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1. Introduction

Monetary policy frameworks that rely on explicit inflation targets are designed

not only to stabilize realized inflation but also to anchor long-run inflation expec-

tations. When expectations are firmly anchored, temporary shocks to inflation

have limited effects on long-horizon beliefs, allowing central banks to stabilize

real activity without jeopardizing price stability (Bernanke, 2007; Woodford, 2003).

However, if agents form expectations under bounded rationality and update beliefs

through adaptive learning, long-run inflation expectations may remain sensitive

to short-run inflation outcomes even in the presence of a credible numerical

target.

This paper examines the anchoring of long-run inflation expectations within

the framework of bounded rationality and adaptive learning. We develop and

estimate a New Keynesian model in which agents update their perceived long-

run inflation target in response to short-horizon inflation forecast errors. The

empirical analysis applies this framework to India, which provides a useful setting

given its recent transition to a formal inflation-targeting regime. In February 2015,

the Government of India and the Reserve Bank of India adopted a 4% CPI inflation

target with a tolerance band of 2–6%, creating a clear numerical anchor against

which the evolution of long-run expectations can be evaluated.

Despite this institutional shift, financial-market outcomes suggest that long-run

inflation uncertainty may not have been fully resolved. Figure 1 and the Table 1

documents a divergence in the Indian government bond market following the

adoption of inflation targeting. The expectations-hypothesis component of the

zero-coupon yield curve declines sharply across maturities, consistent with lower

expected future short-term rates. In contrast, the term-premium component
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remains elevated and persistent, particularly at longer maturities. This coexistence

of declining expected rates and sustained term premia points to residual long-

horizon inflation risk, providing a natural motivation to study whether long-run

inflation expectations remain imperfectly anchored and continue to respond to

short-run inflation surprises.

Figure 1: ZCYC Yield and Term Premium at a given maturity: 12-, 24-, 60-, and 120-month matu-
rities :Each panel reports monthly yields and corresponding term premia over the period Q1:2010 to
Q4:2024.The red and blue lines denote the observed and model-fitted yields, respectively. The purple
dotted line represents the expectations-hypothesis component, while the green dotted line displays the
estimated term-premium component.
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Table 1: Term Premium Estimates Across Maturities

Maturity Window Average Min Average Max Sample Mean
(months) (%) (%) (%)

12 Pre-IT -0.198 0.540 0.179

12 Post-IT 0.156 0.524 0.345

24 Pre-IT -0.050 0.667 0.328

24 Post-IT 0.456 0.868 0.663

60 Pre-IT 0.734 1.128 0.934

60 Post-IT 0.985 1.308 1.128

120 Pre-IT 1.338 1.848 1.599

120 Post-IT 1.175 1.848 1.599

Notes: The Table depicts Term premium estimates across ZCYC maturities. Pre-IT corresponds to

the period Q1:2010 to Q1:2015, and post-IT is Q2:2015 to Q4:2024. Term premium estimates are on

a monthly basis and estimated following Adrian et al. (2015) and corrected for small-sample bias via

inverse bootstrapping. The sample is divided into 12-month blocks. For each block, the minimum and

maximum term premia are computed; the reported “average minima” and “average maxima” are the

means of these block-wise values.

This divergence suggests that improvements in short-run inflation performance

need not translate into fully anchored long-run expectations, particularly when

agents update beliefs based on realized inflation outcomes. The analysis is orga-

nized around three issues. First, how have long-run inflation expectations evolved

following the adoption of inflation targeting, as measured by ten-year-ahead ex-

pectations? Second, to what extent are long-horizon expectations anchored to the

announced 4% target, and how sensitive are they to short-run inflation surprises?

Third, does residual long-run inflation uncertainty contribute to the persistence

of term premia at longer maturities of government securities?

Empirical analysis of long-term inflation-expectation anchoring in India is con-

strained by the absence of market-based indicators. Unlike advanced economies
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that rely on instruments such as TIPS breakevens or inflation swaps across ma-

turities, India offers no comparable measures from which long-horizon inflation

expectations can be directly inferred. To address this limitation, we conduct our

analysis within a New Keynesian framework following Carvalho et al. (2023), fea-

turing a central bank that credibly commits to a fixed inflation target under a

time-invariant policy regime. Firms operate under monopolistic competition

and nominal rigidities, setting prices optimally based on expectations of future

marginal costs and the perceived inflation target, with marginal costs determined

by monetary policy and aggregate demand conditions.

A central feature of the model is the adaptive learning process through which

agents form beliefs about the long-run inflation target, generating endogenous

uncertainty around the expected target. Within this learning environment, agents

exhibit bounded rationality: long-run expectations need not be fully anchored and

are revised in response to short-run forecast errors in realized inflation. As a result,

learning dynamics create a wedge between agents’ long-term inflation expecta-

tions and the fixed policy target. Expectation formation follows the switching-

gain algorithm of Carvalho et al. (2023), which governs the degree of anchoring

of long-run beliefs. Under a constant-gain specification, expectations remain

backward-looking and unanchored, whereas under a decreasing-gain specifica-

tion, expectations gradually converge toward the policy target in a forward-looking

manner. Consistent with Bernanke (2007), anchoring thus emerges endogenously

from the interaction between short-run inflation surprises and agents’ long-run

belief updating

We estimate the model using headline CPI inflation data from 1958 to 2024 and

compare the model-implied long-run inflation expectations with survey-based

inflation expectations from the Reserve Bank of India’s Survey of Professional Fore-
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casters (SPF). Specifically, we use one- to four-quarter-ahead SPF expectations for

the period 2010–2024 to examine the evolution of expectations before and after the

adoption of inflation targeting. Direct measures of long-horizon expectations are

limited in the Indian context: the only available source of ten-year-ahead inflation

expectations is the RBI’s SPF, which is available for a short window from Q1:2008

to Q1:2018. Over this overlapping period, the model-implied long-run expecta-

tions closely track the survey-based ten-year-ahead forecasts, while allowing us

to extend estimates of long-horizon expectations through the end of the sample

period.

The results of this paper indicate that long-term inflation expectations in India

declined notably following the adoption of the 4% inflation target. In the pre-IT

era, when policy communication was less explicit and information asymmetries

were substantial, long-horizon expectations were highly responsive to short-term

inflation surprises. Post-IT, expectations have moved closer to the stated target:

by Q4:2024, the model places ten-year inflation expectations within the 4.0–4.7%

range (99% posterior interval). However, the underlying learning behavior suggests

that long-run expectations are not yet firmly anchored. Although the median

sensitivity to transitory inflation shocks has declined, the distribution of this

sensitivity remains skewed to the upside. The intuition is straightforward: in an

environment where inflation repeatedly approaches or breaches inferred “rational”

bounds, in our case the “upper” rational bounds are frequently breached, agents

continue to assign disproportionate weight to the risk of upward deviations. This

is consistent with the model-implied rational range of approximately 3.8–4.9%,

which is considerably narrower than the central bank’s ±2% operational tolerance

band. The gap between the rational bounds and the official range underscores the

need for sustained inflation stabilization if long-run expectations are to converge
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decisively toward the announced target

A central insight from the adaptive-learning framework is that credibility accu-

mulates only when inflation remains within the rational bounds for an extended

period—on the order of several years. India has not yet achieved such stability.

Even in the post-IT period, inflation has frequently hovered near the upper rational

bound and has occasionally exceeded it, often during cyclical slowdowns. These

episodes, though smaller than the large deviations seen before IT, occur regularly

enough to disrupt the transition toward a decreasing-gain, forward-looking learn-

ing regime. Consequently, agents continue to update long-run expectations based

on near-term inflation outcomes, reflecting a form of persistent backward-looking

behavior despite the presence of an explicit numerical target. Finally, the decline

in long-run expectations after IT reflected not only the policy shift but also the

behavior of the inflation process itself. The early IT period coincided with subdued

non-core inflation and a broader cyclical slowdown, generating a series of negative

inflation surprises. Because agents remained partially backward-looking when

IT was introduced—carrying forward sensitivities from the pre-IT regime—these

negative surprises had a disproportionate effect on long-run beliefs. A counter-

factual imposing an immediate shift to a decreasing-gain regime shows that, had

expectations been fully anchored at the outset, the decline in long-run inflation

expectations between 2016 and 2020 would have been considerably smaller. Fully

anchored expectations would not have reacted so strongly to transitory negative

surprises.

These dynamics carry implications for bond pricing. Countercyclical breaches of

the rational bounds raise inflation uncertainty precisely when economic condi-

tions are weak, generating long-run risk that is particularly costly for investors.

Given their preference for early resolution of uncertainty, investors demand com-
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pensation for bearing this risk, which manifests as a persistent term premium at

longer maturities. Consistent with this mechanism, the expectations-hypothesis

component of the yield curve declined sharply after 2015—bringing ten-year yields

from roughly 9% in 2014 to around 6.7% by 2021—yet the term-premium compo-

nent remained largely unchanged, typically in the 100–200 basis-point range. The

upside skew in forecasters’ sensitivity to transitory inflation disturbances provides

a direct mechanism for this persistent premium.

A complementary long-run-risk asset-pricing model following Song (2017) and

(Bansal and Shaliastovich, 2013; Bansal and Yaron, 2004) reinforces these findings.

Allowing perceived inflation-target beliefs to drift in response to shocks—par-

ticularly those that are countercyclical—enables the model to match the observed

persistence and magnitude of term premia. In a counterfactual environment

characterized by strict inflation stabilization around the policy target, analogous

to an environment of complete anchored expectations, the covariance channel

that drives nominal long-run risk is muted, resulting in a roughly 120-basis-point

decline in the term premium. This contrast strengthens the central conclusion

that long-term expectations in India are not yet fully anchored: the possibility of

drift in the perceived steady state remains a priced source of risk.

Contribution to the Literature:

In the Indian context, several studies have examined the effects of inflation target-

ing on inflation expectations. Eichengreen et al. (2021) report declines in realized

inflation and reductions in both household and Survey of Professional Forecasters

(SPF) short-term expectations (one to four quarters ahead) in the post-IT period,

accompanied by lower persistence and volatility. These patterns are interpreted as

evidence of improved short-run anchoring. Using household survey data, Asnani
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et al. (2019) similarly document improved anchoring following the adoption of

IT. Their analysis focuses on the distribution of qualitative inflation expectations

across five response categories, ranging from expected price declines to increases

above the current rate. It relates these to realized inflation outcomes and core and

non-core price volatility. They find that roughly 31 percent of respondents move

from expecting high inflation to more moderate or stable outcomes after IT, which

the authors interpret as enhanced anchoring, despite limited changes in non-core

inflation volatility.

More recent work reinforces these findings. Pattanaik et al. (2023) construct an

inflation-expectations anchoring index using aggregate household survey data

and show stronger anchoring performance in the post-IT regime. Garga et al.

(2022) examine financial-market expectations based on OIS curve , and conclude

that the adoption of IT was viewed as a credible policy shift, as reflected in a

more systematic monetary policy response to inflation. Kishor and Pratap (2023)

decompose one- to four-quarter-ahead headline inflation expectations into trend

and cyclical components following Stock and Watson (2007). They find that, after

IT, the trend component becomes less sensitive to negative sentiment shocks and

the cyclical component exhibits lower volatility, both of which are interpreted as

improved short-term anchoring.

A significant limitation of the existing literature on India is its focus on short-term

expectations. Most studies examine forecasts for one to four quarters ahead. How-

ever, the widely accepted benchmark for anchoring expectations, established by

Bernanke (2007), emphasizes the long-term behavior of expectations and their

response to temporary shocks. Consequently, we have a limited understanding of

whether India’s inflation-targeting framework has effectively stabilized expecta-

tions over longer horizons, where credibility is crucial. Interpreting the apparent
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improvement in short-term expectations is also complicated by the macroeco-

nomic environment of the early post-IT years. The transition to IT coincided with

a period of favourable price developments, particularly in food and oil, which

together account for roughly 60% of India’s CPI basket (Figures A1-A2). As shown

by Ascari et al. (2016) and Ball and Mankiw (1995), such favourable shocks tend to

pull down both the mean and the skewness of the inflation distribution. When this

happens, short-horizon expectations naturally look less volatile, more persistent,

and more symmetric—not because agents have become more firmly anchored,

but because the shocks hitting the economy are unusually benign. Once these

shocks reverse, the apparent stability typically dissipates.

Our gain estimates help separate this compositional effect from genuine anchor-

ing. While the median sensitivity to inflation surprises has declined since the

introduction of IT, the upper tail of the distribution remains elevated. This sug-

gests that a significant proportion of agents continue to update their long-run

expectations whenever inflation deviates from recent trends. In other words, some

progress has been made, but a substantial portion of the forecasters remains

cautious, still relying on incoming data rather than fully trusting the announced

target.

Taken together, the evidence points to partial rather than complete anchoring.

Short-term expectations may appear more stable, but much of that stability re-

flects favourable shocks rather than deep changes in belief formation. Long-run

expectations—the true test of anchoring—continue to display sensitivity to tem-

porary inflation movements, suggesting that credibility, while improving, has not

yet fully taken hold. Our work contributes to a broad literature examining how

information frictions and heterogeneous perceptions of the long-run inflation

anchor shape expectation dynamics. Prior studies—such as (LeBaron and Smith,
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2025; Malmendier and Nagel, 2016; Branch and Evans, 2011; Eusepi and Preston,

2010; Lansing, 2009; Preston, 2008)—show that when agents hold differing views

about the steady-state inflation level, forecast errors can become self-reinforcing,

generating persistent drift in long-horizon expectations. In such environments,

consistent and credible policy conduct is critical for stabilizing beliefs.

Our paper also relates to the literature on adaptive learning and gradual belief up-

dating (Coibion et al., 2018; Guse, 2014; Milani, 2007; Honkapohja and Mitra, 2003;

Evans and Honkapohja, 2003). In these frameworks, agents revise their perceived

long-run inflation target based on observed outcomes, generating inertia and per-

sistence in expectations that align with key empirical features of macroeconomic

time series. Similar learning dynamics can produce deviations of asset prices from

fundamentals, giving rise to endogenous risk premia, as shown by Kim (2009) and

Chakraborty and Evans (2008). However, this body of work focuses primarily on

advanced economies. Our contribution is to examine how long-run inflation tar-

gets drift in both pre- and post-inflation-targeting periods in an emerging market

context.

2. Long-term inflation expectations

This section first introduces the benchmark New Keynesian framework, then de-

tails the adaptive-learning mechanism integrated into its benchmark framework

following Carvalho et al. (2023). The benchmark economy features monopolis-

tic competition, with firms maximizing profits and the central bank focused on

stabilizing inflation around a set target. Information asymmetry is captured by a

mechanism that endogenously determines rational bounds on agents’ short-term

inflation expectations and innovations in their evolving beliefs about the long-
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run inflation target and expectations. Belief updates are triggered by surprises

in realized inflation relative to each agent’s rational bounds, linking short-term

forecast errors to adjustments in long-horizon beliefs. These evolution in long-run

target beliefs, in turn, prompt revisions in short-term forecasts, creating a feedback

loop. The model is estimated using Bayesian methods, generating distribution of

time-varying long-term inflation expectations, short-term rational bounds, and

the distribution of associated sensitivity (gain function) measures to short-term

forecast errors.

2.1. The Benchmark Model: Firm Price-Setting Problem

A continuum of monopolistically competitive firms maximizes discounted profits,

subject to Rotemberg (1982)-type adjustment costs. The optimization problem for

each firm i is as follows:

Et

∞∑
T=t

(γβ)T−tMt,T

[
YT (i)

(
Pt(i)

PT

−mct

)]
(2.1)

In this context, Mt,T denotes the stochastic discount factor, γ represents the stable

eigenvalue of the model, which is analogous to the Calvo probability that prices

remain unchanged each period, and β is the intertemporal discount factor. The

demand curve for firm i is given by Yt(i) =
(

Pt(i)
Pt

)−θp,t
Yt, where θp,t is the elasticity

of substitution across varieties. In this formulation, Pt(i) is the price set by firm

i relative to the aggregate price level Pt, and mct denotes real marginal cost. The

optimal pricing rule, conditional on a fixed inflation target π∗, is expressed as

follows:

Pt(i) = Et

∞∑
T=t

(γβ)T−t
[
(1− γβ)(mct + uT )

]
+ γβ

(
(πT+1 − π∗)− γp(πT − π∗)

)
(2.2)
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where γp is the degree of indexation to lagged inflation, and uT represents cost-

push shock. Log-linearizing the pricing condition and assuming symmetry across

firms yields the aggregate supply relation in log-deviation form:

π̂t = γpπ̂t−1 + µt + Et

∞∑
T=t

(γβ)T−t
[
τpm̂ct + (1− γ)β(π̂T+1 − γpπ̂T )

]
(2.3)

Here, τp = (1− γ)(1− γβ)/γ, π̂t represents deviations of inflation from the steady

state, and µt ∼ N(0, 1) denotes the exogenous cost-push disturbance.

2.1.1. The Benchmark Model: Discretionary Monetary Policy

The benchmark model incorporates a Central Bank that stabilizes inflation around

a fixed target π∗ and implements a discretionary stabilization policy, similar to

Woodford and Walsh (2005), presented in log-linearized form:

π̂t − γpπ̂t−1 + Γxxt = ϵt. (2.4)

xt represents the output-gap deviation. The exogenous shock ϵt, resulting from dis-

cretionary stabilization policy, is persistent and follows an autoregressive process

of order one (AR(1)):

ϵt = ρ ϵt−1 + ξt, ξt ∼ N (0, 1).

The exogenous shock can be interpreted as an error arising mainly from persistent

policy lapses and mismeasurement of inflation and output deviations from their

respective steady states. Marginal-cost deviations are assumed to be proportional

to the output gap, m̂ct = ϕtxt, and for analytical tractability and to facilitate the

selection of priors, ϕt is set to unity.
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2.1.2. The Benchmark Model: Rational Expectations of the Representative

Agent

Equation (2.3) may be reformulated into the standard forward-looking New Key-

nesian specification:

π̂t − γpπ̂t−1 = τpm̂ct + βEt(π̂t+1 − γpπ̂t) + µt. (2.5)

By substituting equations (2.4) and (2.5), and applying m̂ct = xt, the representa-

tive agents’ stationary rational-expectations representation for one-period-ahead

inflation in log deviation form is obtained:

π̂t = γpπ̂t−1 + ρ ω̄ ϵt−1 + νt, (2.6)

where ω̄ =
[
1 + (1− βρ)τ−1

p Γx

]−1
and νt = ω̄ ξt+

(
1+ τpΓ

−1
x

)−1
µt. This formulation

highlights the role of policy inertia, represented by ρ and the composite weight ω̄,

in transmitting shocks ξt and µt to near-term inflation dynamics under indexation

γp.

2.1.3. The Perceived Law of Motion

This subsection and those that follow detail the integration of the adaptive frame-

work into the benchmark model. The baseline benchmark model assumes that π∗

is non-stochastic. However, agents may doubt the central bank’s ability to strictly

maintain inflation within rational bounds around the announced target, π∗. As a

result, agents incorporate a time-varying perceived target π̄t into their forecast-

ing models. Under the assumption of symmetric expectations regarding π̄t, the

stationary rational-expectation expression in (2.6) is modified to include π̄t for
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near-term inflation forecasts. This modification yields a representative Perceived

Law of Motion (PLM), expressed as:

PLM : π̂t = γpπ̂t−1 + (1− γp)π̄t + ρ ω̄ ϵt−1 + et. (2.7)

In this context, et denotes the one-step-ahead forecast error, which corresponds to

the inflation surprise. Within the PLM, agents account for both the immediate past

inflation deviation π̂t−1 from the fixed target and the perceived deviation in the

inflation targetπ̄t itself. Consequently, any drift in the target deviation π̄t directly

revises one-period-ahead inflation expectations and, through recursion, shapes

expectations at longer horizons. At this stage, two key assumptions are introduced

to connect short-run forecasts and surprises with adaption in long-run beliefs.

The first assumption asserts that, in each period, long-run inflation expectations

are equivalent to the perceived steady-state inflation target:

lim
T→∞

ÊtπT = π̄t.

The second assumption posits that, under perfect foresight in the short run, long-

run beliefs are updated each period based on realized inflation and short-run

surprises observed up to the immediate past:

Êt−1π̄T = π̄t.

Taken together, these assumptions indicate that changes in long-run inflation

beliefs in each period, represented by π̄t, are conditional on short-term surprises.

Through the PLM, these changes in long-run beliefs are incorporated into subjec-

tive near-term inflation forecasts.
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2.2. The Actual Law of Motion

Within this framework, each firm projects the future trajectory of marginal costs

based on its expectations of long-run inflation target and the degree of monetary-

policy inertia. Under symmetric conditions, utilizing the discretionary monetary

policy rule and by incorporating the time-varying deviations in the inflation target,

the projected path of marginal cost is expressed as follows:

Êtm̂cT+1 =
1

Γx

Êt [ϵT+1 − (π̂T+1 − π̄T ) + γp(π̂T − π̄T )] (2.8)

Here, monetary policy inertia is characterized by ÊtϵT+1 = ρT−tϵt.

In each period, firms utilizes the extrapolated marginal cost path to re-optimize

prices according to equation (2.1) subject to their adjustment cost. Aggregating

across all the firms yields the representative Actual Law of Motion (ALM) for

realized inflation in stationary form:

ALM : π̂t = γpπ̂t−1 + (1− γp)Γπ̄t + ρω̄ϵt−1 + νt (2.9)

where, Γ =
1

1 + τpΓ−1
x

(1− γ)β

1− γβ

The ALM represents the underlying inflation process, and is latent due to subjec-

tive expectations of each agent, as described by their respective PLM. Under sym-

metric aggregate assumptions, the gap between ALM- and agents’ PLM-implied

expectations, defined as the difference between equations (2.9) and (2.7), is pri-

marily determined by the term Γπ̄t, where Γ < 1. The coefficient Γ quantifies the

aggregate feedback from deviations in the inflation target beliefs to deviations

in realized inflation. Thus, Γ provides a summary measure of the central bank’s
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effectiveness in stabilizing inflation around its policy target in each period.

When the central bank adopts a policy path characterized by strict inflation target-

ing, the weight on the output gap coefficient (Γx) declines, which subsequently

reduces Γ, as indicated in equation (2.9). This reduction in Γ diminishes the pass-

through from deviations in the perceived inflation target π̄t to realized inflation

deviations π̂t. Strict inflation targeting also causes deviations in π̄t to approach

zero. In the limiting case where Γ → 0, the ALM and PLM converge to the bench-

mark rational expectations around a non-stochastic steady-state inflation target,

as described in equation (2.6). Consequently, a policy focused on strict inflation

stabilization anchors long-term beliefs to the policy target, thereby eliminating

drifts in perceived inflation target and their feedback to realized inflation.

Conversely, when monetary policy places greater emphasis on stabilizing the out-

put gap rather than inflation, weightage of Γx increases in the policy path, resulting

in a higher Γ. As a result, deviations in the perceived inflation target π̄t exert a

strong feedback effect on realized inflation deviations. In the extreme case where

Γx → ∞ (or equivalently Γ → 1), the ALM converges with the PLM, and deviations

in the perceived inflation target, are fully accounted for in realized inflation de-

viations. Therefore, as policy shifts away from active inflation stabilization, any

changes in long-term beliefs about the inflation target become significant driver

of innovations in realized inflation.

The empirical specification of the framework outlined in the subsequent subsec-

tions employs reduced-form systems that include simplified representations of

both the PLM and the ALM. Within the system of equations, the coefficient term Γx

does not appear explicitly. When calibrated to empirical data, the coefficient Γ in

the ALM also reflects, in reduced form, deviations from strict inflation stabilization
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that arise from factors beyond output-gap stabilization.

The following subsection illustrates the update mechanism in perceived inflation

target deviations, the self-fulfilling channel linking these revisions to realized

inflation deviations, and the formulation of rational bounds.

2.3. Inflation Targeting Update Rule

The perceived inflation target deviations are updated each period as per the itera-

tive mechanism:

π̄t = π̄t−1 + g−1
t et−1 (2.10)

where gt, is the gain function and implies the weight assigned to the short-term

inflation surprises et featuring in the PLM process (2.7). This gain function has it

own period by period update rule, and exhibits switching between two functional

form, which forms the basis of adaptive learning:

gt =


gt−1 + 1, if

∣∣∣Êt−1π̂t − Et−1π̂t

∣∣∣ ≤ Θ
√

MSE (Decreasing gain),

ḡ−1, otherwise (Constant gain).

(2.11)

Here, Êt−1π̂t denotes the subjective forecast based on the PLM of the representative

agent, whereas Et−1π̂t refers to the forecast implied by the ALM. The term
√
MSE

represents the standard deviation of the exogenous innovation νt in the ALM

process (2.9), where νt ∼ N (0, σν). The threshold Θ defines the rational bound

and characterizes the limits to rationality agents possess regarding the underlying

inflation process. In this framework, switching in the gain function depends on

the ratio of the difference between PLM and ALM based expectations normalized

by the standard deviation of innovations in the ALM process, relative to the bound
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Θ.

A lower ratio relative to Θ suggests that agents’ PLM closely aligns with the ALM,

indicating a high degree of forecast accuracy. When this ratio consistently re-

mains within the bound Θ, the inflation process defined by the ALM is stable

and predictable by the PLM. As a result, agents continue to employ decreasing

gain learning and gradually reduce the weight assigned to inflation surprise et in

their PLM. Under persistent decreasing gain learning, π̄t ≈ π̄t−1, and the perceived

inflation target converges to a fixed value over time, rendering updates in the

perceived target negligible. Consequently, the feedback channel from inflation

target deviations to realized inflation deviations is diminished. Agents thus exhibit

more forward-looking behavior as they become structurally aware of the long-run

steady state.

However, if the ratio persistently exceeds Θ, agents adopt constant-gain learning

and assign a fixed weight to the surprise et while updating their beliefs about the

long-run inflation target. In this regime, long-term beliefs evolve continually, as

structural awareness is maintained through continual adjustments to π̄t. These

beliefs become highly sensitive to short-term inflation surprises relative to the

rational bound Θ, leading agents to exhibit more backward-looking behavior when

updating their long-term beliefs.

The difference between the expectations implied by the ALM and PLM can be

further represented in terms of accumulated past short-term forecast errors, as

shown below:

| Êt−1π̂t − Et−1π̂t | = | (1− γp)(Γ− 1)π̄t |

= | (1− γp)(Γ− 1)(π̄0 +
t∑

T=0

g−1
T eT ) |

(2.12)
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The expanded equation (2.12) shows that recurrent and substantial short-term

surprises in previous periods can consistently keep the ratio in (2.11) above the

bound Θ, thereby maintaining agents in the constant-gain regime. Because the

expanded equation is in log-deviation form, the weights assigned to past inflation

surprises decay exponentially, with greater emphasis on recent observations. As

agents transition from a highly volatile to a less volatile regime, they gradually

reduce the weight placed on immediate short-term inflation surprises, as they

adapt to the new environment. Accordingly, the ratio in (2.11) ensures a gradual

reduction in the weights assigned to recent inflation surprises. These results in

gradual weakening of the innovations in the perceived inflation target deviations

and its feedback to realized inflation.

In summary, sensitivity to inflation surprises within this framework decreases

significantly only when inflation remains within rational bounds for an extended

period. Under these conditions, empirical measures of switching sensitivity will

also display low skewness, indicating low uncertainty about long-term beliefs

among all agents in the economy.

2.4. Reduced- Form representation

The system of equations from (2.7) to (2.11) is presented below in reduced log-

deviation form. This reduced set constitutes the latent-state-space system, which

facilitates the estimation of evolution in the perceived inflation-target deviation

from observable data.

ALM :: π̂t = (1− γ)Γπ̄t + γpπ̂t−1 + ϵt + µt

Inflation-Target Update :: π̄t = π̄t−1 + g−1
t et−1
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Forecast Error :: et = (1− γ)(Γ− 1)π̄t + µt + εt

Monetary Policy Inertia :: ϵt = ρϵϵt−1 + εt

Gain Update Rule :: gt =


gt−1 + 1, if

∣∣∣Êt−1π̂t − Et−1π̂t

∣∣∣ ≤ Θ
√
ε2t + µ2

t (Decreasing gain),

ḡ−1, otherwise (Constant gain).

The variables π̂t, ϵt, εt, and µt constitute the linear state variables, whereas π̄t and

gt represent the nonlinear state variables in the system. The shocks µt and εt are

modeled as exogenous and are assumed to follow a standard normal distribution.

The state vector comprising of non-linear state variables ∆1t = (π̄t, gt) and linear

state variables ∆2t=(π̂t, ϵt, εt, µt) is mapped to observed data in levels via the

measurement equation, as follows:

Yt =



πt

ESPF
t πt+1

ESPF
t πt+2

ESPF
t πt+3

ESPF
t πt+4



= π∗
t + C

′

1t∆1t + C
′

2t∆2t +Dtot (2.13)

Measurement errors, denoted by ot, are assumed to follow a standard normal

distribution. The intercept π∗
t aligns the model with observed variables in levels

by capturing the mean long-run headline inflation rate. The observed headline

realized inflation in levels is denoted by πt, and the terms ESPF
t πt+h for h = 1, . . . , 4

correspond to one- to four-quarter-ahead headline inflation expectations.In total,

fourteen structural parameters, as listed in the Table 2, are associated with the
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measurement and latent state space system and are estimated over the full sample.

The measurement equation is recursively iterated to obtain model predictions

of the inflation expectations across horizons. Appendix A provides details on the

system of state equations, the parameters, and their relationship to observed

variables through the measurement matrices Ct and Dt, and the recursions.

3. Methodology, Data, and Priors used in estimation

3.1. Calibration Strategies

As outlined in the preceding section, inflation dynamics within the reduced la-

tent form state-space system are determined by both linear and nonlinear state

variables.Estimation of this mixed state-space system employs sequential Monte

Carlo methods, wherein the nonlinear states are marginalized via particle filters, as

outlined by Schön et al. (2005). Particle filters facilitate the modeling of nonlinear

belief evolution and endogenous transitions between the gain regimes. Condi-

tional on each drawn set of nonlinear particles π̄t and gt, the linear state vector (π̂t,

ϵt, εt, µt) is updated using the linear-state space Kalman filter. This methodology

produces distributions for both linear and nonlinear filtered states, conditioned on

the observed data. Importance sampling is conducted using the sequential Monte

Carlo techniques of Andrieu et al. (2010) and Doucet et al. (2001). Parameter up-

dates are performed via a Random-Walk Metropolis–Hastings (RWMH) algorithm

with Robbins–Monro step-size adaptation to achieve optimal acceptance rates,

following Vihola (2012) and Cai (2010). Based on posterior draws of the structural

parameters and filtered states, smoothed state estimates are generated using the

forward–backward sampling algorithm of Kitagawa (1993) and Carter and Kohn

(1994), providing full time paths for posterior distribution of long-run inflation
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expectations, rational bounds, and the posterior distribution of the switching gain

function.

Due to the limited availability of short- and long-horizon survey expectations

for India, posteriors estimated from the comprehensive U.S. data set in Carvalho

et al. (2023) are used as priors for all structural parameters except the mean infla-

tion intercept, structural shock variances, and observation-error variances. This

approach maintains well-defined rational bounds while allowing Indian data to

inform the dynamics of state evolution and the sensitivity to inflation surprises.

To balance the influence of prior information with domestic data, the in-sample

likelihood for India is tempered using a scaling parameter λ = 0.5. This ensures

that the posterior reflects domestic evidence without diverging substantially from

the rational bounds established on the exhaustive U.S. sample. The tempered

posterior is formally expressed as follows:

P In(∆̄In | Y In
t , Y US, ∆̄US) ∝ L(Y In

t | ∆̄US, ∆̄In)λ L(Y US
t | ∆̄US) p(∆̄US) p(∆̄In).

A total of 4,000 particles is used to approximate the nonlinear state space. The

Random Walk Metropolis–Hastings (RWMH) algorithm is executed for 600,000

iterations with two independent chains. The last 100,000 iterations of each chain

are reserved for the smoother, which is applied every ten steps. Step sizes are

tuned to maintain an acceptance probability near 23.4%.

3.2. Data Source

Realized inflation is measured using the headline CPI, with quarterly data sourced

from the CEIC International Monetary Fund series, and spans from the Q1:1958

to the Q4:2024. Inflation expectations, including short-term (one to four quar-
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ters ahead) and long-term (five and ten-year ahead), are sourced from the SPF

conducted by the Central Bank of India. The SPFs are available on a quarterly

basis from the Q1:2008 and have been conducted bimonthly since fiscal year

2014. From 2014 onwards, within-quarter averages are computed to construct a

balanced panel for estimating the reduced-form equations. The SPF is the sole

source of long-term inflation expectations (five and ten years ahead) in India and

is available only for a limited period, specifically from Q1:2008 to the Q1:2018.

To ensure compatibility with the SPF series, realized inflation for each quarter

is defined as the change in the CPI index over the preceding four quarters. The

moments of the realized inflation and the inflation expectation across horizons

for both the pre and post IT regime are shown below in the Table 2.

Table 2: Moments of Realized Inflation and Inflation Expectations before and
after the Inflation Targeting Regime across horizons

Pre-IT Post-IT

Mean Std Mean Std

Realized Inflation (Full sample) 7.62 5.49 4.99 1.37

Realized Inflation (Q4:2007–Q1:2015) 9.21 2.51 – –

1Q Ahead Expectation 8.65 2.02 4.93 1.13

2Q Ahead Expectation 8.11 1.83 4.83 0.79

3Q Ahead Expectation 7.64 1.50 4.76 0.65

4Q Ahead Expectation 7.29 1.26 4.67 0.60

5 Years Ahead Expectation 6.77 0.70 4.82 0.25

10 Years Ahead Expectation 6.07 0.67 4.57 0.24

Notes: One- to four-quarter-ahead expectations spans the period Q1:2008–Q4:2024. Five- and ten-year-

ahead expectations are available for the period Q1:2008–Q1:2018.

Given the unbalanced nature of the dataset, filters are initially trained on realized
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inflation data from the Q1:1958 to the Q4:2007. Likelihood evaluation begins in

the Q1:2008 and continues through the end of the sample period.

3.3. Prior and Posterior Estimates

Table 3 presents the priors and estimated posteriors. Given the infrequent and of-

ten implicit central-bank communication regarding the inflation objective during

the pre–IT era, the prior for the intercept term π∗ in the measurement equation is

assigned a mean of 6.35%, consistent with the UCSV estimate of trend inflation for

that period (following Stock and Watson (2007)).

Table 3: Priors and Posterior Parameter Distributions of the Learning Algorithm

Prior Posterior

Parameter Distribution Mean Std. Dev. Mode 1st Perc. 99th Perc.

π∗
post-IT Normal 4.35 0.10 4.45 4.13 4.57

π∗
pre-IT Normal 6.35 0.10 6.33 6.08 6.54

θ Gamma 0.022 0.006 0.011 0.010 0.060

ḡ Gamma 0.140 0.029 0.410 0.110 0.490

Γ Beta 0.906 0.041 0.930 0.540 0.990

ρε Beta 0.879 0.028 0.770 0.710 0.860

γp Beta 0.126 0.028 0.380 0.470 0.490

σε IGamma 0.500 1.000 0.820 0.620 0.990

σµ IGamma 0.500 1.000 0.960 0.680 0.990

σ1 IGamma 0.500 1.000 0.740 0.250 0.990

σ2 IGamma 0.500 1.000 0.590 0.390 0.860

σ3 IGamma 0.500 1.000 0.380 0.270 0.650

σ4 IGamma 0.500 1.000 0.380 0.330 0.740

σ5 IGamma 0.500 1.000 0.470 0.450 0.940

Notes: The table reports prior distributions and posterior summary statistics for the parameters of the

learning algorithm. IGamma denotes the inverse-gamma distribution.
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For the post-IT era, the prior mean for π∗ is set at 4.35%. The distribution of

the π∗ term encompasses both the pre- and post-IT sample means, as shown in

Table 2. The parameters σ1, σ2, σ3, σ4, σ5 represent the standard deviations of the

measurement errors for realized inflation and for one-to-four quarters-ahead SPF

inflation expectations, respectively.

Both independent Markov chains achieve an acceptance rate of approximately

23.4%, and the multivariate Gelman test potential scale reduction factor is close

to 1.07, suggesting proper mixing and convergence of the chains. The posterior

estimates correspond closely with observed inflation dynamics. During the post-

inflation-targeting (IT) period, the 99% confidence interval for the steady-state

intercept π∗ ranges from 4.24% to 4.52%, which is consistent with an average

post-IT inflation rate of approximately 5%. The posterior mode of ḡ suggests

that, on average, agents in India assign greater weight to short-term forecast er-

rors compared to their U.S. counterparts. The estimated degree of indexation, γp,

exceeds its prior mean, indicating increased reliance on realized inflation in ex-

pectation formation. Similarly, the relatively high estimate of Γ implies a stronger

self-referential channel than is typically observed in U.S. data. The standard devia-

tions of the measurement errors are all below one, demonstrating that the model

effectively captures the low-frequency movements in both realized inflation and

inflation expectations.

4. Discussion

4.1. Benchmark Results

The learning algorithm effectively models the evolution of low-frequency inflation

expectations across horizons. Quarterly variations in short-term expectations are
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tracked to a narrow margin, as demonstrated in Figures 2.

Figure 2: Short-term inflation expectations for the period Q1:2007 to Q4:2024 :The upper panel
plots the model forecast together with observed two-quarters-ahead inflation expectations, while the
lower panel shows the corresponding comparison for four-quarters-ahead expectations. Shaded areas
denote the 99% posterior interval around the median forecast.

Feedback from deviations in the perceived long-term inflation target, combined

with indexation to past inflation, is able to explain most of the variation in quarterly
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short-term inflation expectations. As indicated in Table 2 and indicated in the

Indian literature, short-term inflation expectations declined significantly following

the implementation of the inflation targeting (IT) regime and remained largely

within the 4%± 2% operational bound. The volatility of short-term expectations

also decreased substantially under the current IT regime. A significant driver of

this reduction in the short-term inflation expectation volatility is the marked

reduction in the drifts of the perceived long-term inflation target itself, along with

the reduced volatility of the non-core CPI items (Figures in the Appendix A.1.3).

Evolution of the perceived long-term inflation target are assessed using the quar-

terly ten-year-ahead inflation expectations. Median model estimates closely track

the survey-based ten-year-ahead expectations from the SPF, available through

Q1:2018. A pronounced decline in expectations around 2015 aligns with the adop-

tion of the 4% inflation target (Figure 3).

Figure 3: Ten-year-ahead inflation expectations for the period Q1:2008 to Q4:2024 :The figure plots
the model forecast together with observed ten-year-ahead inflation expectations. Observed expectations
are available for Q1:2008–Q1:2018; model-based forecasts extend to Q4:2024. Shaded bounds denote
the 99% posterior interval around the median forecast.
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Prior to the adoption of inflation targeting (IT), the lack of an explicit policy target

resulted in significant drift in long-horizon expectations relative to the pre-IT av-

erage inflation rate of approximately 7%. Following the implementation of IT, this

drift has substantially diminished. By the fourth quarter of 2024, ten-year-ahead

expectations converge toward the 4% target, with 99% posterior estimates ranging

from 4.0% to 4.7%. The confidence intervals are wider for ten-year-ahead expecta-

tions than for short-term expectations, reflecting the inherent higher uncertainty

in long-term inflation forecasts.

The observed decline in ten-year-ahead expectations corresponds closely with the

reduction in ten-year ZCYC yields, which is primarily attributable to the expec-

tation hypothesis (risk-free) component in the post-IT regime (Figures 1 and 2).

In the pre-IT regime, ten-year risk-free rates peaked at 7.39% in 2013–2014 and

subsequently declined to a low of 4.48% during 2020–2021 in the post-IT regime. As

the average real policy repo rate remains close to zero and is marginally negative in

certain periods, the maxima and minima of risk-free yields closely follow average

inflation in each regime: approximately 7.25% from the Q1:1958 to the Q4:2014

(pre-IT) and 4.52% from the Q1:2015 to the Q4:2024 (post-IT).

Although long-run expectations have improved with respect to to the policy tar-

get, uncertainty regarding the long-term inflation outlook persists. This ongoing

uncertainty is demonstrated by the skewness of the sensitivity measure (switching

gain) to short-term inflation surprises, as illustrated in Figure 4. While the median

gain estimate declines following the adoption of IT, the posterior distribution of

the sensitivity measure remains skewed.
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Figure 4: Gain function for the period Q1:2008–Q4:2024 :The figure displays the estimated gain
function, with shaded areas denoting the posterior interval from the 30th to the 95th percentile.
This distribution represents the weight assigned by all agents in the economy to

short-term inflation surprises. Within the representative-agent framework, where

all agents are a priori exposed to the same information, persistent skewness indi-

cates continued uncertainty about long-run inflation beliefs among a significant

subset of agents. At higher posterior quantiles, the gain displays sharp switches at

frequent intervals. Therefore, the upper tail of the distribution signals persistent,

systematic inflation uncertainty, suggesting that a substantial fraction of agents

remain backward-looking and that their expectations are not firmly anchored to

the policy target. The skewness observed in the gain function arises mainly from

frequent short-term violations of agents’ estimated rational bounds for inflation

outcomes, conditional on the perceived long-term inflation target. According to

equations (2.11) and (2.12), the average value of the ratio

Θση

|(1− Γ)(1− γp)|
≈ 0.32,
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and, given the post-IT 99% posterior range for π∗, the implied rational bound

around the 4% policy target is approximately

3.8% ≤ π̄t + π∗ ≤ 4.9%.

Maintaining inflation within this narrower bound promotes a symmetric, decreas-

ing-gain learning regime and strengthens forward-looking expectations. Neverthe-

less, this bound is considerably narrower than the central bank’s operational ±2%

tolerance range, indicating that the central bank must implement more robust

stabilization measures to ensure that agents’ long-term inflation expectations

remain anchored at the policy target.

Within the model, the weights attributed to short-horizon inflation surprises decay

exponentially, becoming negligible beyond a five-year horizon. When inflation

remains within the rational bound for an extended period (on the order of five

consecutive years), the gain declines substantially, and the skewness in agents’

sensitivity to inflation surprises is markedly reduced. In practice, however, infla-

tion does not remain continuously within this bound. Even under the current

IT regime, breaches of the upper rational bound persist in successive five-year

periods. Although these breaches are less frequent and less pronounced than prior

to the adoption of IT 1, they remain economically significant (Figure 5).

These episodes are predominantly counter-cyclical, frequently coinciding with

OECD recession bars and downturns in the Composite Leading Indicator (CLI).

Such periods correspond to spikes in the upper tail of the gain distribution, re-

flecting heightened long-run inflation uncertainty during economic downturns.

1The rational bound for the pre IT regime is estimated to be approximately in the range of 6% to
7%
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This recurring pattern suggests that during periods of adverse growth, the effective

anchoring of expectations systematically weakens, thereby amplifying the influ-

ence of short-run inflation surprises on long-run beliefs, even when an explicit IT

regime is in place. As these episodes continue to occur in successive five-year peri-

ods, a significant fraction of agents persists in placing weight on these recurrent

surprises while adapting their long-term beliefs.

Figure 5: Realized inflation and one- to four-quarter-ahead inflation expectations for the period
Q1:2008–Q4:2024 :Two horizontal dotted lines mark the rational bounds ranging between 3.8% to 4.9%
in the IT regime. Shaded areas denote OECD recession bars (discontinued after 2022), and the solid
black dotted line plots the OECD Composite Leading Indicator (CLI).

4.2. Counterfactual Estimates

This subsection first presents a counterfactual analysis to quantify how stabilizing

inflation within the rational bound reduces the skewness of the switching gain

function. A counterfactual inflation series is generated for the post-IT period

to approximate an environment with more firmly anchored expectations and

substantially reduced short-run deviations from rational bounds.
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The counterfactual series is constructed using a multivariate Gaussian framework

calibrated to represent the joint dynamics of realized inflation and one- to four-

quarter-ahead expectations observed in the post–Q1:2015 sample. The empirical

mean vector µ is estimated from this period, capturing the average values of re-

alized inflation and short-term expectations across the specified horizons. To

promote stability in the counterfactual regime, the associated covariance matrix Σ

is rescaled by a shrinkage factor of 0.4, reducing covariance values to 16% of their

empirical levels while preserving the original correlation structure. Concurrently,

the mean of realized inflation is set at 4.45%, corresponding to the midpoint of

the empirically estimated near-rational interval of 3.8% to 5.1%. The means of the

one- to four-quarter-ahead expectations are adjusted downward from 4.45% by

applying the historical differentials between realized inflation and each respec-

tive short-term expectation. This procedure maintains the historical dispersion

between realized and expected inflation while shifting the joint distribution to a

lower, more anchored regime.

A linear Gaussian transformation is applied to each post–Q1:2015 observation to

map the observed data into the counterfactual regime: yt = µcounter +∇ (xt −µ). In

this formulation, (µcounter) denotes the target mean vector with realized inflation

and expectations adjusted as previously described, and the matrix (∇) is con-

structed to ensure that the transformed series attains the target covariance Σcounter.

Further methodological details are provided in Appendix A.1. This transforma-

tion contracts the original series of realized and expected short-term inflation

observations uniformly around the new mean, thereby preserving the empirical

structure of co-movements across forecast horizons. The counterfactual series for

realized inflation and expectations are generated by applying this transformation

exclusively to post–Q1:2015 data, while all pre-IT observations remain unchanged.
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Figure 6 presents the resulting counterfactual and actual inflation series.

Figure 6: Counterfactual and observed historical inflation series :Counterfactual inflation path for
the inflation-targeting period (post Q1:2015), constructed to reflect a lower-volatility regime aligned
with the near-rational bound (3.8–5.1%). The observed inflation series is included for comparison.

Introducing this estimated counterfactual series into the dynamic learning algo-

rithm produces the gain function sequence shown in Figure 7. The gain function

under the counterfactual remains broadly similar to the benchmark during the

pre-IT period; however, post-IT skewness declines substantially. This reduction

occurs because inflation realizations remain consistently closer to the rational

bound associated with the 4% policy target, thereby decreasing the frequency of

rational-bound breaches that would otherwise increase long-run inflation uncer-

tainty and induce asymmetric sensitivity in expectation formations.
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Figure 7: Gain function implied by the counterfactual inflation series :For the inflation-targeting
period (post Q1:2015), the gain function is derived using the counterfactual inflation series; for earlier
periods (pre Q2:2015), the observed historical inflation series is used. The shaded areas indicate the
posterior interval from the 30th to the 95th percentile.

Next, a second counterfactual experiment is presented to capture the complemen-

tary mechanism influencing the sharp decline in long-run inflation expectations

immediately after the adoption of IT. This mechanism is linked to the dynamics of

the underlying inflation process itself. As shown in Figure 5, the transition to IT

occurred during a period of subdued non-core inflation and a cyclical slowdown,

as indicated by persistent declines in the OECD CLI . These conditions produced

a sequence of negative inflation surprises, with realized inflation breaching the

lower rational bound in few instances. The gain function in the immediate post-IT

period remained moderately elevated due to agents’ prior experience with sig-

nificant positive inflation surprises. Consequently, the negative surprises that

followed IT adoption exerted a strong downward effect on the perceived long-

run inflation target through the update rule in equation (2.10). This mechanism

amplified the downward drift in inflation target expectations within the PLM,
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reinforcing lower inflation expectations across the forecast horizon following the

change in the inflation target. Collectively, these dynamics indicate that the sharp

decline in inflation expectations, as widely noted in the Indian literature, does

not necessarily indicate a fully anchored regime. Instead, such a decline can arise

naturally under an expectations-formation process that remains only partially

anchored.

To further substantiate this interpretation, a counterfactual experiment is con-

ducted that imposes a monotonically declining gain function beginning in the

first quarter of 2015. This approach effectively places agents directly into a fully an-

chored, decreasing-gain regime while maintaining all other estimated parameters

and shock realizations identical to those in the benchmark scenario. The poste-

rior band around the median gain estimates (Figure 8) mimics an environment

in which all agents in the economy immediately after the IT transition adopt a

completely forward-looking strategy and become immune to transient short-term

inflation surprises within their rational bounds. The gain function becomes highly

symmetric, and the posterior band becomes tight, reflecting low long-run inflation

uncertainty. In such a scenario, the revisions in inflation target deviations becomes

minimal as the gain function decreases monotonically. These lower innovations in

the inflation target are factored into the agents’ law of motion during the formation

of long-term beliefs, resulting in a noticeably smaller decline in median long-run

expectations between 2016 and 2020 than in the benchmark estimates. The sharp

decline in the ten-year-ahead inflation expectations is underestimated by a huge

margin.
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Figure 8: Counterfactual gain function and implied long-horizon inflation expectations under a
monotonically declining gain regime post Q1:2015 :The upper panel shows the counterfactual gain
function. The lower panel displays the counterfactual median estimate of ten-year-ahead inflation
expectations and the associated 99% posterior band, compared to the benchmark estimates.

In summary, the findings suggest that forecasters in India remain in an adaptive-

learning phase, even in the the current inflation-targeting regime. Inflation expec-

tations across the forecast horizon continue to adjust in response to both positive
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and negative inflation surprises. These breaches, which primarily occur on the

upside and are disproportionately concentrated during periods of adverse growth

and cyclical slowdowns, perpetuate long-horizon uncertainty and impede a rapid

transition to a fully anchored expectations regime. As a result, the gain function

does not converge to its limiting, low-volatility level but instead maintains suffi-

cient skewness to transmit short-term inflation surprises, relative to the perceived

rational bounds, into revisions of the long-run expectations.

4.3. Bond Market Implications

The observed inflation dynamics extend to the behavior of the term-premium

component of bond yields. As established in the previous subsection, breaches of

the rational bound occur primarily during economic downturns, when inflation

overshoots coincide with weak contemporaneous output. During these periods,

upward revisions to inflation expectations across horizons are typically negatively

correlated with consumption growth. These repeated negative covariances gener-

ate long-run risk for bondholders, which is reflected in the cross-section of bond

yields as a persistent term premium, particularly at longer maturities. Such long-

run risks mirror the uncertainty captured by the upward skew in the distribution

of the gain function. Asymmetric skewness in the gain function, which reflects fre-

quent upward revisions in inflation beliefs, directly translates into the persistence

of term premia across maturities.

Appendix B formalizes this mechanism within a forward-looking long-run-risk

asset-pricing framework, as outlined by Song (2017) and Bansal and Yaron (2004).

In both pre- and post-inflation-targeting (IT) regimes, replicating the observed

term premium requires incorporating persistent updates in agents’ perceived

inflation target, driven by innovations that covary with trends in real consump-
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tion growth. Estimates from the forward-looking model indicate that the central

bank, even under an explicit inflation-targeting regime, does not actively stabilize

inflation. In a counterfactual scenario where the macroeconomic environment

remains constant and only the degree of inflation stabilization reflects active sta-

bilization, the covariance channel weakens significantly, and the ten-year term

premium decreases by approximately 120 basis points. Thus, the persistence of the

term premium, especially at longer maturities, is directly attributable to inflation

uncertainty stemming from continual innovations in inflation target expectations.

Reducing such evolution through active inflation stabilization proportionally com-

presses the term premium.

5. Conclusion

This paper addresses three issues: how long-term inflation expectations in India

have evolved following the adoption of inflation targeting; the extent to which long-

run beliefs are anchored to the 4 percent policy target; and whether uncertainty

in these beliefs contributes to the persistence of term premia, particularly at

longer maturities of government securities. The results show that ten-year-ahead

inflation expectations have declined and moved closer to the policy target after

the introduction of inflation targeting. Revisions to long-run expectations have

also fallen substantially relative to the pre-inflation-targeting period, when the

absence of an explicit target left expectations weakly anchored.

Despite these improvements, long-run inflation expectations remain imperfectly

anchored. Some agents remain only partially forward-looking, and long-term

beliefs continue to respond to short-run inflation surprises. This persistence

reflects repeated breaches of the rational bounds agents place around their per-
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ceived inflation target. For a 4 percent target, these bounds are estimated to lie

between 3.8 and 4.9 percent, narrower than the central bank’s official tolerance

band. Greater stabilization of inflation around agents’ perceived target reduces

long-run inflation uncertainty, lowers the term premium, and strengthens the

anchoring of long-term expectations.
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Appendix A Adaptive Learning Model Summary

The reduced system of equations stated in Section 2 can be re-written as:

π̂t = (1− γ)Γ
[
1 + g−1

t (1− γ)(Γ− 1)
]
π̄t−1 + γpπ̂t−1 + ρϵϵt−1 + ηt−1,

π̄t = π̄t−1

[
1 + g−1

t (1− γ)(Γ− 1)
]
+ g−1

t (εt−1 + µt−1),

ηt = µt + εt,

ϵt = ρϵϵt−1 + εt.

And, the gain evolves according to:

gt =


gt−1 + 1,

∣∣∣Êt−1π̂t − Et−1π̂t

∣∣∣ ≤ Θ
√

ε2t + µ2
t (Decreasing gain),

ḡ−1, otherwise (Constant gain).

The system contains linear state variables ςt = (π̂t, ηt, ϵt) and nonlinear states π̄t

and gt. The linear state-space is ultimately represented as:

ς ′t = A + B ς ′t−1 + S (εt, µt)
′, (A.1)

with

A =


π̄t−1

[
1 + g−1

t (1− γ)(Γ− 1)
]

0

0


, B =


γp 1 0

0 0 0

0 0 ρϵ


, S =


0 0

1 1

1 0


.
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It can be seen the linear state-space system are conditional on the non-linear

state variables. The nonlinear state variables are initially marginalized out, and

approximated using the particle filters wherein each particle evolve as:

π̄t = π̄t−1

[
1 +

(
It−1ḡ

−1 + (1− It−1)(gt−1 + 1)
)−1

(1− γ)(Γ− 1)
]

+
(
It−1ḡ

−1 + (1− It−1)(gt−1 + 1)
)−1

e′2(ςt−1),

gt = It−1ḡ
−1 + (1− It−1)(gt−1 + 1).

(A.2)

Conditional on each updated particle, the linear state variables in the equation

(A1) are updated using the Kalman filter.

The mixed linear and nonlinear state space system are linked to realized inflation

and one- to four-quarter-ahead SPF expectations as observables. The measure-

ment matrix in the equation (2.13) for the nonlinear states π̄t and gt is

C1,t =

(1− γ)Γ (1− γ2)Γ (1− γ3)Γ (1− γ4)Γ (1− γ5)Γ

0 0 0 0 0

 ,

and for the linear states ςt:

C2,t =



γ 0 ρ

γ2 0 ρ2 + γρ

γ3 0 ρ3 + γρ2 + γ2ρ

γ4 0 ρ4 + γρ3 + γ2ρ2 + γ3ρ

γ5 0 ρ5 + γρ4 + γ2ρ3 + γ3ρ2 + γ4ρ



.
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The coefficient matrix corresponding to the measurement errors follow Dt = I5.

A.1. Counterfactual Inflation Series

A.1.1. Estimation of matrix ∇

The sample standard deviations of the observed series of the realized and short-

term inflation expectations can be denoted by, U = diag(σ1, σ2, σ3, σ4, σ5), and

the corresponding empirical correlation matrix is, R = U−1ΣU−1. To generate

the counterfactual series this empirical correlation matrix is first shrinked by a

factor of ω=0.4, while preserving the empirical correlation structure U counter =

ωU, Σcounter = U counterRU counter.

Cholesky decomposition is used to transform the empirical covariance Σ =

LL⊤, Σcounter = LcounterLcounter⊤.

Then the corresponding linear transformation matrix that maps the empirical

covariance Σ into the shrunken covariance Σcounter is ∇ = LcounterL−1.

A.1.2. Construction of Target Means and Counterfactual Inflation Series

Let the empirical post-Q1:2015 means be represented as:µ =

(
µspot µSPF

1 µSPF
2 µSPF

3 µSPF
4

)
.

wherein the empirical gaps between realized inflation and one to four quarter

ahead inflation expectation is defined as: ℘h = µspot − µSPF
h , h = 1, . . . , 4.

The counterfactual mean of realized inflation is set at 4.45%, the mid point of the

near rational bound of 3.8% to 5.1% , i.e., µcounter
spot = π̄ = 4.45, and the counterfac-

tual one to four quarter ahead mean expectations are also adjusted as per the em-

pirical gaps:µSPF,counter
h = π̄−℘h. Post Q1:2015, the affine transformation of original

series Yt gives counterfactual inflation series: Y counter
t = µcounter+∇(Yt−µcounter), t >
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t2015M3.

A.1.3. Plots of Food Inflation and Oil Price around the implementation of IT

regime

Figure A1: The figure displays the Brent Crude Spot Prices for the period 2014–2016, covering the

entire transition period to the inflation targeting regime.

Figure A2: The figure displays the Food Inflation of India for the period 2014–2016. The food CPI

index is sourced from the Ministry of Statistics and Programme Implementation.
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Appendix B Asset Pricing Model

This asset-pricing model integrates the real long-run risk framework of Bansal

and Yaron (2004) and the nominal long-run risk from Song (2017) within an en-

dowment economy. The model incorporates a representative agent with recursive

preferences, as in Epstein and Zin (1989) and Weil (1989). In this framework, risk is

priced ex ante by the representative agent when forming preferences, primarily

through early resolution of innovations in two latent states: drifts in perceived

inflation targets (nominal side) and trends in real consumption growth (real side).

These latent states drive the stochastic discount factor in the framework, thereby

generating nominal and real risk premia.

In contrast to the framework presented in the main text, this model is purely

forward-looking and rational. However, by incorporating volatility into the latent

states and employing a Bayesian framework, the model captures a component of

real-time uncertainty, which can be interpreted as the economy’s inherent long-

term feature, as captured by the adaptive learning model. In our case, through

the learning framework, agents learn the recurrent counter cyclical innovations

in the inflation-target beliefs as the long-term feature of the underlying economy.

This asset pricing framework examines the extent to which this long-run feature

accounts for the observed ten-year term premium across both pre- and post-

inflation targeting (IT) regimes.
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B.1. The Framework and the latent states

B.1.1. Framework and Latent States

Under Epstein–Zin–Weil preferences, the expected return Ri,t+1 on any observable

asset satisfies the Euler equation

Et

[
δθ(∆C)

−θ/Ψ
t+1 R

−(1−θ)
c,t+1 Ri,t+1

]
= 1, (B.1)

where (∆C)t+1 denotes aggregate real consumption growth and Rc,t+1 is the gross

real return on the (unobservable) consumption-claim asset. The parameters are:

δ (time-discount factor), Ψ (intertemporal elasticity of substitution), and θ =

(1−γ)/(1−Ψ), with γ the coefficient of relative risk aversion. The expected returns

via SDF are linked to two latent states- a) Inflation Target perceptions, and b)

Trends in real consumption growth. Innovations to these states drive movements

in asset returns and premiums.

The reduced-form system of equations defining the latent states are as follows:

Gt+1 = [δct, δdt]
⊤,

Gt+1 = µ+ φYt + Σηt+1, ηt+1 ∼ N (0, I),

Yt+1 = Ψ1Yt +Ψ2Σyξy,t+1,

Yt = [yc,t, yπ,t]
⊤,

ξy,t+1 = [ξyc,t, ξyπ,t]
⊤.

(B.2)
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µ =

(
µc µd

)
, φ =

1 0

ϕ 0

 , Ψ1 =

φc 0

0 φπ

 , Ψ2 =

1 0

α 1

 ,

Σy =

σyc 0

0 σyπ

 .

The latent states yc,t and yπ,t represent the latent component of real consumption

growth and the drift in the perceived inflation target. Particularly the innovation

in yπ,t component is of interest to us, and the term α determines the cyclical-

ity of innovations in the inflation-target with respect to the innovations in real

consumption trend. In the setup δct and δdt denote real growth in aggregate con-

sumption and dividends. The dividend component loads on consumption growth

with leverage ϕ, capturing aggregate equity-market evidence. Parameters µc and

µd are average growth rates in real consumption and dividends.

B.1.2. Monetary Policy Rule and Nominal Interest Rates

Monetary policy follows a Taylor-type rule, with the central bank adjusting the

short-term nominal interest rate in response to trends in real consumption growth

and deviations of inflation from its perceived target. The nominal rate it is specified

as

it = χ0 + χcyc,t + χπ

(
πt −Θ0 − yπ,t

)
+ yπ,t + yi,t, (B.3)

where yi,t is an exogenous Taylor-rule shock following an AR(1) process. The co-

efficient χπ reflects the strength of inflation stabilization around the perceived
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target yπ,t. When policy is weakly stabilizing—especially amid countercyclical

inflation-target drifts (α < 0)—agents demand a premium, wherein the nominal

component of premium is driven by the degree of policy deviation from active

stabilization and magnitude of shocks to the perceived inflation-target.

Bond prices are modeled in affine form with respect to the latent states, following

Song (2017) and Doh (2013). The imposed no-arbitrage condition across maturities

generates the underline term structure. Innovations in the latent states affect the

SDF, influencing both bond prices and the term premium.

B.1.3. Data, Parameter Estimation and Discussion

Real consumption growth is calculated as the four-quarter log change in Real Pri-

vate Final Consumption Expenditure, with data obtained from the CEIC database.

Zero-coupon yield curve (ZCYC) yields are derived using Nelson–Siegel–Svensson

parameters provided by the Clearing Corporation of India Limited. Inflation is

measured as the four-quarter logarithmic change in the Consumer Price Index

(CPI). Equity returns and price-to-dividend ratios are computed using the NSE

500 index, which represents approximately 90% of free-float market capitalization.

The observation vector Yt = (∆ct, πt, pdt, y1,t, y2,t, y5,t, y10,t) includes consumption

growth, inflation, price-to-dividend ratio, and ZCYC yields at five maturities. The

model is estimated at a quarterly frequency from Q3:2005 to Q4:2023 using adap-

tive Bayesian methods, achieving convergence at a 25.4% acceptance rate over

200,000 iterations.
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Table A1: Priors and Posterior Parameter Distributions of the Asset-Pricing
Model

Prior Posterior

Parameter Dist. 1th perc 99thperc Mode 1th perc 99th perc

Estimated parameters (Bayesian update)

α U -5 -0.6 -0.619 -0.72 -0.6

χ0 G 0.059 0.07 0.067 0.062 0.069

χπ G 0.75 1.2 0.916 0.915 0.917

χc G 0.17 0.5 0.337 0.33 0.34

σyc IG 0.0015 0.0019 0.00189 0.0018 0.0019

σyπ IG 0.0007 0.0019 0.00189 0.00018 0.0019

σyi IG 0.0007 0.00019 0.00188 0.0018 0.0019

Fixed parameters (not updated in Bayesian step)

φc fixed value: 0.99 —

φπ fixed value: 0.995 —

φi fixed value: 0.88 —

γ fixed value: 8 —

ψ fixed value: 2 —

µc fixed value: 0.06 —

µd fixed value: 0.052 —

ϕ fixed value: 0.85 —

Notes: U = Uniform; G = Gaussian; IG = Inverse-Gamma. The measure-

ment errors are fixed at 0.8% of the observed sample std error. µc and µd

are fixed to sample average. ϕ is fixed to the ratio of the standard devia-

tion observed in the sample for real dividend growth to real consumption

growth.The measurement errors are fixed at 0.8% of the standard devia-

tion of the observables.
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Table A2: Model vs. Data: Quarterly Asset-Pricing Moments; Full Sample
(Q3:2005 to Q4:2023) and Post-IT (Q1:2015 to Q4:2023)

Data Model

Full sample Post-IT Full sample Post-IT

Variable Mean Std. Mean Std. Mean Std. Mean Std.

y1,t 6.53 1.4 5.66 1.2 6.51 1.19 5.73 0.96

y2,t 6.78 1.2 5.87 1.1 6.77 1.11 6.06 0.90

y5,t 7.23 0.84 6.18 0.75 7.24 0.91 6.72 0.75

y10,t 7.59 0.69 6.78 0.50 7.57 0.72 7.28 0.60

rm 15.29 — 14.33 —

σ(rm) 0.24 — 0.20 —

ACF(y10,t) 0.68 — 0.80 —

Term premium (bps) 145 — 136 125 — 125

Notes: y1,t, y2,t, y5,t, y10,t are the ZCYC yields of one, two, five and ten years

maturity respectively. rm is the aggregate equity market return. Term premium

estimates are in basis points.

Table A3: Counterfactual Asset-Pricing Moments

Variable Data Case I Case II

y1,t 6.53 6.49 6.51

y2,t 6.78 6.71 6.77

y5,t 7.23 7.21 7.26

y10,t 7.59 7.61 7.56

rm 15.29 14.33 14.00

σ(rm) 0.24 0.20 0.20

Term premium (bps) 145 -113 97

Notes: Case I sets inflation stabilization parame-

ter in the inflation path to ξp = 1.05, holding all

other parameters at posterior means in the bench-

mark estimates. Case II reduces α by 50%, again

holding all other parameters at posterior means.

The model accurately reflects key asset-pricing moments. Countercyclical drifts
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in perceived inflation target, alongwith policy geared away from active inflation

stabilization generate a persistent term premium, aligning with sample averages.

Active inflation stabilization, which is analogous to an environment of anchored

expectations, reduces the term premium by about 120 basis points, primarily by

dampening the negative covariance channel. These results, detailed in Tables A2

and A3, are consistent across both pre- and post-IT regimes.
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