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Abstract

Arc-routing problems underpin numerous critical field operations, including power-line
inspection, urban police patrolling, and traffic monitoring. In this domain, the Rural Post-
man Problem (RPP) is a fundamental variant in which a prescribed subset of edges or
arcs in a network must be traversed. This paper investigates a generalized form of the
RPP, called RPP-mTD, which involves a fleet of multiple trucks, each carrying multiple
drones. The trucks act as mobile depots traversing a road network, from which drones
are launched to execute simultaneous service, with the objective of minimizing the overall
makespan. Given the combinatorial complexity of RPP-mTD, we propose a Hybrid Genetic
Algorithm (HGA) that combines population-based exploration with targeted neighborhood
searches. Solutions are encoded using a two-layer chromosome that represents: (i) an or-
dered, directed sequence of required edges, and (ii) their assignment to vehicles. A tailored
segment-preserving crossover operator is introduced, along with multiple local search tech-
niques to intensify the optimization. We benchmark the proposed HGA against established
single truck-and-drone instances, demonstrating competitive performance. Additionally, we
conduct extensive evaluations on new, larger-scale instances to demonstrate scalability. Our
findings highlight the operational benefits of closely integrated truck-drone fleets, affirming
the HGA’s practical effectiveness as a decision-support tool in advanced mixed-fleet logistics.

Key words: Arc routing problem, hybrid genetic algorithm, mixed-fleet logistics, truck-
drone routing

1 Introduction

Arc Routing Problems (ARPs) represent a fundamental class of optimization problems in logis-
tics, where the objective is to determine optimal routes that traverse specific arcs or edges in a
network to satisfy predefined service requirements. In contrast to node routing problems, which
focus on visiting designated network nodes, ARPs require servicing along the network’s edges or
arcs. These problems arise in a wide range of real-world applications, including waste collection,
postal delivery, road maintenance, snow plowing, and inspection of electric power transmission
lines. Although node routing problems, such as the Traveling Salesman Problem (TSP) and the
Vehicle Routing Problem (VRP), are well-established as NP-hard, ARPs introduce additional
complexities, making them at least equally challenging and computationally demanding. As
a result, they continue to be a topic of significant interest in combinatorial optimization and
logistics research.

In this paper, we focus on a fundamental variant of the ARP known as the Rural Postman
Problem (RPP). In the RPP, only a designated subset of edges in the network requires service,



while the remaining “unrequired” edges are traversed solely to enable more efficient routing.
The RPP generalizes the classical Chinese Postman Problem (CPP), in which all edges must be
serviced. This added flexibility makes the RPP particularly well-suited to applications such as
urban road patrolling, traffic surveillance, and monitoring of energy transmission infrastructure,
where selectively traversing unrequired arcs to reach required ones can significantly reduce
overall operational costs.

Recent advancements in drone technology (Wired Magazine, 2017) have given rise to inno-
vative hybrid logistics systems that integrate traditional ground vehicles, such as trucks, with
Unmanned Aerial Vehicles (UAVs or drones). This mixed fleet approach significantly enhances
operational efficiency (Bouman et al., 2018; Murray and Chu, 2015), particularly in environ-
ments where traditional ground-based logistics are impeded by obstacles or traffic congestion.
While drones offer advantages in terms of speed and the ability to bypass ground obstacles, their
limited battery capacity inherently restricts their operational range. Integrating drones with
trucks addresses this limitation effectively, as trucks can simultaneously serve both as mobile
depots, facilitating battery swaps or recharges, and as service vehicles themselves.

The integration of multiple trucks and drones, each autonomously deploying from and re-
turning to its assigned truck, introduces additional complexities and optimization challenges.
Although recent literature has extensively explored such hybrid vehicle-drone systems, exist-
ing studies predominantly address node routing problems. Research addressing truck-drone
coordination from an arc-routing perspective remains sparse, primarily due to the added com-
putational complexity. One notable exception is provided by Liu et al. (2025), which investigates
a constrained variant of the problem featuring a single truck equipped with drones, serving as
a foundation for our broader, multi-vehicle scenario.

Our study contributes to the literature by addressing a novel extension of the traditional
RPP involving multiple trucks, each capable of carrying and deploying multiple drones. In
this setting, each drone must launch from and return to the same truck, creating complex
interdependency between truck routes and drone assignments. The primary objective is to
minimize the operational makespan, i.e., the total time required to complete all designated
required edge services and return all vehicles to the depot, through coordinated truck-drone
routing. Furthermore, our approach incorporates realistic operational constraints, including
drone flying time limitations imposed by the battery capacity.

Recognizing the inherent computational challenges posed by this problem, we propose a Hy-
brid Genetic Algorithm (HGA) specifically designed to optimize mixed-fleet coordinated routing
for minimal makespan. Our HGA features a distinctive two-part chromosome representation
that explicitly encodes the sequencing and directional traversal of required edges, along with
their assignments to trucks and drones. Additionally, we enhance the algorithm with multiple
effective local search heuristics to systematically guide the exploration of the solution space
toward improved optimality. We validate the proposed method through computational experi-
ments on benchmark instances and comparison with an existing algorithm.

The remainder of this paper is organized as follows. Section 2 reviews the related literature,
beginning with arc routing problems and followed by drone-assisted routing in both node and
arc routing contexts. Section 3 formally defines the problem, detailing the key assumptions and
features. Section 4 describes the proposed hybrid genetic algorithm based solution approach.
Computational experiments and performance evaluations are presented in Section 5. Finally,
Section 6 summarizes the key contributions and outlines directions for future research.



2 Literature Review

In this section, we provide a comprehensive review of the existing literature relevant to our
study. We begin by examining key research on arc routing problems, highlighting significant
contributions in this area. Subsequently, we discuss the node routing literature that focuses
on the integration of truck-drone mixed fleets. Finally, we explore the application of mixed
truck-drone fleets within the context of arc routing problems, identifying the existing research
gaps that our study aims to address.

2.1 Arc Routing Problems

The family of arc routing problems, arising in various logistics applications (Corberdan and
Laporte, 2015), is a crucial area within the routing literature. For an in-depth review of arc
routing problems and their variants, readers may refer to Corberdn et al. (2021). In this study,
we focus on the RPP, a fundamental variant of arc routing problems that seeks the shortest
tour for a postman to service a designated subset of edges in a network while returning to the
starting point. Notably, when all edges must be traversed, this becomes the CPP, analogous
to the TSP in node routing literature. Several exact methods have been developed for RPP,
including Christofides et al. (1986) and Corberan and Sanchis (1994), as well as for its variants
such as hierarchical (Colombi et al., 2017), profitable (Avila et al., 2016; Colombi and Mansini,
2014), min-max k-vehicle windy (Benavent et al., 2014), multi-depot (Ferndndez et al., 2018)
and periodic (Benavent et al., 2019) RPPs.

However, RPP is N'P-hard (Lenstra and Kan, 1976), necessitating development of near-
optimal computational approaches for various practical applications. Numerous heuristics have
been proposed for arc routing problems, such as tabu search (Hertz et al., 2000), adaptive
large neighborhood search (Monroy-Licht et al., 2017), ant colony optimization (Santos et al.,
2010), and genetic algorithms (Arakaki and Usberti, 2018; Lacomme et al., 2001). Genetic
algorithms, in particular, have gained popularity as one of the most efficient metaheuristics for
routing problems. Vidal (2017) explore extended neighborhoods and solve the CARP using two
approaches: iterated local search and hybrid genetic search. A recent study, Mahmoudinazlou
et al. (2024) propose a genetic algorithm for solving arc routing problems, leveraging dynamic
programming decisions to assign arcs to vehicles.

2.2 Truck-Drone Routing Problems

We classify the collaborative truck-and-drone routing problems found in the literature into two
main categories: node routing and arc routing.

2.2.1 Node Routing

The increasing prevalence of drone-assisted deliveries and surveillance has fueled research in-
terest in vehicle routing with drones. Murray and Chu (2015) introduced truck routing with
drone assistance as the Flying Sidekick Traveling Salesman Problem (FSTSP), presenting two
mixed-integer linear programming (MILP) formulations and heuristics. A related variant, the
Traveling Salesman Problem with Drone (TSP-D), emerged subsequently in Agatz et al. (2018).
Multiple solution methods, including both exact (Roberti and Ruthmair, 2021) and heuristic
(Bogyrbayeva et al., 2023; El-Adle et al., 2023; Lee et al., 2025; Mahmoudinazlou and Kwon,
2024) approaches, have been proposed for the TSP-D. More generalized extensions of the TSP-
D, which incorporate multiple vehicles, have gained attention due to their potential to signifi-
cantly reduce the makespan. Tamke and Buscher (2021) solve the vehicle routing problem with



drones, consisting of multiple truck-drone pairs, using a branch-and-cut method. They solve
instances with up to 30 nodes to optimality. In a recent study, Sobhanan et al. (2024b) address
a humanitarian routing problem involving a truck and multiple drones, introducing an exact
branch-and-price algorithm tailored to maximize the coverage in emergency logistics. Their
results demonstrate the effectiveness of dynamic programming with dominance rules in solving
small-sized instances, while also highlighting the scalability limitations of exact optimization
approaches for such complex truck-drone coordination problems. To address larger and more
practical instances, heuristic and metaheuristic approaches play a crucial role. Sacramento et al.
(2019) propose an adaptive large neighborhood search method for the vehicle routing problem
with multiple trucks, each equipped with one drone. Similarly, Euchi and Sadok (2021) present
a hybrid genetic algorithm for this problem. In this work, we focus on an arc routing equivalent
of this vehicle routing problem with drones, involving a fleet of multiple trucks and drones. For
comprehensive reviews of collaborative truck and drone routing, one can refer to Chung et al.
(2020) and Macrina et al. (2020).

2.2.2 Arc Routing

Campbell et al. (2018) addresses the drone arc routing problem, where a drone, unlike traditional
vehicles, can travel directly between any two points in the network. This inherent flexibility
renders arc routing with drones a continuous optimization problem. To tackle this, Campbell
et al. (2018) discretizes the problem by representing each edge as a polygonal chain. A similar
approach is extended for the length-constrained k-drones RPP in Campbell et al. (2021). We
incorporate this flexibility of drone traversal into our study by utilizing a distinct graph where
edges are constructed based on Euclidean distance. While the drone arc routing problem has
garnered attention, studies on the collaborative truck-drone arc routing problem remain limited.
Liu et al. (2025) employs a joint system of one truck and one drone to solve the rural postman
problem. The author proposes a formulation for the node routing equivalent of the problem
and provide tabu search (TS) and adaptive large neighborhood search (ALNS) algorithms to
solve large-scale instances. Additional heuristic methods have been explored in applications like
powerline inspection (Liu et al., 2019) and traffic patrolling (Luo et al., 2019).

Table 1: Comparison of related truck-drone routing literature

Reference Node/Arc Trucks Drones Drone Method Problem
Routing Capacity Size

Liu et al. (2019) Arc 1 1 D Heuristic 100 nodes
Luo et al. (2019) Arc 1 1 D Heuristic 24 nodes
Schermer et al. (2019) Node K M 1 Matheuristic 100 nodes
Sacramento et al. (2019) Node K M 1 ALNS 250 nodes
Tamke and Buscher (2021) Node K M D Exact 30 nodes
Euchi and Sadok (2021) Node K M 1 GA 200 nodes
Liu et al. (2025) Arc 1 2 D TS, ALNS 542 nodes
Mahmoudinazlou and Kwon Node 1 1 1 GA 250 nodes
(2024)

This work Arc K M D GA 500 nodes

Table 1 presents a comparison of existing studies on truck-drone routing problems. Drone
capacity D represents the number of nodes or arcs a drone can visit during an independent flight
from the truck. To the best of our knowledge, no previous work has proposed a solution approach
or solved an arc routing problem involving both multiple trucks and multiple drones. Our study
fills this gap by developing a tailored genetic algorithm to solve this problem. Additionally, we



extend a traditional assumption of truck-drone routing by allowing drones to traverse multiple
arcs, subject to a predefined flying time limit.

3 Problem Description

Consider an undirected graph G = (V, ), consisting of a set of vertices V and a set of edges
€ that connect the vertices in V. Each edge (i,7) € £ is associated with a positive distance
or cost, denoted by p(i, 7). Furthermore, a subset of edges R C £ is designated as “required”,
meaning these edges must be included in any feasible route, while the remaining edges are
optional. RPP seeks to find a closed tour in G that traverses every required edge in R at least
once, while minimizing the total cost of the route. The total time is the sum of the travel time
of all traversed edges, including any edges that are traversed multiple times. Since the RPP
is known to be a N'P-hard problem, finding an optimal solution efficiently is computationally
challenging for large instances.

Numerous algorithms (Corberan et al., 2000; Monroy-Licht et al., 2014; Pearn and Wu,
1995) have been devised to address the RPP, motivated by its practical significance in various
routing contexts. This study extends the classical RPP to include multiple drone assistance for
ground vehicles, a variant we refer to as the RPP with multiple Trucks and multiple Drones
(RPP-mTD). In this model, the truck acts as a mobile station for each drone designated to it
when the drones are not in flight. This variant of RPP enhances operational efficiency through
coordinated truck-drone operations. We assume a depot serves as both the starting and ending
point for the truck-drone fleet. While incorporating a depot node technically transforms the
arc routing problem into a general routing problem, we treat it as a special case given the sole
involvement of the depot.

The objective function of RPP-mTD is to minimize the makespan, which represents the
total time required to complete all services and return the fleet to the depot, while determining
the optimal cooperative routes for the truck and drones. Every required edge in the network
must be serviced at least once by either a truck or a drone. Here, multiple traversals of edges
are permitted and is accounted for in the makespan.

3.1 Key Assumptions
We explore the RPP-mTD under the following additional assumptions:

1. Fleet Composition: The fleet consists of one or more trucks (K'), where each truck carries
a fixed number (M) of identical drones. The drones are homogeneous in terms of battery
capacity and speed, which together determine the maximum allowable flying time for each
drone.

2. Truck—Drone Operational Rules: A drone may take off from or land on its associated truck
only at vertices where the truck is stationed at that moment. Take-off and landing times
are assumed to be negligible. In this setup, trucks function as mobile launch and recovery
platforms. While drones operate independently during flight, trucks provide essential
logistical support, such as instantaneous battery replacement or recharging upon drone
landing. Furthermore, when trucks traverse a required edge, they directly service it.

3. Drone Routing Flexibility: Unlike the trucks, drones are capable of flying directly be-
tween vertices without following the predefined road network. A drone can thus bypass
ground obstacles by directly flying between any two vertices. To accommodate drone
movement, an auxiliary drone-specific graph is implicitly considered, constructed by es-
tablishing Fuclidean direct edges between all vertex pairs, regardless of road connectivity.



When traversing non-required edges, the drone is assumed to follow the corresponding arc
in this auxiliary graph. However, when servicing a required arc, the drone instead follows
the shadow of that arc in the original graph to ensure proper coverage.

4. Flight Range Constraint: Drone flights are restricted by their maximum flight time, limited
by battery capacity. The flight duration of any drone sortie cannot exceed this predefined
limit. Upon returning to a truck, a drone’s battery is instantly replaced or recharged,
resetting its available flight time for subsequent operations.

5. Drone Multi-Arc Visit Flexibility: Unlike in some known routing problems involving drone
assistance, such as the TSP-D, each drone in the RPP-mTD may service multiple required
edges consecutively during a single flight, subject to its flight range constraint.

™

Required arc

————— Unrequired arc

O\/O\/Q Truck path
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Figure 1: An example of the d-hop rendezvous mechanism with § = 2. Here, the drone lands
on the last permissible node within the allowed limit.

6. Drone—Truck Coordination Flexibility: We introduce a hyperparameter, J, to control the
extent of independence between a drone’s movement and its originating truck. When
0 = 1, the model adheres to the restricted assumption: the drone is launched and retrieved
at consecutive truck nodes, with the truck traversing only one arc during the drone’s flight.
In contrast, when § = L, the truck is permitted to travel up to L arcs after launching
the drone before rendezvousing for retrieval. Figure 1 illustrates a scenario where § = 2
involving one truck and one drone. In this example, the drone returns to the truck at
the farthest node permitted within the d-hop limit. Increasing J significantly enlarges the
solution space, as the drone can potentially land at any node visited by the truck within
the allowed d-hop window. This added flexibility can lead to more efficient routing, leading
to a reduction in overall makespan. However, practitioners should note that very large
values of § may introduce practical challenges, such as increased difficulty in real-time
communication and a higher risk of coordination failures.

3.2 An illustrative Example

An illustrative example of a feasible RPP-mTD solution with seven required arcs is shown
in Figure 2. In this scenario, two trucks, k; and ko, are each equipped with two drones.
Specifically, ki carries drones d; and de, while ko carries drones ds and d4. Notably, drone
d4 remains idle throughout the operation. Among the seven required arcs, two are serviced
by drone di, one by drone ds, one by drone d3, and one by each truck. In this example, the
coordination parameter is set to § = 2, allowing a maximum separation of two hops between
drone launch and retrieval. Drones d; and dy fully utilize this d-hop flexibility, while drone ds
does not. The figure illustrates the coordinated interaction between trucks and their assigned
drones, highlighting how the RPP-mTD framework leverages ground—aerial collaboration to
improve efficiency and reduce makespan.
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Figure 2: An illustrative RPP-mTD solution: two trucks k; and ko, each carrying two
drones—k; carries dy and dg; ko carries d3 and ds. Notably, ds4 remains idle in this routing
scenario.

3.3 Problem Complexity and Formulation Challenges

The assumptions made in the previous subsection significantly generalize the problem under
study compared to the existing body of literature (see arc routing papers in Table 1). This is
due to the introduction of several additional flexibility dimensions, including but not limited
to the involvement of multiple trucks, multiple drones, drone multi-arc visit flexibility, and
drone-truck coordination flexibility. Unlike classical arc-routing problems or single-truck drone-
assisted routing models, RPP-mTD encompasses multiple intertwined decision layers, ranging
from vehicle routing and positioning to service assignment and drone endurance constraints.
This intricate interplay greatly expands the solution space and makes the problem considerably
more challenging.

We note that developing an integer programming model that fully captures these complex-
ities is highly complicated and provides limited practical value, as such models quickly become
intractable for state-of-the-art solvers. Therefore, we do not present an exact optimization
model in this paper. Instead, we note that Liu et al. (2025) demonstrate the inherent modeling
complexity even for a very special case of our problem (i.e., one truck and one drone), where
the computational burden already renders exact methods impractical. In their study, Liu et al.
(2025) transform arc-routing problems into equivalent node-routing formulations (Longo et al.,
2006) to address truck—drone coordination, and subsequently design heuristic solution methods
due to its computational complexity. While the formulation is effective for their restricted set-
ting, this approach introduces substantial computational overhead by enlarging the underlying
graph, which further limits scalability.

Given that our problem setting is far broader, exact optimization techniques are unlikely to
be meaningfully applied in real-world scenarios. Additionally, unlike Liu et al. (2025), we do
not rely on node-transformation techniques, which allows us to avoid the additional complexity
and overhead associated with graph expansion and an increased fleet size. This observation un-
derscores the need for efficient heuristic approaches capable of producing high-quality solutions
within reasonable computational times, which is the main goal of our study.



4 Methodology

In this section, we present the Hybrid Genetic Algorithm (HGA) developed to solve the RPP-
mTD. Our approach builds on established evolutionary computation frameworks while incor-
porating several novel components that set it apart from standard implementations. These
innovations, essential to the algorithm’s effectiveness, are specifically designed to address the
unique challenges of coordinated makespan optimization in multi-fleet truck-and-drone routing.
The algorithm iteratively applies a combination of traditional and custom genetic operators,
complemented by powerful local search procedures, to refine solutions and guide the search
toward a global optimum.

4.1 Graph Abstraction

We adopt a graph abstraction to enable straightforward solution representation and to appropri-
ately capture truck and drone movements during evaluation. The underlying network consists
of both required and unrequired edges. Trucks are constrained to travel along this network
topology. Drones, however, operate in a hybrid mode: they fly unconstrained, point-to-point
(Euclidean distance) between launch and recovery nodes, but must explicitly traverse the path
of any required edge they are assigned to service.

To support the efficient evaluation of several candidate solutions, we preprocess the graph
to compute the shortest paths between the endpoints of all required edges. This abstraction
reduces the complex pathfinding challenge to a high-level sequencing problem. As a result, the
traversal time between any two consecutive service tasks can be retrieved from a precomputed
lookup table rather than being repeatedly recomputed, which is critical for the algorithm’s
performance.

4.2 Solution Representation

For an effective optimization process, it is crucial to establish a valid representation of the
solution. To capture the distinctive characteristics of the solution space, we adopt a two-part
chromosome encoding approach:

1. Service Sequence: This component is an ordered list representing all required edges that
must be traversed, each uniquely indexed. With R required edges, this chromosome
segment has length R. FEach required edge is accompanied by a direction marker to
indicate traversal direction: a positive index denotes forward traversal, while a negative
sign indicates traversal in the opposite direction. Collectively, this chromosome part
defines the sequence of service and traversal orientations.

2. Vehicle Assignment: This part complements the service-order sequence by specifying the
vehicle responsible for each service step. Each vehicle is assigned a unique identifier to
facilitate differentiation. For example, in a configuration with K = 2 trucks, each equipped
with M = 2 drones, the numbering proceeds as follows: Truck 1 is labeled as 1, its drones
as 2 and 3, Truck 2 as 4, followed by its drones as 5 and 6, respectively. Figure 3 shows
an example of the chromosome encoding for a problem with R = 7, illustrating how the
representation can be decomposed for a truck system. Tasks assigned to a truck and its
associated drones collectively constitute the tour of that truck-drone system, and those
allocated specifically to individual drones form their respective sorties.

Since both parts of the chromosome are of equal length and jointly capture all necessary
information, a complete routing plan for the vehicles can be derived directly by interpreting the
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Figure 3: An example solution representation of an RPP-mTD with R=7, K =2 and M =2

chromosome. This representation clearly separates what must be done (the exact sequence and
orientation of required arcs) from which vehicle performs it, while maintaining full synchroniza-
tion between the two components.

4.3 Route Construction for Evaluation

To translate a chromosome into a complete routing plan and evaluate its quality, we follow
a clear decoding process. First, the full route for each vehicle is constructed by connecting
its assigned service tasks. When connecting two consecutive tasks, if multiple precomputed
shortest paths of equal length (co-optimal paths) exist, one is randomly sampled. This random
choice occurs during the creation and modification of solutions, introducing valuable structural
diversity into the population by exploring different intermediate nodes for drone operations.

Second, the process handles structural inefficiencies implicitly. In cases where the shortest
path between required edges r; and r; happens to pass through another required edge 7, the
resulting route is valid but contains a redundancy. Such solutions are not explicitly forbidden
or repaired. Instead, their naturally longer makespan results in a poorer fitness score, and they
are less likely to be selected for propagation, allowing the evolutionary search to organically
favor more efficient orderings (e.g., ..., 7%, 7j...). The quality of a decoded plan is ultimately
measured by its makespan, which serves as the primary input to the fitness function described
in the following section.

4.4 Fitness Function

The fitness of each candidate solution is measured by its makespan, i.e., the total time required
to service all designated edges and return to the depot. To compute this makespan, we first
determine each truck’s route duration by summing the travel times along the shortest paths
that connect the pairs of required arcs in its service sequence (including any necessary repeats
of edges). Next, we calculate each drone’s flight time using the straight-line distance between
non-required edges, based on the potential launch and recovery vertices. For required edges, the
drone’s travel time is computed along the given edges. We also verify that every drone route



respects the maximum allowable flight time, 7, and does not exceed the permitted number of
intervening truck-traversal arcs, §, between take-off and landing points. Finally, the drone paths
are selected based on their effect on the objective value.

After the makespan T'(I) of an individual I has been calculated, we translate it into a fitness
score F'(I). Note that any solution violating the drone-range constraint incurs a range-violation
penalty

D
Winf Z(Tmax(d) - 7_)+
d=1

added directly to its makespan. Here, Timax(d) denotes the highest independent flight time of
drone d, and (z)* = max{0,z}. wiys is the penalty that we dynamically adjust throughout
the genetic algorithm. To encourage population diversity, we also compute each individual’s
diversity score §(/) as the normalized Hamming distance to its two nearest neighbors (Sobhanan
et al., 2024a). If ng denotes the number of elite individuals in the population and np is the
total population size, then the fitness function for a chromosome I is defined as

F(I) = T(I) x <”E>5U).

np

Therefore, solutions with lower fitness values, reflecting both shorter effective makespans and
greater niche differentiation, are preferred in the selection process.

4.5 Initial Population

The initial population of solutions is generated using a hybrid strategy that combines purely
random initialization with targeted initialization. Specifically, a fraction p; of the population
is seeded by a problem-specific heuristic that identifies promising drone—truck routing plans.
By incorporating these makespan-aware individuals alongside randomly generated solutions,
the genetic algorithm benefits from both high-quality starting points and broad population
diversity.

Fach targeted individual is constructed in two steps. First, we build a simple RPP service
sequence: starting at the depot, we iteratively append the as-yet-unserved required edge whose
nearest endpoint to the current truck location that minimizes the incremental truck travel
time, while respecting edge directionality by choosing the traversal order (u,v) or (v,u) that is
most efficient. Second, we apply a greedy makespan-minimization assignment. We traverse the
resulting service sequence and, for each arc (u,v), compute the projected completion time if
served by each of the K trucks or any of their K x M drones, tracking each truck’s current node
and accumulated drive time, along with each drone’s cumulative flight time. We then assign
the arc to the vehicle that yields the smallest overall makespan.

4.6 Evolutionary Process

The population evolves through an iterative evolutionary process involving selection, crossover,
and mutation, executed for a predefined maximum number of generations GG. At each generation,
offspring solutions are generated by combining existing solutions through genetic operations,
ensuring exploration of diverse and potentially superior solutions.

Crossover operators play a crucial role by combining chromosome sequences from pairs of
parent solutions to produce offspring inheriting traits from both parents. Parent solutions are
selected using binary tournament selection based on their fitness scores. We randomly apply
one of three crossover methods. The Order Crossover (OX) method involves selecting two
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cut points in the chromosome sequence, copying the segment between these points from one
parent into the offspring, and filling the remaining positions sequentially with genes from the
other parent, skipping genes already copied. The Partially Mapped Crossover (PMX) exchanges
segments between two cut points while resolving duplicate genes through a mapping process
between parents, ensuring valid offspring permutations.

Additionally, we propose a novel, problem-specific crossover operator termed Segment-
Preserving Crossover, tailored explicitly for the truck-drone system context. This operator
selects a complete segment corresponding to all visits handled by a single truck system and its
associated drones from one parent, and extracts the corresponding segment from the other par-
ent. Subsequently, either OX or PMX is applied exclusively to these segments. The generated
segment is then reintegrated into copies of the original parents, followed by a repair procedure.
The repair step corrects any duplicate or missing visits by incorporating appropriate arcs from
the opposite parent. Consequently, this method yields two feasible offspring preserving intact
truck system-level segments.

Mutation operations occur with an initial probability p,,, introducing minor random varia-
tions within chromosome structures to explore new solution spaces and maintain genetic diver-
sity. To mitigate stagnation, if no improvement in solution quality is observed for G, consecu-
tive generations, we dynamically increase the mutation probability to p;;,. Mutation is executed
by randomly selecting one of three operators applied to both the service sequence and vehicle
assignment components of the chromosome: (1) Swap Mutation selects two positions at ran-
dom and exchanges their genes, (2) Inversion Mutation selects a random subsequence between
indices i < j and reverses it in place, and (3) Reassignment Mutation, designed specifically for
vehicle assignments, randomly selects a single gene and assigns it to a different vehicle.

Throughout the evolutionary process, the population size is maintained within the interval
[Pr, Pr]. After generating offspring solutions at each generation, the population is sorted
based on the fitness function, and only the best-performing P; individuals are retained for
subsequent generations. This strategy effectively balances diversity with exploration of high-
quality solutions. Additionally, a maximum of Py candidate solutions is generated at each
iteration through combined evolutionary operations and local search refinements. To further
promote convergence, the top 1% of the solutions are explicitly preserved across generations.
This elitist strategy ensures that superior solutions are not lost due to stochastic variation.

4.7 Local Search and Refinement

To further enhance exploration and mitigate the risk of becoming trapped in local optima, each
newly generated population undergoes a dedicated local improvement phase. Following the
evaluation of offspring fitness, individuals are sorted in ascending order of their fitness scores,
and the top 20% are selected for further refinement. Each selected individual is subjected
to a bounded iterative local search process, limited to a number of steps (1s_steps). This
process involves randomized exploration of the solution’s neighborhood, and unlike the mutation
procedure, only strictly improving moves are accepted. This ensures a monotonically non-
increasing makespan and steady progression toward local optimality.

At each iteration of the local search, a candidate solution is modified using one randomly
chosen neighborhood search operator from the following five strategies:

1. Subsequence Reversal: Selects and reverses a subsequence of the overall service sequence
and the corresponding vehicle assignments, to potentially reveal more efficient orderings.

2. Or-opt: Relocates a contiguous block of up to b required arcs to a different position in
the sequence, preserving their internal order, to exploit local structural improvements.
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3. Drone Sortie Optimization: For each drone, attempts to improve the internal ordering of
assigned arcs when the sortie length exceeds a threshold (e.g., > 3), effectively solving
small intra-sortie Traveling Salesman subproblems.

4. Greedy Vehicle Reassignment: Evaluates alternative vehicle assignments for an arc, iden-
tifies the reassignment yielding the greatest reduction in makespan, and applies the most
beneficial changes.

5. Ruin-and-Construct: Temporarily removes a proportion pyuin of the required arcs and
reinserts them into positions and assigns vehicles that minimize the resulting makespan,
leading to additional exploration of the solution space.

After applying a neighborhood move, the solution’s fitness is re-evaluated. If the resulting
makespan is strictly better than that of the incumbent solution, the candidate replaces it. This
process is repeated for up to 1ls_steps iterations, after which the locally refined individual is re-
turned. Once all selected candidates in the current generation have undergone local refinement,
the resulting pool is trimmed based on fitness to restore the original population size.

By integrating broad global search via genetic evolution with focused local refinement, our
hybrid genetic algorithm (HGA) strikes a robust balance between diversification and exploita-
tion. This balance leads to high-quality solutions with minimized makespan. Upon convergence,
the best solution found across all generations is selected as the final output, representing a prac-
tically deployable multi-fleet truck-drone routing plan.

5 Computational Study

In this section, we present a series of experiments to evaluate the performance of the proposed
heuristic for the RPP-mTD under various problem settings. All algorithms and experimental
procedures are implemented in Julia 1.11.5 and executed on a MacBook Pro equipped with
an Apple M1 chip, 16 GB of RAM, and running macOS Sequoia 15.5. The parameters used
in our experiments are as follows: ng = 0.8np, G = 100, G,, = 10, P, = 100, Py = 200,
Wing € [0.01,100.0], ps = 0.1, pp, = 0.1, pf, = 0.3, pruin = 0.2, and 1s_steps = 30.

We conduct two types of experiments. First, we benchmark our algorithm using the instances
provided in Liu et al. (2025), focusing on a restricted setting with K = 1 truck and M =1
drone. This allows for a controlled comparison of a special case with the existing method, using
one of their parameter configurations with the drone speed (Sgrone = 2) and the truck speed
(Struck = 1), the most common situation in practical applications (Harrison, 2025). Second,
we generate a set of large-scale RPP-mTD instances to analyze the algorithm’s scalability
and responsiveness to different problem characteristics. Specifically, we examine the effects of
varying vehicle compositions, drone ranges, and the §-hop window. In these experiments, truck
travel time on an edge is calculated by dividing its arc length by a constant cruise speed of
40 kmh™!. Since drones are generally faster than trucks (Harrison, 2025), especially in urban
environments, their flight time is computed using a cruise speed of 80 kmh™* (Aurambout et al.,
2022). Each sortie is further limited by a maximum airborne time of 60 minutes, reflecting the
battery capacity constraints.

For the second set of experiments, we generate RPP test instances based on a 10 km x 10 km
square grid that approximates an urban district. First, the number of nodes N is selected such
that N € [50,500], and node coordinates are generated randomly on the square grid. A graph
is then constructed by connecting the nodes using random edges. To ensure that routes exist,
we retain the largest connected component and discard any isolated nodes or subgraphs. A
subset of these edges is then designated as required, with its cardinality selected from the range
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[15,100]. All edge lengths in the ground network are measured using the Manhattan metric to
realistically capture rectilinear street layouts. For each instance size considered, we generate
five test instances per instance class.

5.1 Benchmark Evaluation

In Table 2, we present a benchmark evaluation of our proposed approach applied to the special
case of the RPP-mTD problem with a single truck carrying one drone. We utilize benchmark
instances originally introduced in Liu et al. (2025). In this experiment, we do not impose a
limit on the d-hop window. Additionally, we analyze the impact of varying values of 3, a
hyperparameter from their study, to determine the drone flying time limit, defined as follows:

T= x Average edge distance in the drone graph (1)

Sdrone

Table 2: Benchmark evaluation results for RPP-mTD with 1 truck and 1 drone

Instance Class [  Best Known ALNS HGA
Obj Time* Gap Obj Time Gap
(sec) (%) (sec) (%)
1 358.22 365.32 11.23  1.98 368.82 2.82 2.96
N10E20R5 2 256.43 263.23 7.32 2.65  260.80 3.15 1.70
3 196.29 200.42 5.43 2.10 196.76 3.15 0.24
1 461.53 470.34 16.23  1.91 475.62 6.92 3.05
N10E20R7 2 319.89 326.43 34.23  2.04 321.96 7.97 0.65
3 237.08 242.53 43.42 2.30 242.82 8.48 2.42
1 591.06 599.42 284.55 1.41 629.20 16.39 6.45
N10E20R10 2 394.15 400.23 204.32 1.54 399.86 22.12 1.45
3 284.21 289.53  221.23 1.87 289.26 24.99 1.78
1 446.42 452.32 4.63 1.32  456.50 2.77 2.26
N15E30R5 2 340.98 344.52 7.83 1.04 349.48 2.08 2.49
3 253.60 259.32 6.58 226 263.64 1.94 3.96
1 533.58 547.63 19.43  2.63 552.46 6.44 3.54
N15E30R7 2 399.35 410.23 35.64 2.72  404.54 5.21 1.30
3 282.83 289.53 55.47  2.37  287.80 4.78 1.76
1 660.18 675.73 210.24 236 690.34 16.45 4.57
N15E30R10 2 481.08 510.23 199.53 6.06 481.08 20.73 0.00
3 337.74 359.34 178.46 6.40 337.56 22.19 -0.05
Average 379.70 389.24 85.88  2.50 389.36 9.92 2.25

The results indicate that our method achieves competitive performance compared to the
ALNS. Specifically, our method has an average optimality gap of 2.25%, closely matching
ALNS, which achieves a gap of 2.5%. It is worth emphasizing that while ALNS is specifi-
cally tailored for single-truck routing scenarios, our solution method is more general, capable
of addressing broader configurations of the problem. Moreover, our approach demonstrates
notable advantages over existing benchmarks. For instance, in one specific scenario (instance
class N15E30R10 with 8 = 3), our method outperforms the best-known solution obtained us-
ing a MILP solver that was executed with a one-hour time limit. Additionally, our algorithm
significantly reduces computational time compared to ALNS, delivering solutions significantly
faster. Note, however, that the ALNS results were reported in the benchmark study using a
workstation equipped with a 2.2 GHz Intel Xeon E5-2630 processor and 32 GB of RAM. Using
data from https://www.cpubenchmark.net/, we compared the single-thread performance of
the Xeon processor to that of our system. Based on this comparison, we estimate that if ALNS
were executed on our hardware, its average runtime would be approximately 40.3 seconds, as
opposed to the value reported in the benchmark study. Nevertheless, even under this adjusted
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Figure 4: Convergence of the proposed HGA across generations for an instance with R = 100

estimate, our HGA algorithm maintains a clear advantage in computational efficiency, delivering
solutions in significantly less time.

5.2 Scalability and Responsiveness Evaluation

We now conduct experiments on larger instances to better understand and empirically evaluate
the factors that influence both the RPP-mTD and our proposed HGA. Before presenting the
various experiments and results in this subsection, we first highlight the performance of the
proposed HGA on a representative instance. This provides evidence that the algorithm does
not waste computational resources; rather, it continuously searches for improved solutions until
convergence. Figure 4 illustrates the convergence behavior of the HGA over generations for
an instance with R = 100, using a configuration of K = 2 trucks, M = 2 drones per truck,
and a drone flying time limit of 7 = 1.0 hour. As observed, the proposed method quickly
identifies a feasible solution early in the search with an objective value of approximately 265.
At approximately 150 generations, it finds the best solution with an objective value near 180,
corresponding to an improvement of roughly 32%. After 200 iterations, the algorithm terminates
and reports the best solution found.

5.2.1 Analysis of the Impact of Vehicle Composition

In this experiment, we analyze how the makespan of the system changes with respect to different
combinations of trucks and drones, in addition to the computational complexity it possesses as
we increase the fleet size. Tables 3 and 4 present the results of our method applied to varying
vehicle compositions, specifically with K € {1,2,3} trucks and M € {1,2,3} drones. All the
experiments were conducted using fixed parameters § = 5 and 7 = 1.0 hour. Using our proposed
HGA, we examine how changes in the number of trucks and drones influence solution quality
and computational runtime.

Across all instance classes, increasing the number of trucks consistently led to substantial
reductions in the makespan. For example, in instance N200E400R50, transitioning from a single
truck with one drone to a three-truck setup, each still equipped with one drone, reduced the
makespan by approximately 57.6%, from 139.2 to 59.0. Similar patterns were observed across
all problem sizes, underscoring the advantage of using multiple trucks for parallel coverage,
particularly in larger networks. Adding drones per truck generally improved solution quality
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Table 3: Impact of vehicle composition on solution quality and runtime - Part 1

1 Truck 2 Trucks
Instance M=1 M =2 M=3 M=1 M=2 M=3

Obj Time Obj Time Obj Time Obj Time Obj Time Obj Time

(min) (min) (min) (min) (min) (min)

N50E100R15 33.8 0.2 32.2 0.3 32.2 0.3 20.8 0.3 20.5 0.4 20.4 0.5
N50E100R20 45.4 0.4 44.3 0.5 42.2 0.6 27.0 0.6 26.8 0.8 25.2 1.0
N100E200R25 70.1 0.6 68.4 0.9 65.7 1.0 42.2 1.1 38.9 1.2 38.9 1.6
N100E200R30 80.2 0.9 77.1 1.4 76.9 1.7 48.4 1.8 45.1 2.3 44.4 3.0
N200E400R40 122.2 2.1 112.1 3.3  109.9 4.0 67.9 4.1 63.3 5.0 61.9 6.5
N200E400R50 139.2 4.2  136.1 6.3 130.5 7.6 81.6 7.6 78.0 9.4 74.7 11.9

N300E600R50 148.6 4.4 1422 6.7 139.6 8.1 85.8 8.0 83.0 10.3 81.3 12.6
N300E700R70 203.7 11.8 189.4 17.6  188.2 20.8 1128 20.7 108.0 25.7 104.3 32.0
N400E800RS80 267.7 18.4 2518 27.5 2425 32.0 149.8 32.8 1435 40.1  135.8 49.8
N500E1000R100  321.0 38.5 3128 57.2  302.6 65.8 186.0 66.7 174.5 83.2 168.3 98.6

Table 4: Impact of vehicle composition on solution quality and runtime - Part 2

3 Trucks
Instance M=1 M =2 M =

Obj Time Obj Time Obj Time

(min) (min) (min)

N50E100R15 16.4 0.5 16.3 0.6 16.1 0.6
N50E100R20 20.7 0.9 20.2 1.0 19.7 1.3
N100E200R25 31.7 1.7 29.8 1.9 29.4 2.3
N100E200R30 35.4 2.8 34.4 3.2 34.1 3.8
N200E400RA40 48.5 6.3 46.2 7.1 46.0 8.8

N200E400R50 59.0 11.9 56.0 13.4 55.5 16.3
N300E600R50 64.6 12.3 58.9 14.1 58.9 17.2
N300E700R70 82.4 32.8 76.1 36.1 76.1 43.8
N400E800R80 109.5 49.1  102.2 55.2  100.5 65.3
N500E1000R100  131.2 97.8 125.2 1120 121.2 1313
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Table 5: Impact of drone flying time on the solution and runtime

T=0.5 T=1.0 T=1.5 T=20
Instance

Obj Time Obj Time Obj Time Obj Time

(min) (min) (min) (min)

N50E100R15 23.7 0.3 20.5 0.4 13.8 0.5 9.1 0.5
N50E100R20 29.8 0.6 26.8 0.8 18.7 0.9 121 1.0
N100E200R25 48.1 1.0 38.9 1.2 27.9 1.7 197 1.7
N100E200R30 52.8 1.7 45.1 2.3 32.5 2.6 21.6 2.8
N200E400R40 79.2 3.7 63.3 5.0 42.0 59 29.2 6.3
N200E400R50 91.5 6.7 78.0 9.4 52.8 10.9 36.3 11.5
N300E600R50 101.3 7.1 83.0 10.3 56.0 11.5 40.6 12.0

N300E700R70 129.8 17.6  108.0 25.7 74.7 28.1 545 30.3
N400E800R80 170.9 26.4 143.5 40.1  101.8 43.1  71.2 46.1
N500E1000R100  206.3 53.4 174.5 83.2 1221 85.9 86.9 91.5

as well, although the marginal gains diminished with each additional drone due to drone range
limitations. Introducing a second drone per truck consistently yielded noticeable improvements
in the objective value. However, the benefit of adding a third drone was often limited, especially
in larger, multi-truck configurations. For instance, in the N400E800R80 case with three trucks,
the improvement in the objective was only 1.7%, when increasing from two to three drones per
truck, despite a significant increase in computational runtime from 55.2 to 65.3 minutes.

From a computational perspective, the runtime of our HGA algorithm increases signifi-
cantly with the number of trucks and drones. This overhead becomes especially noticeable as
more drones or trucks are added, reflecting the increased complexity of coordinating multiple
drone routes with corresponding truck schedules. This effect is especially evident in larger in-
stances. In the NSOOE1000R100 scenario, for example, the runtime nearly doubled, from 57.2
to 112.0 minutes, when moving from a single-truck, two-drone setup to a three-truck configu-
ration with two drones each. These empirical results clearly highlight the trade-offs between
solution quality and computational complexity. While deploying multiple trucks consistently
enhances performance by enabling parallel operations, drone allocation requires greater caution
due to their limited flight range. Given the diminishing marginal gains and the sharp increase
in computational burden, a balanced strategy is essential when configuring larger fleets.

5.2.2 Analysis of Drone Flying Time Limit

Table 5 reports the impact of increasing the drone flying time limit 7 on both makespan and
computational runtime, with § = 5 and a fixed fleet of two trucks each carrying two drones.
As 7 increases from 0.5 to 2.0 hours, drones can service more distant arcs and the makespan
falls steadily in every instance. In the smallest network class (NS0E100R15), for example, the
objective decreases from 23.7 at 7 = 0.5 to 9.1 at 7 = 2.0, with a 61.6 % reduction. However, the
runtime increases from 0.3 minutes to 0.5 minutes. In the largest instance (N500E1000R100),
extending 7 from 0.5 to 2.0 hours cuts the makespan by 57.9 % but raises runtime by 71.3 %.

On average across all ten instance classes, increasing 7 from 0.5 to 1.0 hour yields a 15.8 %
reduction in makespan at the cost of a 39.6 % longer runtime. Similarly, increasing 7 further
from 1.0 to 1.5 delivers a 30.8 % drop in makespan with a 15.8 % runtime penalty, and raising
7 from 1.5 to 2.0 brings another 30.7 % improvement in routing efficiency for a 5.7 % increase
in runtime. Although today’s commercial delivery drones typically operate flights of around
one hour, ongoing advances in drone battery capacity are rapidly extending their operational
range, making higher 7 values increasingly realistic in the near future.
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5.2.3 Analysis of j-hop Window

Using our proposed HGA, we analyze the effect of varying the parameter §. Figures 5a and 5b
illustrate how adjusting the d-hop window influences the makespan for two instances belonging
to classes N5OE100R15 and N200E400N50, respectively. Recall that 6 = 1 implies each drone
sortie departs from a truck stop and returns at the immediately subsequent truck stop, whereas
higher § values allow the truck to traverse up to ¢ arcs before rendezvousing with the drone.
The experiments are conducted with a fixed fleet configuration KX = 2 and M = 2, and drone
flying time limit 7 = 1.0.
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Figure 5: Effect of varying § on the makespan of two instances

Generally, increasing § reduces the makespan since drones can rendezvous further from their
launch points. However, the incremental benefit diminishes as § increases. Thus, practitioners
should select an appropriate d value by carefully balancing routing flexibility and makespan
savings against operational complexity and synchronization constraints, as excessively large ¢
values may be practically infeasible.

6 Conclusions

This paper introduced the Rural Postman Problem with multiple Trucks and Drones (RPP-
mTD), a new arc-routing variant that captures multi-vehicle coordination in emerging truck—drone
logistics. We developed a Hybrid Genetic Algorithm (HGA) with multiple neighborhood search
methods to effectively solve this problem. Benchmark experiments on small-scale instances with
one truck and one drone show that HGA achieves an average optimality gap of 2.25%, outper-
forming the state-of-the-art ALNS (2.5%) while delivering solutions significantly faster. On
larger networks, up to 500 nodes and 100 required arcs, the algorithm scales well and produces
good quality solutions within minutes.

Our experiments yield three managerial insights. (1) Adding trucks consistently reduces
makespan, whereas addition of drones per truck may not be useful for larger networks due to
limited drone flying time. (2) Extending drone flying time (7) sharply lowers makespan but
can inflate runtime on very large instances. (3) Relaxing the drone launch node constraint
through a é-hop window further decreases the makespan; however, beyond moderate § values,
the incremental benefit diminishes. Future research could explore extensions involving stochastic
travel times and non-linear battery consumption. Another promising direction is to study
scenarios where drones are not specifically associated with individual trucks, allowing them to
fly in and out of different trucks throughout the operation.
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