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Abstract

We consider the implementation of efficiency with minimum inequality in a large population

model of negative externalities. Formally, the model is one of tragedy of the commons with the

aggregate strategy at the efficient state being lower than at the Nash equilibrium. A planner

can restore efficiency by imposing an externality equivalent tax and then redistributing the tax

revenue as transfers to lower inequality. We characterize the payment scheme that minimizes

inequality, as measured by the Gini coefficient, at the efficient state subject to incentive com-

patibility and budget balance. We then construct a mechanism that implements efficiency with

minimum inequality in dominant strategies. We also show that minimizing inequality at the

efficient state maximizes the minimum payoff at efficiency. However, it is not equivalent to

implementing the Rawlsian social choice function.
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1 Introduction

The classical literature on welfare economics and mechanism design has considered the question of

achieving social efficiency in great detail. Efficiency is generally interpreted as implementing the

utilitarian social choice function that seeks to maximize aggregate payoff in society. Perhaps the

most well-known mechanisms pursuing this objective is the class of Vickrey–Clarke–Groves (VCG)

mechanisms (Vickrey [35], Clarke [6], Groves [17]), which take a dominant strategy implementation

approach to this problem. As far as we know, however, this literature has not addressed one

important question. That question is minimizing inequality at the socially efficient state subject

to the usual incentive compatibility and budget balance constraints. One reason may be that in

the usual setting of finite player mechanisms, dominant strategy implementation of efficiency with

incentive compatibility is not possible with budget balance (Green and Laffont [16]).1 Adding

the objective of minimum inequality would only make the problem even more intractable. But

equality is an important objective for any society. This is not just on grounds of fairness but also

because higher inequality may prove detrimental to the utilitarian objective of economic growth

by, for example, facilitating elite capture of institutions (Sokoloff and Engerman [32]). Therefore,

reconciling efficiency with equality is a significant question.

The motivation behind this paper is to address this question. But since a finite player setting

would prove intractable, we adopt a large population approach where there are a continuum of

agents, each agent being of measure zero. Unlike in finite player mechanisms, we can accommodate

goals of efficiency with incentive compatibility and budget balance in large population mechanisms

(Lahkar and Mukherjee [22]). Therefore, it may also be possible to combine minimum inequality

with efficiency in such an environment, which is what this paper seeks to establish. In particular,

we seek to characterize and implement the efficient outcome with minimum inequality, as measured

by the Gini coefficient, subject to incentive compatibility and budget balance.

There exists a literature on implementation in large population games. Such models, however,

focus exclusively on efficiency. Thus, Sandholm [30, 31], who pioneered this literature, and Lahkar

and Mukherjee [21, 23] consider the evolutionary implementation of efficiency in large population

games by imposing an externality price that generates a potential game. Bandhu and Lahkar [2]

show the evolutionary robustness of dominant strategy implementation that implements efficiency

in a model of strategic complementarities. The present paper does not consider evolutionary imple-

mentation. Instead, its approach is closer to the more classical VCG-type mechanism of Lahkar and

Mukherjee [22] adapted to the large population context. We consider the standard environment

of incomplete information but in a large population instead of in a finite player model. The main

1Thus, VCG mechanism implements efficiency by leaving a budget surplus with the planner. Budget balance would
require that there should be neither surplus nor deficit with the planner. An alternative to the VCG mechanism is
the AGV mechanism (Arrow [1], d’Aspremont and Gérard–Varet [8]) that generates truthful revelation as a Bayesian
Nash equilibrium. However, this mechanism requires a stronger assumption that the type distribution is common
knowledge and does not satisfy ex-post individual rationality. More recently, Mukherjee et al. [24] established
implementation of efficiency with budget balance in a finite player public goods model in “undominated strategies”
rather than dominant strategies via a “social choice correspondence” rather than a social choice function.
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objective of this paper is to implement not just efficiency but also minimum inequality in such an

environment. We do so by implementing such an outcome in dominant strategies.2 As far as we

know, whether under the classical finite player approach or the large population approach, this is

the first paper that seeks to implement not just efficiency but efficiency with minimum inequality.

We consider a large population model with strategic interlinkages and negative externalities.

Total output is a function of aggregate strategy by agents, which creates interlinkages. Different

types of agents have different effort cost functions, which is private information, and they receive

a share of total output according to individual effort. Thus, payoffs are equivalent to that of

a large population tragedy of the commons (Lahkar and Mukherjee [23]). The tragedy of the

commons is, of course, a canonical model of negative externalities in economics. It is widely used

to explain a range of socially inefficient phenomena like industrial pollution, overexploitation of

natural resources and congestion in a traffic or computer network. Another application is to the

financial sector that produces exotic new financial products (Chakrabarti and Lahkar [3]). As more

and more institutions release exotic new financial products in, say, the housing market (a common

resource), they also start holding each other’s products thereby creating interlinkages. This can

have detrimental consequences, as exemplified by the 2007-08 financial crisis.3

Our environment is one of incomplete information. Hence, agents do not know about the types

of other agents. In fact, as is typical in any dominant strategy implementation mechanism, even

the type distribution will not be known. Nevertheless, it is worth investigating what happens when

agents have more information. We then observe that as in any tragedy of the commons, negative

externality causes agents to play too high an aggregate strategy relative to the efficient level at the

Nash equilibrium. Hence, merely having information doesn’t help agents in coordinating at the

efficient state. However, the mechanism we propose will achieve social efficiency with minimum

inequality even under incomplete information.

We introduce a planner who taxes the externality causing activity. To this extent, our approach

is similar to that of earlier models of implementation in large population games such as Sandholm

[30, 31], Lahkar and Mukherjee [21, 22, 23] and Bandhu and Lahkar [2]. The key point of departure

of this paper is that we also propose a transfer scheme that redistributes the tax revenue in a

way that reduces inequality without sacrificing efficiency. Thus, a novel feature of this paper is to

design a tax and transfer scheme that simultaneously resolves the problem of negative externalities

and improves equality. From a policy perspective, this is an important finding. It illustrates that

improving efficiency and enhancing equality are not contradictory goals. Instead, the resources the

policymaker requires to promote equality can arise from the taxation of those very activities that

harm efficiency.4

It is worth emphasizing that our implementation mechanism is one of simultaneous strategies.

2For theoretical foundations of dominant-strategy mechanism see Chung and Ely [5]; Chen and Li [4].
3See, for example, Elliot et al. [10] for an analysis of such financial interlinkages from a network theory perspective.

Also see Chakrabarti and Lahkar [3] for a discussion of, besides finance, other industries like railways and information
technology that may be modeled as large population tragedies of the commons.

4Thus, going back to our illustrative example, it may be possible to curb the speculative excesses of the financial
sector through a financial transactions tax and use the proceeds for redistributive purposes.
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However, it is more intuitive to think of the implementation in two parts. First, taxing agents

induces them to choose the efficient outcome. Second, using the tax revenue to give transfers

to disadvantaged groups to improve their welfare. Thus, this explanation decomposes the net

payment to agents into two parts; a tax and a transfer. But in mechanism design terminology, it is

a simultaneous move game. Agents announce their type and based on those announcements, they

are assigned a (single) net payment. This net payment is the difference between transfer and tax

and is assigned at a single instant of time rather than sequentially. The net payment approach is

similar to the simultaneous move mechanism in Lahkar and Mukherjee [22] in a large population

public goods game. Of course, the details of calculating the payments differ. That is because, in

the earlier paper, the objective of the planner was only efficiency. In the present model, the planner

also wants to minimize inequality at efficiency.5

We measure inequality using the Gini coefficient (Gini [13, 14]). This is arguably the most well-

known measure of inequality. The planner’s objective is to design a tax and transfer scheme or,

equivalently, a net payment scheme, that minimizes the Gini coefficient of payoffs at the efficient

state. In our mechanism, the planner assigns strategies and net payments to agents based on

reported types. We characterize the net payments that make truthful revelation weakly dominant

while minimizing the Gini coefficient at the efficient state. Due to considerations of incentive

compatibility, the equality achieved is not perfect. Nevertheless, agents disadvantaged with a higher

cost of effort still receive a higher transfer, due to which the inequality that remains is less than

that achievable through any other payment scheme, such as an equal redistribution. Intuitively,

equal redistribution, which suffices for efficiency, can be implemented with truthful revelation being

strictly dominant. This leaves the planner enough scope to adjust incentive compatibility conditions

to design a redistribution scheme that makes truthful revelation weakly dominant and, thereby,

improve equality without compromising efficiency.

An important technical caveat to our results is that they hold for large population models or

models where all agents are of measure zero. This is an important assumption because our analysis

relies on the fact that changes in individual strategy do not affect aggregate variables. This adds

considerably to the tractability of our problem. For example, the budget balance condition, which

is crucial for us, is satisfied at efficiency in our large population context. But, as noted earlier, it is

difficult to achieve in conventional finite player mechanisms. Of course, in real-world situations, no

agent is ever of measure zero. But in most economic environments where public policy questions

like redistribution assume importance, we would expect the number of people involved to be fairly

large. Further, it is reasonable to assume that in such situations, agents would behave as if their

individual actions cannot influence aggregate variables. In that case, as in models of competitive

markets, we would expect our conclusions to be valid, at least approximately.6

Independent of efficiency, the classical implementation literature has considered equality from

5The present approach can also be extended to a model of positive externalities like the public goods game in
Lahkar and Mukherjee [22]. The problem there would be to characterize a vector of inequality minimizing taxes that
provides the revenue to subsidize a socially beneficial activity and restore efficiency.

6See the last paragraph of Section 6 for some remarks on how such approximations may hold.
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the point of view of implementing the Rawlsian social choice function (Rawls [27]), which seeks

to maximize the minimum welfare in society. It is known, for example, that this social choice

function is not implementable. While this is not our main focus, our model will also provide some

insights into combining utilitarian and Rawlsian objectives. In particular, we show that subject

to the feasibility constraints, our transfer scheme not only minimizes inequality at efficiency but

also maximizes the minimum payoff at the efficient state. Thus, in this sense, our transfer scheme

is a Rawlsian one but restricted to the efficient state. It provides a partial reconciliation of the

utilitarian objective of efficiency with the Rawlsian objective of maximizing the minimum payoff.

The reconciliation, however, is not complete because by using a counterexample, we show that this

is not equivalent to implementing the Rawlsian social choice function. If we are willing to sacrifice

efficiency, then we can identify another state where the minimum payoff is higher but aggregate

payoff is lower. This is the Rawlsian outcome subject to incentive compatibility and budget balance.

Again, as far as we know, the existing literature on implementation theory has not addressed such

differences between implementing the Rawlsian social choice function and implementing the efficient

outcome with minimum inequality.

We emphasize that we are using the standard notion of efficiency as employed in, for example,

VCG mechanisms. It is the allocation that maximizes the aggregate payoff for any given type

profile. This is the concept of efficiency that has been used in other large population models of

implementation (Sandholm [30, 31], Lahkar and Mukherjee [21, 22]). We apply standard dominant

strategy incentive compatibility, which is stronger than Bayesian incentive compatibility, for im-

plementing our desired allocation. Dominant strategies are prior free. Hence, our analysis does not

incorporate any belief structure. Therefore, distinctions between belief-based efficiency concepts

like ex-ante efficiency, interim efficiency and ex-post efficiency considered in, for example, Holm-

ström and Myerson [18] are not strictly applicable to our model. Nevertheless, to the best of our

understanding, our notion of efficiency is closest to ex-post efficiency. This is the efficient outcome

the planner would have calculated had agents’ types been known. Dominant strategy incentive

compatibility allows the planner to implement that outcome without any knowledge of types or

even the type distribution.

We can interpret our objective of minimizing inequality at the efficient state as seeking the

most egalitarian outcome subject to efficiency. Thus, in a sense, efficiency is non-negotiable for

us but we want the most egalitarian efficient outcome. There is a literature on other notions of

egalitarianism. For example, Grant et al. [15] and Fleurbaey [11] consider the distinction between

ex-ante and ex-post egalitarianism. This distinction arises due to the presence of uncertainty in

their models.7 However, there is no uncertainty in our paper. Hence, the difference does not arise.

Another feature of our paper is the focus on implementing the egalitarian efficient outcome. For

7Ex-ante egalitarianism is relevant before the resolution of uncertainty while ex-post is after the resolution of
uncertainty. There is a certain tension in these models between ex-ante efficiency and comparison of ex-post social
allocations. In our model, we can clearly identify the most efficient egalitarian outcome. Hence, the tension is not
present. The underlying reason is that distinctions between ex-ante and ex-post notions of efficiency and egalitarianism
are not present in our model.
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example, Kalai [19] considers the pure egalitarian outcome, which equalizes agents’ utilities. Had

implementability not been a constraint, we would have chosen this outcome as well. But as we

discuss in Section 3, the pure egalitarian outcome is not implementable at efficiency.

There are also papers that address the issue of fairness at efficiency in other ways. A widely

recognized axiom underlying fairness is envy freeness. No agent should desire the allocation of

another agent. There are both positive and negative results on whether envy freeness is consistent

with efficiency. For example, models by Tadenuma and Thomson [34] and Pápai [26] highlight

conflict between envy freeness and other goals like efficiency, incentive compatibility and budget

balance. On the other hand, Ohseto [25] and Sprumount [33] present models where efficiency and

envy freeness are compatible. The details of these models are very different from ours. They are

finite player object allocation models, while ours is a large population model of negative externali-

ties. Hence, direct comparisons of results are difficult. Nevertheless, it is easy to see that our model

does satisfy envy freeness at the efficient state. Transfers are designed in such a way that no agent

prefers the allocation of any other type of agent.

The rest of the paper is as follows. Section 2 presents our model of the tragedy of the commons

and characterizes its Nash equilibrium and efficient state. In Section 3, we identify the transfer

vector that achieves the most equitable payoff at the efficient state subject to budget balance and

incentive compatibility. Section 4 describes the dominant strategy mechanism that implements

efficiency with minimum inequality. Section 5 presents the counterexample about the Rawlsian

social choice function. Section 6 concludes. Some proofs are in the Appendix.

2 The Model

We consider a society consisting of a continuum of agents, each of measure zero. The society is

divided into a finite set of populations, also called types, P = {1, 2, · · · , n}. The mass of type

p ∈ P is mp ∈ (0, 1) with
∑

p∈P mp = 1. Thus, the total mass of the society is 1. We refer to

the distribution m = (m1,m2, · · · ,mn) as the type distribution in the society. In certain parts

of the paper, we require the type distribution to, for example, characterize the efficient state and

the inequality minimizing transfers. However, when we present the most important result of the

paper on implementing efficiency with minimum inequality in Section 4, we will assume incomplete

information. The type distribution will not be known either to agents or the planner.

Every agent in the society has a common strategy set S = (0,∞).8 Throughout, we will interpret

x ∈ S synonymously as the effort exerted by an agent. We denote the strategy distribution in a

population by a finite positive measure µp such that µp(A) ∈ [0,mp] is the mass of agents in

population p who are playing strategies in A ⊆ S. Hence, µp(S) = mp. If every agent in population

p plays the same strategy x, then we obtain a monomorphic population state which we denote it

as mpδx. We interpret the vector of population states µ = (µ1, µ2, · · · , µn) ∈ ∆ as the state of the

entire society or the social state. The aggregate strategy level in the society at the social state µ is

8For certain technical reasons explained later, we exclude the 0 strategy.
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then

A(µ) =
∑
p∈P

∫
S
xµp(dx). (1)

In our subsequent analysis, we will frequently refer to A(µ) ∈ (0,∞) as α.

We consider an economy with interlinkages between agents. To capture such interlinkages, we

assume that total output in the society depends upon the aggregate strategy level. Formally, we

consider a smooth, strictly increasing and strictly concave production function π : (0,∞) → R+

such that π(A(µ)) is the total output in the society when the aggregate strategy is A(µ). We

assume that π satisfies the Inada conditions and that π(α)
α is strictly declining for all α ∈ (0,∞).

An agent exerting effort x then receives a share x
A(µ) of the total output and incurs an effort cost

cp(x). These cost functions are the source of type-specific distinctions in our model. They differ

according to the type of agents but it is the same for all agents of a particular type. We assume that

every such type specific cost function cp : S → R+ is smooth, strictly increasing and strictly convex

and satisfies cp(0) = c′p(0) = 0 if we extend the function to 0, where c′p(x) is type p’s marginal cost.

Thus, there are no fixed costs and the marginal cost also tends to zero as x → 0. In addition, we

make the following assumption about the cost functions.

Assumption 2.1 For every p, q ∈ P, cq(x)− cp(x) is strictly increasing in x if q > p.

This assumption can be equivalently written as c′q(x) > c′p(x) for all x ∈ S if q > p, i.e. marginal

cost at any level of effort is higher for higher types. It has an important implication. Recall that

fixed cost is zero for all types. Hence, the area beneath the marginal cost is total cost. Assumption

2.1, therefore, generates the following observation.

Observation 2.2 For every x ∈ S, cp(x) is strictly increasing in p ∈ P. Thus, for every x ∈ S,
c1(x) < c2(x) < · · · < cn(x).

This observation gives us an important labeling convention in our model. Higher-cost agents are

classified as higher types. Hence, we may interpret agents labeled as being of a higher type as

facing a greater disadvantage in exerting effort.

A population game is a weakly continuous mapping F : S × P ×∆ → R such that Fx,p(µ) is

the payoff of an agent from population p who plays strategy x at the social state µ. Given the

production and cost functions, this payoff in our model takes the form

Fx,p(µ) =
x

A(µ)
π(A(µ))− cp(x)

= xAP (A(µ))− cp(x), (2)

where AP (A(µ)) = π(A(µ))
A(µ) is the average product of the production function when the aggregate

effort is A(µ). Thus, our assumption that π(α)
α is strictly declining is equivalent to the average

product function being strictly declining. Formally, the payoff (2) is equivalent to a large population

tragedy of the commons model with the aggregate output π(A(µ)) being shared among agents in

6



proportion to their individual effort x (Lahkar and Mukherjee [23]).9 As noted in the Introduction,

the large population structure is essential for our results to hold. These results will, however, hold

for all type distributions m.

2.1 Nash Equilibrium and Efficient State

The population game F defined by (2) is an aggregative game as the payoff of an agent depends

entirely upon his individual strategy and the aggregate strategy level A(µ) (Corchón [7]). We now

use this aggregative structure of F to characterize its Nash equilibrium and efficient state.10 For

this purpose, we assume the agents know the type distribution m and can observe the aggregate

strategy A(µ). This assumption will also help us characterize the efficient state of F . But when

presenting our main result, Theorem 4.1, we will drop this assumption.

Let us denote the aggregate strategy level A(µ) as α and write (2) as xAP (α) − cp(x). The

strict convexity of cp(x) implies that for every given α, this function has a unique maximizer in S.
This maximizer, which we denote as bp(α), is the unique best response of a type p agent to every

social state µ such that A(µ) = α. The following proposition then characterizes the unique Nash

equilibrium of our model. Further details of the proof are in Appendix A.1.

Proposition 2.3 Consider the population game F defined by (2). Denote by αN the unique solu-

tion to ∑
p∈P

mpbp(α) = α. (3)

Then, F has a unique Nash equilibrium

µN =
(
m1δαN

1
,m2δαN

2
, · · · ,mnδαN

n

)
(4)

where αN
p = bp(α

N ) and bp(α) is the unique best response function in F as characterized in (5).

Thus, every agent of type p ∈ P plays strategy αN
p = bp(α

N ) at this Nash equilibrium. The aggregate

strategy at µN is, therefore, αN =
∑

p∈P mpα
N
p . The Nash equilibrium is characterized by

AP (αN ) = c′p(bp(α
N )). (5)

Intuitively, (3) implies that a Nash equilibrium of an aggregative game is a social state such

that when all agents play their best response to that state, the aggregate strategy level remains un-

changed. The key to Proposition 2.3 is that bp(α) is strictly declining due to our assumptions about

AP (α) and the cost functions. Hence, (3) has a unique solution in our model, which characterizes

the unique Nash equilibrium.

9See footnote 8. The reason for excluding the 0 strategy is to ensure that (2) is defined at all social states.
Otherwise, if all agents play 0, the average product would be undefined.

10These results have also been established in Lahkar and Mukherjee [23]. Nevertheless, we present them here as
well briefly in order to keep the present paper self–contained.
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Condition (5) implies that this Nash equilibrium involves equating average product to marginal

cost. That cannot be efficient. Instead, to characterize the efficient state, we consider the aggregate

payoff. The aggregate payoff in a population game F at a social state µ, denoted F̄ (µ), is the total

payoff earned by all agents at that state. Hence, given the payoff function (2), the aggregate payoff

in our model is

F̄ (µ) =
∑
p∈P

∫
S
Fx,p(µ)µp(dx)

=
∑
p∈P

∫
S

(
x

A(µ)
π(A(µ))− cp(x)

)
µp(dx)

=
π(A(µ))

A(µ)

∑
p∈P

∫
S
xµp(dx)−

∑
p∈P

∫
S
cp(x)µp(dx)

= π(A(µ))−
∑
p∈P

∫
S
cp(x)µp(dx), (6)

where the last equality follows from the definition of the aggregate strategy in (1). Thus, the

aggregate payoff at a state µ is the total output generated by the society at that state minus the

aggregate cost
∑

p∈P
∫
S cp(x)µp(dx) incurred by agents at that state. An efficient state of F is

then a state µ∗ that maximizes the aggregate payoff (6) in ∆.

The strategic interlinkages in our model imply there are externalities. Therefore, characterizing

an efficient state would require us to account for such externalities. Let ex,p(µ) denote the total

externality imposed by an agent of type p who plays strategy x at the state µ on the entire society.

Corollary 5.7 in Lahkar and Mukherjee [23] calculates this total externality in a tragedy of the

commons model such as the present one to be

ex,p(µ) = x (MP (A(µ))−AP (A(µ))) , (7)

where MP (α) = π′(α) is the marginal product of π at the aggregate strategy α. Our assumption

that AP (α) is strictly declining implies MP (α) < AP (α) at all α ∈ (0,∞) so that ex,p(µ) < 0.

Hence, externalities are negative in our model, which is another standard characteristic of the

tragedy of the commons problems.11

It is known from Sandholm [29] that an efficient state of a population game F is also a Nash

equilibrium of another game F̂ we obtain by adding externalities in F to the original payoffs. We

interpret the addition of this externality as the imposition of a tax that compels agents to internalize

the externality they create. The payoff of a type p agent who plays strategy x in F̂ is

F̂x,p(µ) = Fx,p(µ) + ex,p(µ)

= xAP (A(µ))− cp(x) + x(MP (A(µ))−AP (A(µ)))

11See Appendix A.1.1 in Lahkar and Mukherjee [21] for the technical details of calculating externalities in large
population games with a continuous strategy set. Also see Proposition 4.1 in Lahkar and Mukherjee [23] for a general
derivation of externalities in aggregative games.
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= xMP (A(µ))− cp(x). (8)

Like (2), (8) is also an aggregative game with the only difference being that the average product

gets replaced by the marginal product. Hence, we can apply the same method as in Proposition 2.3

to obtain the Nash equilibrium of F̂ or, equivalently, the efficient state of F . Thus, let b̂p(α) be the

unique best response of a type p agent in F̂ defined by (8) at a social state µ such that A(µ) = α.

We then obtain the following result. Further details are in Appendix A.1.

Proposition 2.4 Consider the population game F̂ defined by (8) and the best response b̂p(α) char-

acterized in (11). This game has a unique Nash equilibrium

µ∗ =
(
m1δα∗

1
,m2δα∗

2
, · · · ,mnδα∗

n

)
, (9)

where α∗
p = b̂p(α

∗) is the strategy of every agent of type p at µ∗ and α∗ is the unique solution to∑
p

mpb̂p(α) = α. (10)

Hence, µ∗ is also the efficient state of the original game F defined by (2). The aggregate strategy

at µ∗ is α∗ =
∑

p∈P mpα
∗
p. Further, for each p, α∗

p < αN
p , the Nash equilibrium strategy level

characterized in Proposition 2.3. Hence, α∗ < αN . Moreover, µ∗ is characterized by

MP (α∗) = c′p

(
b̂p(α

∗)
)
. (11)

The intuition behind this result arises from negative externalities. Thus, as is any model of

negative externalities, the efficient state involves a lower strategy level than at the Nash equilib-

rium. This is true for all types of agents and, therefore, at the aggregate level as well. Therefore,

we arrive at the important conclusion in this section. The Nash equilibrium is the natural pre-

diction of behavior when agents know the type distribution. Hence, even with such information,

externalities imply agents’ behavior will differ from the efficient state. However, once we introduce

our mechanism in Section 4, we will show that efficiency can be achieved even with incomplete

information. That will require a planner, whom we introduce in the next section.

At the efficient state, as implied by (11), every agent equates the marginal product of π to his

type-specific marginal cost. This is, of course, the hallmark of efficiency. The following corollary

provides a ranking of payoffs at the efficient state. The proof of the corollary is in Appendix A.1.

Corollary 2.5 Consider the efficient state µ∗ characterized in Proposition 2.4. Using (8) and

Proposition 2.4, let us denote

F̂α∗
p,p(µ

∗) = α∗
pMP (α∗)− cp(α

∗
p), (12)

as the payoff of a type p agent at the efficient state of the tragedy of the commons F defined by (2).

If p < q, then F̂α∗
p,p(α

∗) > F̂α∗
q ,q(α

∗). Moreover, α∗
p > α∗

q i.e. α∗
1 > α∗

2 > · · · > α∗
n.
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Quite intuitively, agents with lower levels of cost are better off. They also exert higher effort

in at the efficient state. This result will be helpful for us in the next section in writing down

post–redistribution payoffs once we introduce the planner.

3 Efficiency and Equality

We now envisage a planner who wishes to implement the efficient state µ∗ but with minimum

possible inequality. In this section, we assume the planner knows the type distribution to be able

to calculate µ∗ as in Proposition 2.4. This assumption will also help us characterize the inequality

minimizing transfer vector t∗ at µ∗ subject to budget balance and incentive compatibility. As noted

earlier, we will drop this assumption about knowing the type distribution in Section 4 when we

discuss the dominant strategy implementation of our desired outcome.

Consider the efficient state µ∗ with every agent playing α∗
p as characterized in Proposition 2.4.

The aggregate strategy level at µ∗ is α∗. Each agent pays the tax α∗
p (AP (α∗)−MP (α∗)) equal

(in absolute value) to the negative externality (7) they create at µ∗.12 Hence, the total tax revenue

the planner obtains at the efficient state is

T (µ∗) =
∑
p

mpα
∗
p (AP (α∗)−MP (α∗)) = α∗ (AP (α∗)−MP (α∗)) . (13)

We now allow the planner to redistribute the entire tax revenue received among the agents as

transfers. Notice from (8) that once the tax is paid, the payoff of every type p agent at the

efficient state is only α∗
pAP (α∗)− cp

(
α∗
p

)
+α∗

p (MP (α∗)−AP (α∗)) = α∗
pMP (α∗)− cp

(
α∗
p

)
, which

is F̂α∗
p,p(µ

∗) as defined in (12). Due to (13), redistribution ensures that the entire aggregate payoff

at the efficient state µ∗, ∑
p

mp

(
α∗
pMP (α∗)− cp

(
α∗
p

))
+ T (µ∗)

=α∗MP (α∗)−
∑
p

mpcp
(
α∗
p

)
+ T (µ∗)

=α∗AP (α∗)−
∑
p

mpcp
(
α∗
p

)
=π(α∗)−

∑
p

mpcp
(
α∗
p

)
=π(A(µ∗))−

∑
p∈P

∫
S
cp(x)µ

∗
p(x), (14)

accrues to the agents. Note from (6) that (14) is just F̄ (µ∗).

Throughout, we assume that during the redistribution exercise, the planner provides the same

12A slight clarification about notation. When we interpret the tax as a payment from the agent to the planner, we
write it as the positive amount α∗

p(AP (α∗)−MP (α∗)). When we interpret it as a payment from the planner to the
agent as in (16) below, we write it as the negative amount α∗

p(MP (α∗)−AP (α∗)).
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transfer to every agent of a particular type, although the transfer may vary across types. Of course,

the question arises how the planner will recognize the type of an agent. We address such questions

in Section 4. For the moment, let t = (t1, t2, · · · , tp) be a vector of such type-specific transfers. We

also assume that any such transfer vector satisfies the budget balance condition∑
p

mptp = T (µ∗), (15)

where T (µ∗) is as defined in (13). Then, at µ∗, if a type p agent plays his type-specific efficient

strategy α∗
p, we can use (12) to write his post redistribution payoff as

F̂α∗
p,p(µ

∗) + tp = α∗
pMP (α∗)− cp

(
α∗
p

)
+ tp (16)

Equivalently, using (8), we can write the post redistribution payoff as the sum of the original payoff

α∗
pAP (α∗)− cp

(
α∗
p

)
and βp, where

βp = tp − α∗
p (AP (α∗)−MP (α∗)) (17)

is the net payment made by the planner to a type p agent.13 Recall that the planner wishes

to enhance equality during redistribution through these transfers. The budget balance condition

implies that whatever resources the planner needs to promote equality come from the taxation of

the negative externality. Hence, taxation in our model will not only curb the negative externality

but will also reduce inequality.

3.1 Gini Coefficient

We measure inequality at the efficient state of the post-redistribution payoffs (16) using the Gini

coefficient (Gini [13, 14]). Every type p agent receives the payoff (16) at µ∗ following redistribution.

The budget balance condition (15) implies that the aggregate payoff following such redistribution is

F̄ (µ∗). All type p agents receive F̂α∗
p,p(µ

∗)+ tp and all type q agents receive F̂α∗
q ,q(µ

∗)+ tq. Further,

the total mass of agents is 1. Hence, the Gini coefficient at the payoffs (16) is

G(µ∗, t) =
1

2F̄ (µ∗)

n∑
p=1

n∑
q=1

mpmq

∣∣∣(F̂α∗
p,p(µ

∗) + tp

)
−
(
F̂α∗

q ,q(µ
∗) + tq

)∣∣∣ . (18)

The Gini coefficient is arguably the most widely accepted measure of inequality.14 Its properties

are well known. It equals 0 when there is perfect equality and approaches 1 as inequality becomes

more extreme. Thus, if all agents receive the same payoff, then clearly (18) equals zero.15 On

the other hand, suppose only type 1 agents receive positive payoff and all other types receive zero

13Thus, the net payment is the tax minus the transfer. We discuss the net payment further at the end of this
section.

14For a detailed discussion on various inequality measures, see Chapter 6 of Ray [27].
15This is because in that case, F̂α∗

p,p
(µ∗) + tp = F̂α∗

q ,q
(µ∗) + tq.
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payoff. Then, the aggregate payoff F̄ (µ∗) = m1(F̂α∗
p,p(µ

∗) + tp). It is easily checked that in that

case, (18) equals 1−m1 → 1 as m1 → 0. Thus, if the entire society’s payoff gets concentrated in a

small mass of agents, the Gini coefficient (18) is close to 1.

The planner’s objective is to find a vector of redistributive transfers t∗ = (t∗1, t
∗
2, · · · , t∗n) that

minimizes (18). In addition to the budget balance condition (15), t∗ will have to satisfy incentive

compatibility. Again, Section 4 will provide details of how the planner actually ensures incentive

compatibility. Right now, given the transfer vector (t1, t2, · · · , tn) and the aggregate strategy level

α∗ at the efficient state, we define by

ϕp(q, µ
∗, t) = α∗

qMP (α∗)− cp
(
α∗
q

)
+ tq, (19)

the payoff a type p agent who plays the type q efficient strategy level α∗
q and is assigned the transfer

tq meant for a type q agent.16 Notice that using this notation, we can write (16) as ϕp(p, µ
∗, t).

Incentive compatibility of the transfer vector t = (t1, t2, · · · , tn) would then require

ϕp(p, µ
∗, t) ≥ ϕp(q, µ

∗, t) (20)

for every p, q ∈ P. In words, every agent should find it at least weakly preferable to play his own

type-specific strategy and receive his own type-specific transfer than the strategy and transfer of

any other type when the society is at the efficient state.

One feature of (19) that deserves comment is that it seems when an agent reports some other

type q, he only plays the efficient strategy α∗
q of that type. Can’t the agent play some other strategy?

It suffices to consider only α∗
q because, as we will show in the dominant strategy mechanism of

Section 4, the planner always allocates the optimal strategy of the reported type based on the

reported type distribution. Further, transfers will be such that agents will report true type. Hence,

eventually, due to truthful revelation, t∗ will have to satisfy (20). For that reason, provisionally

in this section, it suffices to characterize t∗ by defining the payoff in (19) as if the agent reporting

type q will only play α∗
q .

The planner, therefore, seeks a transfer vector that minimizes the Gini coefficient (18) while

satisfying the budget balance condition (15) and the incentive compatibility condition (20). Before

presenting the solution to this problem, let us consider two other alternatives which, as we will

argue, cannot be that transfer scheme. First is the equal redistribution transfer scheme. Under this

scheme, the planner redistributes an equal amount to every agent, irrespective of type. Budget

balance then implies that every agent of every type p receives tp = T (µ∗) as defined in (13). The

resulting post redistribution payoffs (16) will then be strategically equivalent to F̂α∗
p,p(µ

∗) as defined

in (12). But µ∗ is the unique Nash equilibrium of F̂ and α∗
p is the unique best response of every type

p to µ∗ (Proposition 2.4). Therefore, the equal redistribution rule will satisfy all IC constraints (20)

and will do so strictly. Hence, it may be possible to further improve equality by making truthful

16Notice in (19) that even if the type p agent plays α∗
q instead of α∗

p, that will not change the aggregate strategy
level α∗. That is due to the measure zero characteristic of agents.
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revelation weakly dominant and this is what we will discuss in Sections 3.2 and 4.

The second possibility is a transfer scheme that ensures perfect equality. This outcome would

make the post-redistribution payoff (16) of all agents perfectly equal. In the terminology of Kalai

[19], this would be the pure egalitarian outcome at the efficient state. The planner would like to

choose a transfer scheme t̃ such that at µ∗,

α∗
pMP (α∗)− cp

(
α∗
p

)
+ t̃p = α∗

qMP (α∗)− cq
(
α∗
q

)
+ t̃q (21)

for all p, q ∈ P. For a planner concerned with equality at the efficient state, this is the first

best solution. It is, however, easy to see that such a transfer scheme cannot satisfy incentive

compatibility. Suppose p < q so that, by Observation 2.2, cp(x) < cq(x) for all x ∈ S. Hence,

cp(α
∗
q) < cq(α

∗
q) which means

α∗
qMP (α∗)− cp

(
α∗
q

)
+ t̃q > α∗

qMP (α∗)− cq
(
α∗
q

)
+ t̃q

= α∗
pMP (α∗)− cp

(
α∗
p

)
+ t̃p, (22)

where the equality follows from (21). Thus, we have ϕp(q, µ
∗, t̃) > ϕp(p, µ

∗, t̃) so that type p′s IC

constraint (19) is violated. Hence, the first best solution cannot be achieved by the planner. We

now discuss the second best solution.

3.2 Incentive Compatible Minimum Inequality at the Efficient State

Recall the Gini coefficient (18), the budget balance condition (15), and the IC constraints (20).

Formally, the planner’s objective is to choose a transfer vector t = (t1, t2, · · · , tn) so as to

Minimize
t

G(µ∗, t) such that ϕp(p, µ
∗, t) ≥ ϕp(q, µ

∗, t) and
∑
p

mptp = T (µ∗), (23)

for all p, q ∈ P. We characterize the solution t∗ = (t∗1, t
∗
2, · · · , t∗n) to this problem through the

following lemmas leading up to Proposition 3.4. All proofs are in Appendix A.2.17

Lemma 3.1 Recall the IC conditions (20). Consider a type p ∈ {1, 2, · · · , n− 1} and an arbitrary

transfer scheme t = (t1, t2, . . . , tn) such that

ϕp(p, µ
∗, t) = ϕp(p+ 1, µ∗, t). (24)

Then,

ϕp(p, µ
∗, t) > ϕp(q, µ

∗, t), (25)

for all q ∈ {p+ 2, p+ 3, · · · , n}.
17Notice that the type distribution m enters the budget balance condition in (23). This is another way we use the

assumption the planner knows m in this section to characterize t∗.
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Lemma 3.1 implies that to ensure that agents do not claim to be of a higher type at µ∗, it suffices

to equate their true payoff to the payoff they would obtain by claiming to be the next higher type.

It is worth noting that this lemma doesn’t consider the other two case, ϕp(p, µ
∗, t) < ϕp(p+1, µ∗, t)

and ϕp(p, µ
∗, t) > ϕp(p + 1, µ∗, t). The former is a violation of incentive compatibility. The latter

leaves further room to adjust transfers and, therefore, wouldn’t characterize inequality minimizing

transfers. Suppose now that we have a transfer scheme t = (t1, · · · , tn) that satisfies Lemma 3.1.

The following lemma then establishes certain characteristics of the payoffs resulting from those

transfers as well as the transfers themselves.

Lemma 3.2 Recall the payoff (19). Suppose the transfer scheme t = (t1, t2, · · · , tn) satisfies (24)

in Lemma 3.1. Then, the following hold.

1. ϕp(p, µ
∗, t) > ϕp+1(p+ 1, µ∗, t) for all p = 1, 2, . . . , n− 1.

2. t1 < t2 < . . . < tn.

Lemma 3.2, therefore, establishes that under a transfer scheme that satisfies Lemma 3.1, types

with a lower cost function obtain a higher payoff than types with a higher cost function. This is

despite the fact, as part 2 of the lemma shows, high-cost types obtain a higher transfer. Part 2 of

this lemma also leads to Lemma 3.3 that shows that agents will not have any incentive to claim to

be of a lower type. Hence, Lemmas 3.1 and 3.3 suffice to rule out incentives for false representation.

Lemma 3.3 Recall the IC conditions (20) and suppose a transfer scheme t = (t1, t2, · · · , tn) satis-
fies part 2 of Lemma 3.2. Suppose p > q. Then, ϕp(p, µ

∗, t) > ϕp(q, µ
∗, t). Therefore, if t satisfies

(24), then all IC constraints (20) are satisfied.

The key condition in Lemmas 3.1–3.3 is (24). The condition ensures there is no misrepresen-

tation as a higher type in Lemma 3.1. It also gives rise to the ordering between the transfers in

Lemma 3.2(2), which then leads to Lemma 3.3 that rules out misrepresentation as a lower type.

Notice that the three preceding lemmas are independent of the budget balance condition. But once

we combine the IC constraints with the budget balance condition, we obtain the unique solution

to the planner’s problem (23). The following proposition formalizes that solution. The proposition

also shows that the solution satisfies individual rationality, which means the post-redistribution

payoffs will be positive for all types of agents. This is important because it means no agent has to

be coerced to participate in the mechanism.

Proposition 3.4 Consider the system of n linear equations consisting of the n − 1 equations

ϕp(p, µ
∗, t) = ϕp(p + 1, µ∗, t) as specified in (24) for types p ∈ {1, 2, · · · , n − 1} and the budget

balance equation
∑

p∈P mptp = T (µ∗), where T (µ∗) is as defined in (13). Denote the solution to

these n equations as t∗ = (t∗1, t
∗
2, · · · , t∗n). Then, t∗ is the solution to the planner’s problem (23).

Thus, t∗ satisfies t∗1 < t∗2 < · · · < t∗n. With this transfer vector, the payoff of every type p agent

at µ∗ is

ϕp(p, µ
∗, t∗) = α∗

pMP (α∗)− cp(α
∗
p) + t∗p (26)
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Moreover, among all transfer vectors t at the efficient state that satisfy incentive compatibility and

budget balance, t∗ maximizes the post redistribution payoff of type n agents, ϕn(n, µ
∗, t). Hence, at

t∗,

ϕ1(1, µ
∗, t∗) > ϕ2(2, µ

∗, t∗) > · · · > ϕn(n, µ
∗, t∗) > 0, (27)

which means t∗ also ensures individual rationality.

Proposition 3.4 is the most important technical result of our paper. It characterizes the optimal

transfer vector t∗ = (t∗1, t
∗
2, · · · , t∗n) as the solution to a set of linear equations. Even though t∗ does

not ensure perfect equality, it does minimize inequality at the efficient state subject to incentive

compatibility and budget balance.

To understand the intuition behind Proposition 3.4, we note that any other transfer vector that

satisfies these two conditions must generate a higher Gini coefficient (18) in the post-redistribution

payoffs. One such transfer scheme is the equal redistribution scheme T (µ∗) as defined in (13).

Compared to equal redistribution, t∗ increases the payoff of higher cost types and reduces the

payoff of lower cost types thereby reducing inequality while still satisfying incentive compatibility.

Consistent with Lemma 3.2(2), the Gini coefficient minimizing transfer t∗p favors high-cost agents

over low-cost ones. Hence, t∗1 < t∗2 < · · · < t∗n.

The order among the payoffs in (27) arises from part 1 of Lemma 3.2. All these payoffs are

strictly positive because the equal redistribution transfer T (µ∗) itself ensures that the payoff of the

highest cost type n is strictly positive.18 But the proof of Proposition 2.4 not only shows that t∗

minimizes the Gini coefficient but also maximizes the payoff of type n agents among all incentive

compatible and budget balanced transfer vectors.19 Hence, the payoff of type n agents must be even

higher than under equal redistribution. Therefore, not only do we minimize the Gini coefficient at

the efficient state but also maximize the minimum payoff. In this sense, implementing (µ∗, t∗) would

be one way to reconcile the utilitarian objective of achieving efficiency with the Rawlsian objective

of maximizing the minimum payoff. However, as we discuss in more detail in Section 5, this is not

equivalent to implementing the Rawlsian social choice function. Additionally, the payoffs (27) also

satisfy envy–freeness. This follows from our large population structure and incentive compatibility.

No agent of type p would desire the allocation (α∗
q , t

∗
q) of any other type q ̸= p.

So far, we have presented our results as the planner first imposing the externality equivalent

tax α∗
p(AP (α∗) − MP (α∗)) on agents of type p and then providing them the transfer t∗p. This

interpretation has a clear economic intuition. This tax is equal to the negative externality an agent

is generating at the efficient state. Hence, by imposing this particular tax, it is as if the planner

is using the tax to achieve efficiency and then using the transfers as a redistributive measure while

retaining efficiency.

Nevertheless, it is worth ending this section with an alternative but equivalent presentation of

our solution. This is in terms of a (single) net payment vector and not in terms of tax and transfer.

18Even without T (µ∗), the fact that there are no fixed costs in our model ensures that the pre–redistribution payoff
α∗
nMP (α∗)− cn(α

∗
n) in (16) is strictly positive.

19See Claim 5 of that proof.
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Recall from (17) the net payment βp received by a type p agent. Then the fact that the transfer t∗p

and the tax α∗
p(AP (α∗)−MP (α∗)) minimizes inequality at efficiency is equivalent to the fact that

the net payment vector β∗ = (β∗
1 , β

∗
2 , · · · , β∗

n) such that

β∗
p = t∗p − α∗

p(AP (α∗)−MP (α∗)) (28)

would also achieve the same objective. It is immediate from (2) that once the net payoff (28) is

applied, a type p agent’s payoff at µ∗ is

Fα∗
p,p(µ

∗) + β∗
p = α∗

pAP (α∗)− cp(α
∗
p) + β∗

p

= α∗
pMP (α∗)− cp(α

∗
p) + t∗p

= ϕp(p, µ
∗, t∗)

as defined in (26).

In (28), we do not have to think of the planner as first taxing an agent and then providing

a transfer. Instead, the planner goes through the calculations leading to Proposition 3.4 without

actually imposing any tax. Once the planner solves for µ∗ and t∗, there is a single transaction with

every agent. If β∗
p > 0, then the agent receives the payment (28) from the planner. If β∗

p < 0,

then the agent makes an equal transfer to the planner. Thus, the planner’s transactions are more

parsimonious and happen at a single instant of time. This interpretation, framed as a single net

payment, will be crucial in the subsequent section, where we introduce our simultaneous strategy

mechanism.

4 Dominant Strategy Implementation

We now consider the main question of this paper. How does the planner implement the efficient

state µ∗ and the transfer vector t∗ that minimizes inequality at the efficient state µ∗ subject to the

two constraints (15) and (20). We seek to apply a dominant strategy implementation mechanism

to solve this problem. As is standard in such a mechanism, agents or the planner should not know

the type distribution m. Accordingly, we drop the assumption that m is known that we had made

in Sections 2 and 3 to characterize µ∗ and t∗.

Recall the net payment β∗
p from (28). We denote by β∗ = (β∗

1 , β
∗
2 , · · · , β∗

n) the vector of net

payments for all types. We formally state the planner’s objective to be to implement the social

choice function m 7→ (µ∗, β∗). Thus, for any type distribution m, the planner wishes to implement

the associated efficient state µ∗ given by (9) and the net payment vector β∗ given by (28). If this

social choice function is implemented, every type p agent will play the efficient strategy level α∗
p

and receive the net payment β∗
p . Consequently, as noted following (28), such an agent will receive

the payoff ϕp(p, µ
∗, t∗) as defined in (26). We state the social choice function in terms of the single

net payment β∗ instead of externality tax and the transfer vector t∗ because that will allow us to

represent our mechanism as a simultaneous move mechanism.
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By the revelation principle, it suffices to consider direct mechanisms. Hence, the planner designs

a direct mechanism, which we denote as Φ, as follows. The planner asks each agent to report

his type. Suppose m̃ = (m̃1, m̃2, · · · , m̃n) is the reported type distribution. Thus, m̃p is the

proportion of agents who report their type to be p. As agents can report type falsely, it is possible

that m̃p ̸= mp. Using the reported type distribution m̃, the planner calculates the efficient state

corresponding to m̃. This can be done by proceeding as in Proposition 2.4 once m is replaced with

m̃ in (10). Let the efficient state corresponding to the distribution m̃ be µ̃∗ and the strategy level

of a type p agent at that state be α̃∗
p.

Thus, µ̃∗ =
(
m̃1δα̃∗

1
, m̃2δα̃∗

2
, · · · , m̃nδα̃∗

n

)
. Denote the corresponding aggregate strategy level

A(µ̃∗) =
∑

p∈P m̃pα̃
∗
p = α̃∗. Further, analogous to (13) and (19), we define

T (µ̃∗) = α̃∗ (AP (α̃∗)−MP (α̃∗)) . (29)

and

ϕp(q, µ̃
∗, t̃) = α̃∗

qMP (α̃∗)− cp(ã
∗
q) + t̃q. (30)

for some arbitrary transfer vector t̃ = (t̃1, t̃2, · · · , t̃n). Following Proposition 3.4, we denote as

t̃∗ = (t̃∗1, t̃
∗
2, · · · , t̃∗n) the solution to the system of equations

ϕp(p, µ̃
∗, t̃) = ϕp(p+ 1, µ̃∗, t̃), for all p ∈ {1, 2, · · · , n− 1}∑

p∈P
m̃pt̃p = T (µ̃∗), (31)

where T (µ̃∗) is as defined in (29). The first set of equalities are the minimal IC constraints that

need to satisfied as in Lemma 3.1 but with respect to m̃. The second equality is the budget balance

condition similar to (15) but with respect to m̃. Finally, analogous to (28), we define the net

payment

β̃∗
q = t̃∗p − α̃∗

p(AP (α̃∗)−MP (α̃∗)) (32)

where t̃∗q arises from the solution to (31).

The planner then assigns the type specific strategy α̃∗
q and the net payment β̃∗

q to any agent who

announces type to be q. Thus, in the conventional terminology of mechanism design, the planner

designs the direct mechanism

Φ : (q, m̃) 7→ (α̃∗
q , β̃

∗
q ), (33)

where β̃∗
q is as defined in (32). The mechanism Φ takes the reported type q of an agent and the

reported type distribution m̃ as inputs and generates the type specific strategy and net payment

(α̃∗
q , β̃

∗
q ) as output as described above. The resulting payoff of a type p agent who reports type to

be type q is then ϕp(q, µ̃
∗, t̃∗) as defined in (30).

We emphasize that (33) is a simultaneous move mechanism. Recall our discussion following

(28). When we presented our solution in terms of the net payment β∗
p , we envisaged the planner
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engaging in a single transaction with an agent. Similarly, in the mechanism (33), the planner makes

a single net payment to an agent instead of going through the sequence of first taxing the agent

and then providing a transfer. Intuitively, the planner goes through the calculations leading up to

(31) to derive µ̃∗ and t̃∗. The planner doesn’t actually collect the tax T (µ̃∗) or make the transfers

t̃∗. Instead, the planner uses these values to derive (32) and makes the net payment to an agent as

one transaction at a single instant of time.

We arrive at the main result of this paper. The result is stated in the following theorem. The

proof is in Appendix A.3

Theorem 4.1 The direct mechanism Φ defined by (33) implements (µ∗, β∗) in weakly dominant

strategies, where µ∗ is the efficient state characterized in Proposition 2.4 and β∗ is the net transfer

vector defined in (28). The mechanism also satisfies budget balance and individual rationality.

Once (µ∗, β∗) is implemented, each type p agent receives the payoff ϕp(p, µ
∗, t∗) defined in (26).

The resulting Gini coefficient in payoffs is

G(µ∗, t∗) =
1

2F̄ (µ∗)

n∑
p=1

n∑
q=1

mpmq

∣∣∣ϕp(p, µ
∗, t∗)− ϕq(q, µ

∗, t∗)
∣∣∣, (34)

which is the lowest possible Gini coefficient at the efficient state subject to incentive compatibility

and budget balance.

The logic behind Theorem 4.1 is the same as that of Proposition 3.4. That result implies that at

the actual type distribution m, if the planner assigns strategies α∗
p and net payment β∗

p , then agents

will reveal their type truthfully. But mathematically, there is nothing special about m. Hence, if

the planner announces that he will calculate (µ̃∗, β̃∗) and assign strategies and net payments based

on the reported type, it becomes a weakly dominant strategy for every agent to report their type

truthfully. The type distribution that gets revealed is the true one m and, therefore, the outcome

that is implemented is (µ∗, β∗).

The mechanism Φ defined in 33 has similarities to a classical finite player VCG mechanism. It

extends the large population VCG type mechanism of Lahkar and Mukherjee [22] to the present

context of implementing not just efficiency but also minimum inequality. As in a VCG mechanism,

Φ assigns the allocation (α̃∗
p, β̃

∗
p) to an agent who reports being of type p, so as to make truthful

revelation weakly dominant. The large population characteristic of our model is, however, crucial

in ensuring that this mechanism actually works. The very description of the incentive compatibility

constraints in Proposition 3.4 or in (31) rely on the idea that when a single agent misrepresents

type, it does not affect the social state µ∗ or µ̃∗. This stems from the measure zero characteristic

of agents, an assumption that is not met in finite player models. Hence, a similar VCG mechanism

will not succeed in implementing efficiency with minimum inequality in finite player models. In

the concluding section, we present some conjectures about how our results may relate to the finite

player case.
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5 Rawlsian Outcome

Our focus in this paper has been on minimizing inequality at efficiency subject to incentive com-

patibility and budget balance (Theorem 4.1). As a byproduct of minimizing inequality, Proposition

3.4 also shows that our solution maximizes the lowest payoff at efficiency, again subject to incen-

tive compatibility and budget balance. This suggests a connection between our problem and the

problem of implementing the Rawlsian social choice function. The Rawlsian social choice function

would seek to implement an outcome that maximizes the lowest payoff. In our model, if incentive

compatibility is not a concern, then the Rawlsian outcome is simply the efficient state µ∗ and the

payment vector that ensures perfect equality.20 But as we argued, such perfect equality at efficiency

is not incentive compatible. Instead, by Proposition 3.4, if we restrict ourselves to the efficient state

µ∗, then the best feasible solution to the Rawlsian problem is the transfer vector t∗ or equivalently,

the net payment vector β∗ as defined in (28).

But suppose we consider the Rawlsian outcome over the set of all social states µ. This would

be a social state and a vector of payments subject to incentive compatibility and budget balance

that maximizes the minimum payoff. Would that outcome be the same as minimizing inequality

at the efficient state? In this section, we present an example where this is not the case. Thus, the

Rawlsian outcome is not necessarily the one that minimizes inequality at efficiency. The example

is as follows.

Example 5.1 Consider the model described in Section 2 with strategy set S = (0,∞). Let the set

of populations or types be P = {1, 2, 3} and the type distribution be (m1,m2,m3) = (0.2, 0.3, 0.5).

Suppose the type specific cost functions are cp(x) = kpx
2 where {k1, k2, k3} = {1, 2, 3} and the

production function is π(α) = 10
√
α. The average product is, therefore, 10

√
α

α = 10√
α
. Hence, given

a social state µ with aggregate strategy A(µ) = α, the payoff of a type p ∈ {1, 2, 3} agent in the

tragedy of the commons F defined by (2) is

Fx,p(µ) =
10x√
α

− kpx
2. (35)

The marginal product in Example 5.1 is π′(α) = 5√
α
. Therefore, the externality (7) an agent

playing strategy x generates is −5x√
α
. Hence, from (35), we obtain the externality adjusted payoff

(8) in our example,

F̂x,p(µ) =
5x√
α
− kpx

2. (36)

Proposition 2.4 then yields the efficient state of Example 5.1, which is µ∗ = (m1δα∗
1
,m2δα∗

2
,m3δα∗

3
)

where

(α∗
1, α

∗
2, α

∗
3) = (2.2956, 1.1478, 0.7652). (37)

The aggregate strategy level at the efficient state is α∗ =
∑

p∈P mpα
∗
p = 1.186. Applying (13), we

calculate T (µ∗) =
5
∑

p mpα∗
p√

α∗ = 5
√
α∗ = 5.4453.

20See the discussion preceding Section 3.2.
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First, we illustrate inequality minimization at the efficient state. Let t = (t1, t2, t3) be a transfer

vector. The payoff (19) takes the form

ϕp(q, µ
∗, t) = α∗

qMP (α∗)− kp(α
∗
q)

2 + tq

=
5α∗

q√
1.186

− kp(α
∗
q)

2 + tq

= 4.5911α∗
q − kp(α

∗
q)

2 + tq. (38)

Applying Proposition 3.4, we obtain the constraints

4.5911α∗
1 − (α∗

1)
2 + t1 = 4.5911α∗

2 − (α∗
2)

2 + t2, (39)

4.5911α∗
2 − 2(α∗

2)
2 + t2 = 4.5911α∗

3 − 2(α∗
3)

2 + t3, (40)

0.2t1 + 0.3t2 + 0.5t3 = 5.4453, (41)

with (39) and (40) being the IC constraints for types 1 and 2 respectively, and (41) being the

budget balance condition. Solving these equations, we obtain the desired transfer vector t∗ to be

(t∗1, t
∗
2, t

∗
3) = (4.245, 5.5624, 5.8551). (42)

Applying (28), we obtain the associated net payment vector

(β∗
1 , β

∗
2 , β

∗
3) = (−6.2943, 0.2927, 2.342). (43)

Thus, the net payment vector (43) minimizes inequality at the efficient state (37) subject to incentive

compatibility and budget balance. By (38), the resulting payoffs at the efficient state for the three

types are

(ϕ1(1, µ
∗, t∗), ϕ2(2, µ

∗, t∗), ϕ3(3, µ
∗, t∗)) = (9.5146, 8.1972, 7.6117). (44)

We now consider the Rawlsian social choice function. Thus, instead of minimizing inequality at

the efficient state, the planner wishes to implement an outcome that maximizes the lowest payoff

across all social states in F . To explore this possibility, it suffices to consider states in monomorphic

population states. This would ensure that within each population, payoffs would be equal. Thus,

let µ = (m1δα1 ,m2δα2 ,m3δα3) be such a social state in Example 5.1. The aggregate strategy is,

therefore, α =
∑3

p=1mpαp. Further, let t = (t1, t2, t3) be a transfer vector. Analogous to (19),

denote as

ϕp(q, µ, t) = αqAP (α)− cp(αq) + αq(MP (α)−AP (α)) + tq

= αqMP (α)− cp(αq) + tq

=
5αq√
α

− kpα
2
q + tq, (45)

the post redistribution payoff of a type p agent who reports type to be q at the social state
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µ and the transfer vector t. Unlike (38), (45) is defined at all social states of the form µ =

(m1δα1 ,m2δα2 ,m3δα3). Thus, an agent claiming to be of type q is assigned the strategy αq and the

net payment

βR
p = tRp − αq(AP (α)−MP (α)) (46)

Analogous to (13), we define

T (µ) =

3∑
p=1

mpαp(AP (α)−MP (α)) = 5
√
α = 5

√
0.2α1 + 0.3α2 + 0.5α3. (47)

Maximizing the minimum payoff means we solve

max
(µ,t)

[min {ϕ1(1, µ, t), ϕ2(2, µ, t), ϕ3(3, µ, t)}]

subject to µ = (m1δα1 ,m2δα2 ,m3δα3)

ϕp(p, µ, t) ≥ ϕp(q, µ, t) for all p, q ∈ P

m1t1 +m2t2 +m3t3 = 5
√
0.2α1 + 0.3α2 + 0.5α3. (48)

The constraints ϕp(p, µ, t) ≥ ϕp(q, µ, t) are the IC constraints, with ϕp(q, µ, t) being as defined in

(45). The last constraint in (48) is the budget balance condition arising from (47). It is equivalent

to
∑

p∈P mpβ
R
p = 0. We solve this maximization exercise numerically to obtain

(
αR
1 , α

R
2 , α

R
3

)
= (2.4264, 0.9099, 0.6066), (49)(

tR1 , t
R
2 , t

R
3

)
= (3.0358, 5.3356, 5.8876). (50)

Applying (46) gives us the net payment vector

(βR
1 , β

R
2 , β

R
3 ) = (−8.7392, 0.9199, 2.9438). (51)

Thus, the social state at the Rawlsian outcome is µR = (m1δαR
1
,m2δαR

2
,m3δαR

3
). The aggregate

strategy at this outcome is αR =
∑

p∈P mpα
R
p = 1.0616. Inserting (49) and (50) in (45) and

using {k1, k2, k3} = {1, 2, 3} from Example 5.1, we obtain the type specific payoffs at the Rawlsian

outcome to be

(
ϕ1(1, µ

R, tR), ϕ2(2, µ
R, tR), ϕ3(3, µ

R, tR)
)
= (8.9233, 8.0953, 7.7274). (52)

Hence, the Rawlsian outcome in Example 5.1 subject to budget balance and incentive compat-

ibility involves each type p agent playing αR
p as characterized in (49) and receiving a net payment

of (51). The resulting social state µR is clearly different from the efficient state µ∗ characterized in

(37). Example 5.1, therefore, illustrates that once we impose the budget balance and incentive com-
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patibility conditions, the Rawlsian solution is different from the solution that minimizes inequality

at the efficient state. This is further shown by the fact that the minimum payoff ϕ3(3, µ
R, tR) in

(52) is strictly higher than the minimum payoff ϕ3(3, µ
∗, t∗) in (44).

Our calculation of the Rawlsian outcome has required, as in Sections 2 and 3, the knowledge

of the type distribution m. But suppose the planner doesn’t know m but wants to implement the

Rawlsian outcome. A dominant strategy implementation mechanism like in Section 4 will work.

Briefly, the planner asks agents to report types. Suppose the reported type distribution is m̃. The

planner solves (48) but with respect to the distribution m̃. That generates strategies α̃R
q and net

transfers β̃R
q as in (49) and (51). The planner assigns the vector (α̃R

q , β̃
R
q ) to an agent who reports

type q. As in Theorem 4.1, truthful revelation of type will be weakly dominant.

6 Conclusion

We have considered the implementation of efficiency with minimum inequality in a large population

model of negative externalities. Agents are of different types which are distinguished by cost

functions that are private information. Total output is a function of aggregate strategy which

is shared among agents according to individual strategy. The model is, therefore, equivalent to a

tragedy of the commons. Imposition of externality equivalent taxes restores efficiency in the model.

The planner would like to redistribute the tax revenue as transfers so as to reduce inequality, as

measured by the Gini coefficient of payoffs, at the efficient state while being subject to incentive

compatibility and budget balance.

We first characterize the inequality minimizing vector of type-specific transfers. This transfer

minus the externality tax generates the inequality minimizing net payment vector. We then describe

a mechanism that would enable the planner to implement both the efficient state and the inequality

minimizing net payment vector in dominant strategies. The planner asks agents to report their

types and calculates the efficient state and inequality minimizing net payments based on reported

types. Due to the large population characteristic of the model, it then becomes weakly dominant for

all agents to report the type truthfully thereby implementing the desired objective of the planner.

Finally, while minimizing inequality at efficiency also ensures maximization of minimum payoff

at the efficient state, it is not equivalent to implementing the Rawlsian social choice function. There

may exist other states which are not efficient but where, through appropriate transfers, it is possible

to further improve the welfare of the most disadvantaged agents in an incentive compatible manner

while satisfying budget balance.

An important research question that arises is a more general characterization of the Rawlsian

social state in a large population model. In the present paper, we have only provided a counterex-

ample because that suffices to show that the inequality minimizing efficient outcome is not the

Rawlsian outcome. But independent of efficiency, the Rawlsian outcome is interesting on its own

and a more rigorous analysis of this outcome is worth exploring.

We conclude by emphasizing that, as demonstrated in the literature, our results cannot be
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attained in a finite player setting (Green and Laffont [16]). Nevertheless, we conjecture that as

the number of agents increases, results in the finite case would approach our results. In particular,

we expect strategies and transfers in the finite case to converge to the “efficiency with minimum

inequality” outcomes we have characterized in this paper. We do not expect budget balance to

hold. There may be a budget surplus or deficit with the planner for any fixed finite number of

agents. But as that number increases, the present paper suggests that the surplus or deficit will go

to zero. We leave the formal analysis of this convergence problem as a task for future research.

A Appendix

A.1 Appendix to Section 2

Proof of Proposition 2.3: In the discussion preceding Proposition 2.3, we have argued that bp(α)

is the unique best response of type p agents to any state µ such that A(µ) = α. The additional

assumption that c′p(0) = 0 then implies that for every p ∈ P, this unique best response in (2)

satisfies

AP (α) = c′p(bp(α)), (53)

with bp(α) ∈ (0,∞) for all α ∈ (0,∞).

Proposition 3.1 in Lahkar [20] shows that in large population aggregative games such as (2),

all Nash equilibria can be characterized as solutions to (3). Due to our assumptions that AP (α)

is strictly declining and cp is strictly convex, we conclude from (53) that bp(α) is strictly declining

for all p. Hence, (3) has a unique solution, which we denote as αN . By Proposition 3.1 in Lahkar

[20], we then obtain the unique Nash equilibrium µN as defined in (4) where all type p agents play

bp(α
N ). The aggregate strategy level at µN is, therefore, αN =

∑
p∈P mpα

N
p and condition (5)

follows from (53). ■

Proof of Proposition 2.4: We first establish that (10) has a unique solution. The assumptions

of our model imply that the unique best response b̂p(α) in F̂ is characterized by

MP (α) = c′p

(
b̂p(α)

)
. (54)

Due to the strict concavity of π, MP (α) is strictly declining. Hence, by a similar argument as in

Proposition 2.3, b̂p(α) is strictly declining. This establishes uniqueness of the solution to (10). The

argument in the proof of Proposition 2.3 then implies that µ∗ is the unique Nash equilibrium of F̂ .

The remaining conclusions follow from the discussion preceding Proposition 2.4. Proposition 5.6 in

Lahkar and Mukherjee [22] shows this Nash equilibrium of F̂ is also the efficient state of F defined

by (2). The conclusion α∗
p < αN

p follows from (5), (11), the strict convexity of cp and the fact that

MP (α) < AP (α). Condition (11) follows from (54). ■

Proof of Corollary 2.5: Since µ∗ is the unique Nash equilibrium of the game F̂ characterized by

(8) and every agent has a unique best response to every state, α∗
p is the unique best response to µ∗
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for a type p agent. Therefore,

α∗
pMP (α∗)− cp(α

∗
p) > α∗

qMP (α∗)− cp(α
∗
q). (55)

By Observation 2.2, as p < q, cp(α
∗
q) < cq(α

∗
q). Therefore,

α∗
qMP (α∗)− cp(α

∗
q) > α∗

qMP (α∗)− cq(α
∗
q). (56)

Combining (55) and (56) and using (12), we obtain F̂α∗
p,p(α

∗) > F̂α∗
q ,q(α

∗). For the relationship

between α∗
p and α∗

q , note from (11) that c′p(α
∗
p) = c′q(α

∗
q) = MP (α∗). By Assumption 2.1, if p < q,

then c′p(α
∗
p) < c′q(α

∗
p). The strict convexity of cost functions then imply that α∗

p > α∗
q . ■

A.2 Appendix to Section 3

Proof of Lemma 3.1: We start with type n − 1 and proceed in reverse order. For type n − 1,

(25) doesn’t apply but suppose (24) holds. Thus,

ϕn−1(n− 1, µ∗, t) = ϕn−1(n, µ
∗, t)

⇒α∗
n−1MP (α∗)− cn−1(α

∗
n−1) + tn−1 = α∗

nMP (α∗)− cn−1(α
∗
n) + tn. (57)

Now consider type n− 2. Suppose (24) holds. Hence, ϕn−2(n− 2, µ∗, t) = ϕn−2(n− 1, µ∗, t) or

α∗
n−2MP (α∗)− cn−2(α

∗
n−2) + tn−2 = α∗

n−1MP (α∗)− cn−2(α
∗
n−1) + tn−1. (58)

Then, to show (25), we need to show ϕn−2(n− 2, µ∗, t) > ϕn−2(n, µ
∗, t). For this, we can use (58)

and show ϕn−2(n− 1, µ∗) > ϕn−2(n, µ
∗) or

α∗
n−1MP (α∗)− cn−2(α

∗
n−1) + tn−1 > α∗

nMP (α∗)− cn−2(α
∗
n) + tn (59)

Notice that we can derive (59) from (57) by adding cn−1(α
∗
n−1)−cn−2(α

∗
n−1) and cn−1(α

∗
n)−cn−2(α

∗
n)

to the LHS and RHS of (57) respectively. But α∗
n−1 > α∗

n (Corollary 2.5). Hence, Assumption 2.1,

cn−1(α
∗
n−1)− cn−2(α

∗
n−1) > cn−1(α

∗
n)− cn−2(α

∗
n). But then, this establishes (59).

For type n− 3, we need to argue that if ϕn−3(n− 3, µ∗, t) = ϕn−3(n− 2, µ∗, t), then ϕn−3(n−
3, µ∗, t) > ϕn−3(n − 1, µ∗, t) and ϕn−3(n − 3, µ∗, t) > ϕn−3(n, µ

∗, t). To show ϕn−3(n − 3, µ∗, t) >

ϕn−3(n−1, µ∗, t), we proceed as before for type n−2 and show ϕn−3(n−2, µ∗, t) > ϕn−3(n−1, µ∗, t).

This follows from (58) if we add cn−2(α
∗
n−2)− cn−3(α

∗
n−2) and cn−2(α

∗
n−1)− cn−3(α

∗
n−1) to the LHS

and RHS of (58) respectively and then note that because α∗
n−2 > α∗

n−1, cn−2(α
∗
n−2)−cn−3(α

∗
n−2) >

cn−2(α
∗
n−1)− cn−3(α

∗
n−1).

To show ϕn−3(n − 3, µ∗, t) > ϕn−3(n, µ
∗, t), the above argument means it suffices to show

ϕn−3(n − 1, µ∗, t) > ϕn−3(n, µ
∗, t). For that, we use (59), which we have established. Note that
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ϕn−3(n− 1, µ∗, t) > ϕn−3(n, µ
∗, t) is equivalent to

α∗
n−1MP (α∗)− cn−3(α

∗
n−1) + tn−1 > α∗

nMP (α∗)− cn−3(α
∗
n) + tn (60)

We can obtain (60) by adding cn−2(α
∗
n−1)− cn−3(α

∗
n−1) and cn−2(α

∗
n)− cn−3(α

∗
n) to the LHS and

RHS of (59) respectively. The desired conclusion then follows by noting that because α∗
n−1 > α∗

n,

cn−2(α
∗
n−1)− cn−3(α

∗
n−1) > cn−2(α

∗
n)− cn−3(α

∗
n).

For the remaining types p ∈ {1, 2, · · · , n − 4}, we can proceed similarly through an inductive

argument. For each type p, we use the arguments established for type p + 1 and prove the claim.

This would establish the lemma. ■

Proof of Lemma 3.2: By (24), we have ϕp(p, µ
∗, t) = ϕp(p+ 1, µ∗, t) for all p ∈ {1, 2, · · · , n− 1}.

Moreover, according to our assumption we have cp(α
∗
p+1) < cp+1(α

∗
p+1). So we have

ϕp(p, µ
∗, t) = α∗

pMP (α∗)− cp
(
α∗
p

)
+ tp

= α∗
p+1MP (α∗)− cp

(
α∗
p+1

)
+ tp+1

> α∗
p+1MP (α∗)− cp+1

(
α∗
p+1

)
+ tp+1 = ϕp+1(p+ 1, µ∗, t)

This establishes part 1. For part 2, again from (24), we have α∗
pMP (α∗) − cp

(
α∗
p

)
+ tp =

α∗
p+1MP (α∗) − cp

(
α∗
p+1

)
+ tp+1. Rearrangement gives us tp+1 = tp + cp+1

(
α∗
p+1

)
− cp

(
α∗
p

)
−

MP (α∗) [α∗
p+1 − α∗

p]. From (11) and Proposition 2.4, we know that MP (α∗) = c′p(α
∗
p). Thus we

can write tp+1 = tp+ cp+1

(
α∗
p+1

)
− cp

(
α∗
p

)
− c′p(α

∗
p)[α

∗
p+1−α∗

p]. The strict convexity of c(·) implies

cp
(
α∗
p+1

)
− cp

(
α∗
p

)
− c′p(α

∗
p)[α

∗
p+1 − α∗

p] > 0. But by Observation 2.2, cp+1

(
α∗
p+1

)
> cp

(
α∗
p+1

)
.

Hence, cp+1

(
α∗
p+1

)
− cp

(
α∗
p

)
− c′p(α

∗
p)[α

∗
p+1 − α∗

p] > 0, which gives us the desired result that

tp+1 > tp for any p = 1, 2, . . . , n− 1. ■

Proof of Lemma 3.3: Recall from (19) that if the transfer vector is t, then ϕp(p, µ
∗, t) =

α∗
pMP (α∗)−cp

(
α∗
p

)
+tp and ϕp(q, µ

∗, t) = α∗
qMP (α∗)−cp

(
α∗
q

)
+tq. The fact that α

∗
p is the unique

best response to µ∗ for a type p agent in the game F̂ defined by (8) implies α∗
pMP (α∗)− cp

(
α∗
p

)
>

α∗
qMP (α∗)− cp

(
α∗
q

)
.

Moreover, as p > q, tp > tq by Lemma 3.2(2). Combining these arguments, we obtain

α∗
pMP (α∗)− cp

(
α∗
p

)
+ tp > α∗

qMP (α∗)− cp
(
α∗
q

)
+ tq, or ϕq(q, µ

∗, t) > ϕq(p, µ
∗, t).

Thus, (24) ensures that agents of type p do not have the incentive to claim to be of types p+1,

p + 2 etc (Lemma 3.1). That same condition also implies t1 < t2 < · · · < tn, i.e. Lemma 3.2(2),

which then implies the present result that such agents will also not claim to be q < p. Therefore,

if (24) is satisfied, no agent has any incentive to misrepresent type. ■

Proof of Proposition 3.4: Consider an arbitrary transfer scheme t̂ ̸= t∗ that satisfies the IC

constraints (20) and the budget balance condition. By (19), the payoff of an agent of type p who

claims to be of type q under the transfer scheme t̂ is ϕp(q, µ
∗, t̂) = α∗

qMP (α∗)− cp
(
α∗
q

)
+ t̂q. It is
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easy to see that only difference between payoffs under t̂ and t∗ is the transfers, i.e. ϕp(p, µ
∗, t̂) >

(=) < ϕp(p, µ
∗, t∗) if and only if t̂p > (=) < t∗p.

First we make a few observations about the relation between t∗ and t̂. Since t̂ is incentive

compatible, it also satisfies the inequality (20). Thus, ϕp(p, µ
∗, t̂) ≥ ϕp(p+1, µ∗, t̂) or α∗

pMP (α∗)−
cp

(
α∗
p

)
+ t̂p ≥ α∗

p+1MP (α∗) − cp
(
α∗
p+1

)
+ t̂p+1 holds for all p ∈ {1, 2, · · · , n − 1}. To simplify

notation, we denote λs,t =
[
α∗
sMP (α∗) − cs (α

∗
s)
]
−

[
α∗
tMP (α∗) − cs (α

∗
t )
]
. The notation λs,t

represents the difference in the payoff of a type s agent at the efficient state when he announces his

type truthfully and the payoff that type s agent would receive when he announces some other type

t. Now using this notation we can then rewrite the preceding inequality ϕp(p, µ
∗, t̂) ≥ ϕp(p+1, µ∗, t̂)

as t̂p+1 ≤ t̂p + λp,p+1.
21 We now divide our proof into smaller claims.

(i) Claim 1: Suppose t̂k > t∗k for some k ∈ P then t̂p > t∗p for all p ∈ {1, 2, · · · , k − 1}.

Proof : From the above arguments we know that t̂k ≤ t̂k−1 + λk−1,k. Let t̂k = t∗k + ϵk where

ϵk > 0. This implies, t∗k + ϵk ≤ t̂k−1 + λk−1,k. Now substitute the value of t∗k in terms of

t∗k−1. We get t∗k−1 + λk−1,k + ϵk ≤ t̂k−1 + λk−1,k ⇒ t∗k−1 < t̂k−1. We can apply this argument

inductively to obtain the desired result.

(ii) Claim 2: Suppose t̂k < t∗k for some k ∈ P then t̂p < t∗p for all p ∈ {k + 1, k + 2, . . . , n}.

Proof : We know that t̂k+1 ≤ t̂k + λk,k+1. Let t̂k = t∗k − δk where δk > 0. This implies,

t̂k+1 ≤ t∗k − δk + λk,k+1. Now substitute the value of t∗k in terms of t∗k+1. We get t̂k+1 ≤
t∗k+1 −λk,k+1 − δk +λk,k+1 ⇒ t̂k+1 < t∗k+1. We can apply this argument inductively to obtain

the desired result.

(iii) Claim 3: If t̂ ̸= t∗ then agents can be partitioned into at most three sets L,M and R where

L = {1, 2, . . . , l}, M = {l+1, l+2, . . . , r−1}22 and R = {r, r+1, . . . , n} for some 1 ≤ l < r ≤ n

such that t̂p > t∗p for all p ∈ L, t̂p = t∗p for all p ∈ M and t̂p < t∗p for all p ∈ R. The set L and

R are always non-empty.

Proof : Define l̃ = Max{p ∈ P | t̂p > t∗p}. By definition of l̃, there exists no p > l̃ such

that t̂p > t∗p. Moreover, according to Claim 1, for all p = 1, 2, . . . , l̃ − 1 we have t̂p > t∗p.

Hence, l = l̃ and the set L = {1, 2, . . . , l̃}. Similarly, define r̃ = Min{p ∈ P | t̂p < t∗p}. By

definition of r̃ there exists no p < r̃ such that t̂p < t∗p. Moreover, according to Claim 2, for

all p = r̃ + 1, r̃ + 2, . . . , n we have t̂p < t∗p. Hence, r = r̃ and the set R = {r̃, r̃ + 1, . . . , n}. It
is easy to see that l̃ < R̃. Define set M = P \ L ∪R. It is obvious that if p ∈ M then t̂p = t∗p

and l̃ < p < r̃. Thus we obtain M = {l̃ + 1, l̃ + 2, . . . , r̃ − 1}.

Now we argue that both sets L and R are non-empty. Without loss of generality, let L = ∅.
This implies that t̂p ≤ t∗p for all p ∈ P and strict inequity must hold for at least some q ∈ P
otherwise t̂ ≡ t∗ which contradicts our hypothesis that t̂ ̸= t∗. But this will imply that

21The t∗ transfer vector satisfies this relation with equality, i.e. t∗p+1 = t∗p + λp,p+1 for all p ∈ {1, 2, . . . , n− 1}.
22Set M could be empty and in that case we have r = l + 1.
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n∑
p=1

t̂p <
n∑

p=1
t∗p = T (µ∗) which contradicts our hypothesis that transfer t̂ is budget balanced.

Hence set L is non-empty. Virtually a similar argument can establish that if set R = ∅ then

it implies
n∑

p=1
t̂p >

n∑
p=1

t∗p = T (µ∗). This again contradicts our hypothesis. So, set R is also

non-empty. This completes the proof.

(iv) Claim 4: Transfer t∗ minimizes the Gini coefficient.

Proof : To simplify the exposition, let us denote the equilibrium payoff for an agent of type p,

associated with transfer t, as ϕp(t), i.e., ϕp(t) = ϕp(p, µ
∗, t). Using this notation and Lemma

3.2(1), we can rank the payoffs in descending order as ϕ1(t) > ϕ2(t) > . . . > ϕn(t). The Gini

coefficient, as defined in (18), can then be reformulated in terms of these ordered payoffs as

follows:23

G(µ∗, t) = 1− 1

Γ1(t)

1∑
p=n

mp

(
Γp+1(t) + Γp(t)

)
, where Γp =

p∑
q=n

mqϕq and Γn+1 = 0 (61)

The term Γp(·) represents the aggregate payoff of all groups from type p till n. This refor-

mulated expression (61) characterizes the Gini coefficient G(µ∗, t) for any arbitrary transfer

t in terms of descending payoffs. This formulation is more tractable to demonstrate that t∗

minimizes it.

The key to the proof lies in the ranking of these aggregate payoffs Γp(t). We claim that for

the payoff vectors ϕ(t∗) and ϕ(t̂), associated with the optimal transfer t∗ and any arbitrary

transfer t̂ respectively, the following strict inequalities hold:

Γp(t
∗)︸ ︷︷ ︸∑p

q=n mqϕq(t∗)

> Γp(t̂)︸ ︷︷ ︸∑p
q=n mqϕq(t̂)

for all p > 1, (62)

with equality at p = 1, since Γ1(·) equals the mean of the distribution: Γ1(t
∗) = F̄ (µ∗) = Γ1(t̂).

From the equilibrium payoff definition ϕp(t) = α∗
pMP (α∗) − cp(α

∗
p) + tp, it follows that

any differences between equilibrium payoffs ϕp(t
∗) and ϕp(t̂) arise solely from differences in

transfers, i.e., ϕp(t
∗)−ϕp(t̂) ≡ t∗p− t̂p for all p ∈ P. Thus, the ordering of these two transfers,

as established in Claim 3, translates directly into a corresponding ordering of these payoffs.

Now the strict inequality between aggregate payoffs (62), should hold if we extend the impli-

cations of Claim 3. Recall the partition of the type set P = L∪M ∪R as described in Claim

3.

23See Gastwirth [12] and Dorfman [9]. Additionally, we wish to clarify that, in standard definitions of the Gini
coefficient, summations typically proceed from 1 to p (or n, as applicable), reflecting the convention of ordering
income levels of different groups in ascending order. In our model, however, we reverse this order to align with the
ranking of payoffs, which are arranged in descending order with respect to the agents’ types.
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– For high-cost agents, p ∈ R = {r, r + 1, . . . , n}, t∗p > t̂p, implying ϕp(t
∗) > ϕp(t̂). This

establishes Γp(t
∗) > Γp(t̂) for all p ∈ R.

– For intermediate types, p ∈ M = {l+1, l+2, . . . , r−1}, t∗p = t̂p, implying ϕp(t
∗) = ϕp(t̂).

This again maintains the previous dominance: Γp(t
∗) > Γp(t̂) for all p ∈ M ∪R.

The final step is to assume that this claim is false and hence there exists a 1 < p′ ∈ L

such that Γp′(t
∗) ≤ Γp′(t̂). But for this part of the partition set p ∈ L, we have t∗p < t̂p,

implying ϕp(t
∗) < ϕp(t̂) for all p ∈ {1, 2, . . . p′} ⊂ L. Consequently,

∑1
q=p′−1mqϕq(t

∗) <∑1
q=p′−1mqϕq(t̂). Combining this inequality with the hypothesis results into

Γ1(t
∗) =

1∑
q=p′−1

mqϕq(t
∗) +

Γp′ (t
∗)︷ ︸︸ ︷

p′∑
q=n

mqϕq(t
∗) <

Γp′ (t̂)︷ ︸︸ ︷
p′∑

q=n

mqϕq(t̂)+

1∑
q=p′−1

mqϕq(t̂) = Γ1(t̂).

But this contradicts the fact that Γ1(t
∗) = F̄ (µ∗) = Γ1(t̂). Hence, Γp(t

∗) > Γp(t̂) must hold

for all p > 1.

Finally having shown the inequality (62) implies Γp+1(t
∗) + Γp(t

∗) > Γp+1(t̂) + Γp(t̂) for all

p, while Γ1(t
∗) = Γ1(t̂). These inequalities establish that G(µ∗, t∗) < G(µ∗, t̂), proving that t∗

minimizes the Gini coefficient. ■

The order t∗1 < t∗2 < · · · < t∗n follows from Lemma 3.2(2). The payoff ϕp(p, µ
∗, t∗) in (26) follows from

(16) and the notation introduced in (19). The order ϕ1(1, µ
∗, t∗) > ϕ2(2, µ

∗, t∗) > · · · > ϕn(n, µ
∗, t∗)

follows from Lemma 3.2(1). Hence, individual rationality will be satisfied if ϕn(n, µ
∗, t∗) > 0. To

see why this holds, we now establish another claim.

(v) Claim 5: The transfer vector t∗ maximizes the lowest post-redistribution payoff, i.e. the

payoff of type n agents.

Proof : By part 1 of Lemma 3.2, type n has the lowest post redistribution payoff under any

incentive compatible transfer vector t. Now consider vectors t∗ and t̂, both satisfying incentive

compatibility and budget balance. Suppose the claim is not true and transfer vector t̂ can do

better. This is possible only if t̂n > t∗n. But Claim 1 then implies that t̂p > t∗p for all p ≥ 1.

This implies that
n∑

p=1
t̂p >

n∑
p=1

t∗p = T (µ∗), which means transfer t̂ is not budget balanced. We,

therefore, arrive at a contradiction. Hence, the claim is true.

Note that the equal redistribution transfer scheme tp = T (µ∗), for all p ∈ {1, 2, · · · , n} also satis-
fies incentive compatibility and budget balance. Hence, by Claim 5, ϕn(n, µ

∗, t∗) > ϕn(n, µ
∗, T (µ∗)).

But by (16), ϕn(n, µ
∗, T (µ∗)) = α∗

pMP (α∗)− cp
(
α∗
p

)
+ T (µ∗) > 0. Hence, individual rationality is

satisfied. ■
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A.3 Appendix to Section 4

Proof of Theorem 4.1: A single agent cannot influence the type distribution m̃ and, hence, the

aggregate strategy level α̃∗ or the aggregate tax T (µ̃∗). Consider an agent p. Given α̃∗, (α̃∗
p, t̃

∗
p)

satisfy (31). We now apply arguments akin to Lemmas 3.1–3.3 and Proposition 3.4 but with respect

to the reported type distribution m̃. For all m̃, it is weakly incentive compatible for type p to reveal

type truthfully and, if fact, strictly so if p = n. Hence, m̃ = m and (µ̃∗, t̃∗) = (µ∗, t∗), but in that

case, the net payment vector β̃∗ = β̃∗ by (28) and (32). Hence, (µ∗, β∗) gets implemented. The

conclusions about budget balance and individual rationality follow from Proposition 3.4. The payoff

ϕp(p, µ
∗, t∗) follows from (26) and the resulting Gini coefficient (34) follows from (18). ■
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