilities in equation 26 and in 27 be equal. Let

θm1
i denote the highest report for which σJA(θi, θ−i) may be m̂1.

ui(µi(θ
n
i , θ−i); θ

n
i ) = −Fn

i (θni ) + τi(θ
n
i , θ−i) (26)

ui(µi(θ
n
i , θ−i); θ

n
i ) = −F m̂1

i (θni ) + τ̃i(θ
n
i , θ−i) (27)

11It can be verified that σJA(θk
i , θ−i) = σJA(θ̂k

i , θ−i)
12If there are more than one such agents, consider any such agent arbitrarily.
13The functions Fk

i (θi) are increasing functions of θi. Hence, we can find a unique θi corresponding to

any value of Fk
i (θi) for all periods, all agents, and all reports θi.

31



Thus, another necessary condition for the transfer rule is condition 28.

τi(θ
n
i , θ−i)− τ̃i(θ

n
i , θ−i) = Fn

i (θni )− F m̂1
i (θni ) =

n∑
l=m̂1+1

fi(l, θ
n
i ) (28)

Suppose θ
ml−1

i is the lowest type of agent-i so that he may obtain position m̂l ∈ {1, . . . , n−1}

and the highest type so that he can obtain position m̂l−1 ∈ {2, . . . , n}. Clearly, m̂l < m̂l−1

and θ
ml−1

i is the type cut-off of agent-i for position m̂l−1. Since DSIC demands essentially

single-valuedness, we need the utilities in equations 29 and 30 to be equal.

ui(µi(θ
ml−1

i , θ−i); θ
ml−1

i ) = −F
m̂l−1

i (θ
ml−1

i ) + τi(θ
ml−1

i , θ−i) (29)

ui(µi(θ
ml−1

i , θ−i); θ
ml−1

i ) = −F m̂l
i (θ

ml−1

i ) + τ̃i(θ
ml−1

i , θ−i) (30)

Thus, another necessary condition for the transfer rule is condition 31 for all positions m̂l

and m̂l−1 obtainable by agent-i.

τi(θ
ml−1

i , θ−i)− τ̃i(θ
ml−1

i , θ−i) = F
m̂l−1

i (θ
ml−1

i )− F m̂l
i (θ

ml−1

i ) =

m̂l−1∑
l=m̂l+1

fi(l, θ
ml−1

i ) (31)

From conditions 25 and 31, if θi ∈ R+
14 is any report such that σJA(θi, θ−i) = m̂l, then for

all obtainable positions m̂l ∈ {1, . . . , n− 1}, equation 32 is necessary.

τi(θi, θ−i) = τ̃i(θ
ml−1

i , θ−i) = τi(θ
ml−1

i , θ−i)−
m̂l−1∑

l=m̂l+1

fi(l, θ
ml−1

i ) (32)

From equation 32, we have τ̃i(θ
ml−1

i , θ−i) = τi(θ
ml
i , θ−i).

Suppose θ̄i is such that σJA
i (θ̄i, θ−i) = m̂r for some r ∈ {0, . . . ,M(i)}. From 32,

τi(θ̄i, θ−i) = τ̃i(θ
mr−1

i , θ−i) = τi(θ
mr
i , θ−i). Let m̂r > m̂l, without loss of generality.

ui(µi(θi, θ−i); θi ) = −F m̂l
i (θi) + τi(θi, θ−i) = −F m̂l

i (θi) + τi(θ
ml
i , θ−i) (33)

ui(µi(θ̄i, θ−i); θ̄i ) = −F m̂r
i (θ̄i) + τi(θ̄i, θ−i) = −F m̂r

i (θ̄i) + τi(θ
mr
i , θ−i) (34)

ui(µi(θ̄i, θ−i); θi) = −F m̂r
i (θi) + τi(θ̄i, θ−i) = −F m̂r

i (θi) + τi(θ
mr
i , θ−i) (35)

ui(µi(θi, θ−i); θ̄i) = −F m̂l
i (θ̄i) + τi(θi, θ−i) = −F m̂l

i (θ̄i) + τi(θ
ml
i , θ−i) (36)

14We know from the way the Just Algorithm works that such θi ∈ [θ
ml−1
i , θ

ml
i ]
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The DSIC condition requires that 26 ≥ 35 and 27 ≥ 36, which together demand condition 37.

m̂r∑
l=m̂l+1

fi(l, θi) ≥ τi(θ
mr
i , θ−i)− τi(θ

mr
i , θ−i) ≥

m̂r∑
l=m̂l+1

fi(l, θ̄i) (37)

Let {1, . . . , m̂l, . . . , m̂r, . . . , n} be obtainable positions for agent-i.

Also, let (θni , . . . , θ
mr
i , . . . , θml

i , . . . , θ
mM(i)

i ) be the type cut-off(s) vector. Let l = r + t for

some 1 ≤ t ≤ M(i)− 1. Then θmr
i ≤ θ

mr+t

i ≤ θml
i for all t.

The cost functions fi(k, θi) are non-decreasing for all k ∈ {2, . . . , n}. Hence, the inequality

37 is always valid. Moreover, if the necessary conditions 25, 31, and 32 hold, then condition

37 always holds and is thus not a binding condition. This means that if the mechanism is

DSIC for reports that change obtainable positions locally, then the mechanism is also DSIC

for reports that change the agent’s position globally. Adding condition 28 to other necessary

conditions, we get τ = τJA. This completes the only-if part of the proof. It is easy to verify

that the transfer rule τJA satisfies conditions 25, 28, 31, and 32. The verification is left to

the reader.

This completes the proof. □

Remark 1 In the transfer rule τJA, notice that if for every agent-i ∈ N and ∀θ−i ∈ R++,

we let hi(θ−i) = 0, then the sum of transfers is negative. Therefore, the identified class of

mechanism includes feasible mechanisms.

We end this section with a demonstration of the proposed mechanism. We take the

same values as in Example 5 and demonstrate that agent-2 cannot gainfully misreport.

Example 6 Consider three agents N = {1, 2, 3}. Let the tie-breaking rule be 1 ≻TB 2 ≻TB 3.

Let θ1 = 5, θ2 = 7, and θ3 = 15. The cost matrix is given below.

θ =


θ1

θ2

θ3

 =


θ1 θ1 18θ1

θ2 2θ2 11θ2

θ3 3θ3 3θ3

 →


θ1 2θ1 20θ1

θ2 3θ2 14θ2

θ3 4θ3 7θ3

 =


5 10 100

θ2 3θ2 14θ2

15 60 105


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If agent-2 reports truthfully, then he is served in position 3 and obtains a transfer of h2(θ−2).

His total utility is u2(σ
JA
2 (θ), τJA2 (θ)) = h2(θ−2)− 98.

If agent-2 reports his type θ′2 ∈ (0, 10014 ], then σJA
2 (θ′2, θ−2) = 3, and τJA2 (θ′2, θ−2) = h2(θ−2).

Therefore, u2(σ
JA
2 (θ′2, θ−2), τ

JA
2 (θ′2, θ−2); θ2) = −98 + h2(θ−2) = u2(σ

JA
2 (θ), τJA2 (θ)).

If he reports his type θ̂2 ∈ ( 10014 , 20], then σJA
2 (θ̂2, θ−2) = 2 and τJA2 (θ̂2, θ−2) = h2(θ−2) −

11( 10014 ). Therefore, u2(σ
JA
2 (θ̂2, θ−2), τ

JA
2 (θ̂2, θ−2); θ2) = −21+h2(θ−2)−11( 10014 ) ≈ −99.57+

h2(θ−2) < u2(σ
JA
2 (θ), τJA2 (θ)).

Similarly, for any report θ̄2 ∈ (20,∞), σJA
2 (θ̄2, θ−2) = 1 and τJA2 (θ̄2, θ−2) = h2(θ−2) −

11( 10014 )− 2(20). Therefore, u2(σ
JA
2 (θ̄2, θ−2), τ

JA
2 (θ̄2, θ−2); θ2) = −7 + h2(θ−2)− 11( 10014 )−

2(20) ≈ −125.57 + h2(θ−2) < u2(σ
JA
2 (θ), τJA2 (θ)).

Hence, with the transfer rule τJA, agent-2 can never gainfully manipulate. The same may

be verified for other agents and considering other true types of agent-2. This completes the

example.

Example 6 demonstrates the working of the proposed mechanism in a simple three-

agent case.

6 Conclusion

In this paper, we examined the challenge of implementing a Rawlsian queueing rule

in queueing problems where agents have heterogeneous per-period waiting costs. We

introduced the Just Algorithm, a straightforward method that consistently selects a

Rawlsian queue under complete information by minimising the maximum individual

waiting cost among all agents. Our primary objective was to design mechanisms that

implement the Rawlsian queue selected by the Just Algorithm in Dominant Strate-

gies, thereby ensuring allocational fairness even when agents act strategically.

We found that within the unrestricted domain of agents’ types, where agents possess

multidimensional private information, no Dominant Strategy Incentive-Compatible

(DSIC) mechanism exists that can implement the Rawlsian queue selected by the Just
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Algorithm. This negative result underscores the inherent challenges of designing fair

mechanisms in multidimensional environments, even under quasilinear preferences.

To address this impossibility, we introduced a domain restriction to one-dimensional

private information. Specifically, while agents differ in how their per-period waiting

costs evolve over periods, this aspect is public information. Their private informa-

tion is confined to their first-period waiting cost. This restriction is nontrivial because

it does not allow us to identify a Rawlsian queue solely by ordering agents’ private

information, contrasting with the achievements in seeking first best mechanisms as

discussed in Mitra (2001). If agents differ only in the private type and the publicly

known aspect is identical for all agents, then the aggregate cost-minimising queue is

also a Rawlsian queue, and results from Mitra (2001) would apply. But we did not

impose any such restriction.

Within the restricted domain, we identified a class of DSIC mechanisms that imple-

ment the Rawlsian queueing rule in dominant strategies. An interesting observation is

that while the cut-off(s) approach is well studied in the mechanism design literature,

the same approach applied to our frameworks yields different numbers of cut-off(s)

for different agents. Further, one agent may be pivotal to determining cut-off(s) for

multiple queue positions for another agent, and not all queue positions might be acces-

sible for an agent given the other’s types. The origin of this novel feature lies in the

functions determining how agents’ costs evolve with queue positions. The DSIC mech-

anism we present is robust in the sense that none of this lies beyond the scope of our

mechanism.

These findings contribute to the broader investigation of implementing fair social

choice or public decision rules in quasi-linear environments. It highlights the com-

plexities involved in mechanism design when dealing with multidimensional private

information and the pursuit of fairness.

35



Acknowledgements. The authors would like to acknowledge the comments

received from Prof. Santosh C. Panda, Prof. Francessco Parisi, and the participants

of The 5th Annual Economics Conference at Ahmedabad University, ACEGD 2024 at

Indian Statistical Institute Delhi, Symposium in memory of Prof. Manipushpak Mitra

at Indian Statistical Institute, Kolkata .

Declarations

This study forms a part of Devwrat Dube’s Ph.D thesis submitted to IISER Bhopal.

• The Senior Research Fellowship Grant provided to Devwrat by IISER Bhopal is

duly acknowledged.

• The authors declare no conflict of interest/Competing interests.

• The author ordering is alphabetical last name ordering.

References

Armstrong M (1996) Multiproduct nonlinear pricing. Econometrica 64(1):51–75. URL

http://www.jstor.org/stable/2171924

Armstrong M (2000) Optimal multi-object auctions. The Review of Economic Studies

67(3):455–481. URL http://www.jstor.org/stable/2566962

Armstrong M, Rochet JC (1999) Multi-dimensional screening:: A user’s guide. Euro-

pean Economic Review 43(4):959–979. https://doi.org/https://doi.org/10.1016/

S0014-2921(98)00108-1, URL https://www.sciencedirect.com/science/article/pii/

S0014292198001081
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