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Abstract

We develop a model of dynamic limit order markets under asymmetric information

that can be simplified enough to be solved analytically. We use the trader arrival

and information environment of the traditional sequential trade models but swap the

dealer-based trading core of these models for a dynamic limit order market. We find

that informed traders tend to “make” liquidity in illiquid markets and “take” liquid-

ity from more liquid markets. The arrival of marketable and limit orders as well as

the passage of time may convey information, resulting in repricing of orders in the

book and generating the frequent cancellations and resubmissions that have become

a staple of modern markets.
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1 Introduction

The literature on market structure and trading underwent a paradigm shift with the ad-
vent of adverse selection models. Two frameworks in particular proved insightful and
versatile: the Glosten-Milgrom-Easley-O’Hara sequential trade models (Glosten and Mil-
grom (1985), Easley and O’Hara (1987, 1992)) and the Kyle (1985) strategic trader frame-
work. The simple structure of these models made them readily amenable to extensions
that incorporated various features of the economic environment, and this led to a rich
vein of literature that shed new light on the role of adverse selection in dealer markets.

While dealer markets were the default mode for organizing trade in decades gone
by, most trading centers today are structured as limit order markets. Despite this fact,
our insights into the trading process continue to come primarily from the older dealer
models because the limit order market has proved surprisingly hard to model theoreti-
cally. Important early progress in understanding this distinct market structure without
asymmetric information was made in the dynamic models of Parlour (1998), Foucault
(1999), Foucault, Kadan, and Kandel (2005) and Rosu (2009). Incorporating asymmetric
information into these dynamic models, however, has proved particularly challenging,
and the papers that have studied this market environment (Goettler, Parlour, and Rajan
(2009), Ricco, Rindi, and Seppi (2018), Rosu (2020)) have resorted to numerical solutions
to provide insights.

In this paper, we develop a dynamic limit order market model under asymmetric
information that can be simplified enough to lend itself to a constructive solution. In
particular, we adopt the trader arrival and asymmetric information environment of the
Glosten-Milgrom-Easley-O’Hara framework (henceforth, GMEO or traditional sequential
trade models) but swap the dealer-based trading core of these models for a dynamic limit
order market in the spirit of Rosu (2009). Our focus is on studying how giving each
arriving informed trader the ability to use a limit or a marketable order affects market
outcomes and the manner in which information is impounded into prices.1 This approach
of embedding a dynamic limit order market within the fairly standard adverse selection

1We use the term “marketable” order to denote any order that results in immediate execution upon
arrival in the market. This includes traditional market orders as well as limit buy (sell) orders priced at or
above (below) the ask (bid) price in the market.
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setup provides both novel insights into the manner in which asymmetric information
impacts modern markets and a framework that we believe is amenable to being extended
in many directions.

Two contributions form the basis of our approach. First, we demonstrate how the
prices of limit orders in equilibrium can be expressed in terms of the wait time for execu-
tion of these orders. Second, we develop a recursive procedure that enables us to find the
wait times of all limit orders using the arrival rates that uninformed traders expect for the
various order types. The presence of informed traders in the market causes these arrival
rates to depend on the uninformed traders’ beliefs about the asset value. As a result, un-
informed traders revise the prices of limit orders that rest in the book often as they learn
new information. Therefore, our equilibrium structure generates the frequent cancella-
tions and resubmissions that have become a staple of electronic limit order markets over
the past two decades.

The model yields a number of novel empirical implications. We show that informed
traders tend to submit marketable orders when the spread is narrow and limit orders
when it is wide. A marketable order will have a larger permanent price impact when
there is more depth on the same side of the book, while a limit order will have a larger
permanent price impact when there is less depth on the same side of the book. In other
words, informed traders tend to “make” liquidity in illiquid markets and “take” liquidity
from more liquid ones, which implies that the likelihood of finding private information
in the limit order book is higher when markets are illiquid.

With informed traders choosing between marketable and limit orders, their choices
change the rate at which each order type arrives in the market. More frequent arrival of
a certain order type could indicate that informed traders are using it, while less frequent
arrival of the same order type, by the same token, could indicate that informed traders
are not using it. Beyond the frequency of orders, even the passage of time without the
arrival of any new order can cause beliefs to change and orders in the book to be repriced
to reflect those changed beliefs.

Our model generates several empirical implications that are new to the literature, and
therefore can be used to test the economic mechanism that is at the core of the model.
Beyond the novel implications, however, we hope that providing a simplified framework
that can handle asymmetric information constructively would attract other researchers to
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extend our model in a myriad of ways, making accessible new insights into limit order
markets that have become ubiquitous in our trading landscape.

The rest of this paper is organized as follows. Section 2 reviews related theoretical
papers, and Section 3 sets up the model. Section 4 solves for the equilibrium at every
instant of time to find the wait times of limit orders and their prices. Section 5 finishes
our characterization of the equilibrium by showing how beliefs are updated over time,
and discusses how market participants learn from the order flow. Section 6 provides our
conclusions.

2 Literature Review

Our paper seeks to embed a limit order market structure in an information-based se-
quential trade model environment. Traditional sequential trade models (e.g., Glosten and
Milgrom (1985), Easley and O’Hara (1987, 1992)) assume that informed and uninformed
traders arrive to the market according to an exogenous process, the value of a risky asset
is typically either high or low, and informed traders are endowed with private informa-
tion about this value. Uninformed traders have their demand exogenously determined,
and informed traders buy or sell depending on whether the asset’s value is high or low,
with each trader typically submitting an order for one unit of the asset. The information
environment precludes identification of the informed traders, and market participants
therefore learn information by observing the order flow as trading evolves. Our paper
borrows all these features to replicate the information environment of the GMEO frame-
work.

The distinctive feature of our setup involves the specification of a different market
structure a dynamic limit order market rather than a dealer market and therefore new
order types and choices that informed traders have in such a market structure. The litera-
ture on price formation in limit order markets under asymmetric information originated
in the static equilibrium models of Glosten (1994), Rock (1996), and Seppi (1997).2 Glosten
(1994) shows that the price paid by a marginal buy (sell) order is the “upper (lower) tail”
conditional expectation, and suggests that an open limit order market design is “robust”

2For a survey of the literature on limit order markets see Parlour and Seppi (2008).
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in the sense that it mimics competition between anonymous dealer markets.3

Most dynamic equilibrium models of limit order markets, while providing valuable
insights about trader interactions in these markets, do not incorporate asymmetric infor-
mation. Parlour (1998) models a one-tick market with sequential arrival of long-lived
limit orders, demonstrating how liquidity dynamics in limit order markets can generate
serial correlation in the order flow. Foucault (1999) models the risk of being picked off in a
limit order market when limit orders survive for just one period, generating implications
for the equilibrium mix of limit and market orders. Foucault, Kadan, and Kandel (2005)
and Rosu (2009) study how the interplay of waiting costs and exogenous trading needs
impacts spreads, market resiliency, order-flow autocorrelation, and other temporal prop-
erties of trading. While Foucault, Kadan, and Kandel (2005) do not allow cancellation
of orders, Rosu (2009) demonstrates how adding this feature to a continuous-time model
simplifies the analysis. We believe that Rosu’s specification of a limit order market is par-
ticularly attractive, and base our modeling of this market structure on his framework.4

As far as we know, Goettler, Parlour, and Rajan (2009), Ricco, Rindi, and Seppi (2018),
and Rosu (2020) are the only three papers that model fully dynamic limit order markets
with informed traders making complex decisions.5 These three papers, however, require
numerical solutions, while our main goal is to present a framework that lends itself to a
constructive, analytic solution. Goettler, Parlour, and Rajan (2009) was the first paper to
develop such a model, focusing on the information acquisition of the informed traders
and the impact of volatility on trading strategies. Ricco, Rindi, and Seppi (2018) present
a dynamic limit order market with history-dependent Bayesian learning. They simplify

3Back and Baruch (2007) employ a continuous-time model to show that other market designs (for ex-
ample, uniform price auctions) possess this robustness property as well.

4In an early contribution, Cohen, Maier, Schwartz, and Whitcomb (1981) focus on how a bid-ask spread
arises endogenously from order choices of traders in a limit order market. Goettler, Parlour, and Rajan
(2005) solve numerically for the equilibrium in a multi-period model in which traders with private valu-
ations choose between limit and market orders, focusing on the welfare of traders. Buti and Rindi (2013)
study a dynamic limit order market without asymmetric information in which traders can place iceberg
(partially hidden) orders, while Buti, Rindi, and Werner (2017) study the market environment when a limit
order book co-exists with a dark pool.

5Some papers on limit order markets introduce asymmetric information but not in a fully dynamic
framework (e.g., Kumar and Seppi (1994), Chakravarty and Holden (1995), Kaniel and Liu (2006), Pagnotta
(2010), Baruch, Panayides, and Venkataraman (2017), and Brolley and Malinova (2020)). Such papers often
specify a hybrid model with both market makers and limit orders, which simplifies the pricing rule in that
limit orders are priced without the need to consider their execution likelihood or time to execution.
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the strategies of traders (for example, by not allowing cancellation and repricing), but
incorporate market opening and closing effects, showing that price-discovery dynamics
can have a pronounced non-Markovian flavor. In both models, however, traders cannot
reprice limit orders at will, which means that asymmetric information does not result in
frequent revision of limit order prices in the book as it does in our model.

In Rosu (2020), the asset’s fundamental value evolves according to a diffusion process
and traders entering the market can observe the instantaneous value of the asset by pay-
ing a cost. The informational advantage of a trader who chooses to pay decays over time
as the value of the asset evolves and subsequent traders buy “fresher” information. In
such a framework, Rosu shows that increasing the fraction of informed traders improves
liquidity. These three papers utilize distinct modeling assumptions, address somewhat
different questions, and require numerical methods to solve the models. Our distinct
setup (Glosten-Milgrom-Easley-O’Hara meets Rosu (2009)) and our emphasis on an ana-
lytic solution enable us to contribute novel insights to this literature.

3 A Model of Limit Order Trading

Figure 1 describes our objective: combining the information environment of the tradi-
tional sequential trade models with the limit order market structure of Rosu (2009). Some
assumptions we make are meant to replicate the GMEO environment, while other as-
sumptions are made to implement Rosu’s market structure. Specifically, our uninformed
and informed traders arrive one at a time under a predefined exogenous process to trade
one unit of an asset like in the traditional sequential trade models. To replicate the essence
of the GMEO framework, we assume that the information environment precludes direct
identification of the informed traders. Our key departure from this framework is in re-
placing its core market structure: a dealer who sets bid and ask prices as expected values
of the asset conditional on the information in arriving market orders. In our limit order
market, the rules of the limit order book and the incentives of traders combine to cre-
ate an array of orders at various prices in the book. Marketable orders execute against
these resting limit orders according to the price priority rule enforced by the limit order
market’s execution engine.
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We start by briefly describing the limit order market structure. We then specify the
assumptions made to replicate the GMEO environment, and conclude by discussing the
notion of equilibrium.

3.1 Model Details

The Limit Order Market Structure

Following Rosu (2009), the market is organized as a continuous-time electronic limit or-
der book: traders may submit limit orders (that enter the limit order book) or marketable
orders (that execute against resting limit orders upon arrival in the market and therefore
never enter the limit order book). These two types of orders express two levels of trad-
ing urgency in that marketable orders are limit orders that are priced to yield immediate
execution: buy orders priced at or above the ask price and sell orders priced at or below
the bid price. Marketable orders include traditional market orders that are not price con-
tingent as a subset, although many electronic limit order books do not accept traditional
market orders and require all orders to be price contingent. We refer to immediately exe-
cutable orders throughout the paper as “marketable” orders.

A trade takes place only when an arriving marketable order executes against a limit
order that is resting in the book. The limit order book trading mechanism (or execu-
tion engine) follows the usual price-priority rule. In other words, a buy (sell) limit order
at a higher (lower) price is executed before a buy (sell) limit order at a lower (higher)
price. This price priority is hard-coded into the execution engine and cannot be altered
by traders. We use the term ask (bid) price to denote the lowest-priced (highest-priced)
limit sell (buy) order in the market.

Once a trader arrives in the market and submits a limit order, the trader continuously
monitors the market and is able to reprice the order at will until either the submitted limit
order executes or the trader chooses to cancel the order and leave the market. Pre-trade
and post-trade transparency in the market imply that resting limit orders are observable
to all market participants and information about trades (and the prices at which they ex-
ecute) is publicly available. Still, order submission is anonymous: the identity of traders
who submit orders is unknown to other traders. The price grid for posting limit orders is
continuous (the tick size in the limit order book is zero).
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Constructing the Information Environment

A single risky asset is traded in the limit order market. As typical in traditional sequen-
tial trade models, the liquidation value of the asset, ṽ, is a Bernoulli random variable that
takes either a high value, v + σ, or a low value, v − σ. While Nature chooses the real-
ization of the random variable prior to the beginning of trading, the realized value is not
commonly known to all market participants. The parameter of the Bernoulli distribution,
q0 ≡ P0 [ṽ = v + σ], is public information, and thus the expected value of the asset at the
start of trading (t = 0) is

v0 = q0(v + σ) + (1− q0) (v− σ). (1)

There are five types of traders in our market: impatient uninformed buyers (denoted
by bi), impatient uninformed sellers (si), patient uninformed buyers (bp), patient unin-
formed sellers (sp), and informed traders (I). The four types of uninformed traders and
the informed traders arrive in the market according to independent Poisson processes
with constant rates (or intensities) λbi, λsi, λbp, λsp and λI , respectively. Like in the tra-
ditional sequential trade models, these exogenous arrival rates imply that each trader
behaves as if he or she will arrive in the market only once, and all orders are for one unit
of the asset.

Impatient uninformed traders participate in the market to satisfy liquidity or hedg-
ing needs. We follow the convention in the traditional sequential trade models and as-
sign them an order direction (buy or sell), and their impatience dictates that they use
marketable orders. As such, these traders are identical to the uninformed traders in the
GMEO framework. To ensure that, as in this framework, trading only takes place in
the interval [v− σ, v + σ], we give these impatient uninformed traders reservation prices:
buyers are only willing to buy the asset at prices at or below (v+ σ), while sellers are only
willing to sell the asset at prices at or above (v− σ).6

To replace the dealer-market core of the GMEO framework with a limit order market,

6A reservation price is a limit on the price of a good or a service offered in an auction: on the demand
side, it is the highest price that a buyer is willing to pay; on the supply side, it is the lowest price a seller
is willing to accept for a good or a service. Auctions allow the setting of reservation prices because sellers
(or buyers, if it is a buyers’ auction) have a private estimate of the value of the object on auction and are
unwilling to trade if that value is breached.
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we substitute the dealer with a dynamic flow of liquidity providers called “patient” un-
informed traders. They have an exogenous trading desire to buy or sell, but being patient
means that they are not willing to pay for liquidity. Rather, they would like to be compen-
sated for supplying liquidity with limit orders. Therefore, a patient buyer (seller), trades
off the gain that can be made by setting a lower (higher) limit order price against the cost
of waiting longer in the limit order book for execution.7

Formally, let qt ≡ Pt [ṽ = v + σ] be the beliefs of the patient uninformed traders at time
t, and vt = qt (v + σ) + (1− qt) (v− σ). Let r be the discount rate, and T̃bp (T̃sp) be the
expected time to execution of a limit buy (sell) order. The utility functions of the patient
uninformed buyers and sellers, respectively, are

EUbp
t = E

[
vt − πt,bp − r(T̃bp − t) | qt

]
EUsp

t = E
[
πt,sp − vt − r(T̃sp − t) | qt

] , (2)

where the limit order price πt,bp (πt,sp) is the patient uninformed buyer’s (seller’s) choice
variable.

The traditional sequential models assume that the dealer must break even on his
trades. To make our setup similar to theirs, we assume that the patient traders require
non-negative expected utility. This assumption gives an economic meaning to the notion
of being patient even when traders have a desire to buy or sell because it implies that, if
they had the choice between marketable and limit orders, patient traders would always
choose limit orders to provide rather than demand liquidity.8 Without loss of generality,
we set r = 1 to simplify the exposition going forward.

In terms of information, a patient uninformed trader (he) initially knows only v0. How-
ever, just like the dealer in the GMEO framework, he uses information from the market

7Patient traders who use limit orders to provide liquidity to impatient traders are also central to the
limit order models of Foucault, Kadan, and Kandel (2005) and Rosu (2009).

8To see that this is the case, note that the requirement to at least break even on liquidity provision
implies that bid and ask prices in the market would always bracket the expected value of the asset, as in the
traditional sequential trade models. The break-even condition of the patient uninformed traders implies

πt,sp ≥ vt + E
[
r(T̃sp − t) | qt

]
> vt − E

[
r(T̃bp − t) | qt

]
≥ πt,bp,

and hence askt > vt > bidt. This means that the expected utility of a patient uninformed seller (buyer) from
using a marketable order will be negative: bidt − vt < 0 (vt − askt < 0).
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environment to update his beliefs and learn about the true value of the asset. In prin-
ciple, limit order markets allow traders to choose their order type. We create a simpler
structure—with uninformed traders that are assigned to both supplying and demand-
ing liquidity—because we want to focus on integrating informed traders who can choose
between limit and market orders into our market in order to study how information is
incorporated into prices in limit order markets.

The essence of an informed trader (she) in our model is that she knows the realized
value of the random variable ṽ. Informed traders do not have an exogenous reason to
trade, but rather arrive in the market to exploit their informational advantage. To sim-
plify the exposition in the paper, we assume that informed traders do not bear waiting
costs. This is equivalent to saying that their horizon for trading is the same as the hori-
zon of the random variable ṽ. There is no conceptual difficulty in having the informed
traders bear waiting costs, but it makes the model more complex without adding insights
on how information is incorporated into the market. As such, we choose to have the sim-
pler exposition in the paper, while providing the more general formulation in the Online
Appendix.

Given that all trading takes place in the interval [v− σ, v + σ] and each informed
trader behaves as if she will arrive in the market only once, her decision on whether
to buy or sell the asset is the same as in the traditional sequential trade models: buying
when the true value is high and selling when it is low. Trading in a limit order market,
however, she need to choose between a marketable and a limit order. Specifically, if the
true value is v + σ (v− σ), her utility is v + σ− πt,bI (πt,sI − (v− σ)) if she submits a limit
order with price πt,bI (πt,sI), and, if the other side of the book is not empty, v + σ− askt

(bidt − (v− σ)) if she submits a marketable order. Without having to bear waiting costs,
an informed trader prefers submitting a limit order, holding everything else equal. Why
would an informed trader ever submit a marketable order? Because uninformed traders
learn from the order flow. If choosing a limit order conveys “too much” information to
the market, the price impact of a limit order could be larger than the cost of executing a
trade with a marketable order.

A key feature of the GMEO framework is the assumption that the information envi-
ronment precludes identification of the informed traders, and hence uninformed traders
learn gradually from the order flow. We would like to replicate this information environ-
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ment in our model, which requires us to discuss off-equilibrium beliefs. The reason this
discussion is missing from the traditional sequential trade models is because they restrict
informed traders to using only market orders, and the dealer always stands ready to ac-
commodate them. In our limit order market, informed traders can supply liquidity, and
marketable orders may not be executed if the other side of the book is empty.

For example, it could be the case that submitting a limit order would reveal to the mar-
ket the informed trader’s identity (and hence her information), thus preventing her from
capitalizing on her private information. If the other side of the book is empty and there-
fore she cannot trade with a marketable order, the informed trader may choose to submit
a limit order and reveal her identity because she can still make money by supplying liq-
uidity to the impatient uninformed traders even if the value of the asset is known with
certainty. In most instances, the expected profit from both capitalizing on her private in-
formation and providing liquidity is greater than the profit from liquidity provision alone.
However, the aforementioned example requires us to specify off-equilibrium beliefs in or-
der to maintain the GMEO environment in which informed traders are unidentified.

To simplify the analysis in the paper, we assume that revealing oneself as an informed
trader entails a cost that is equal to or higher than the expected utility she can obtain
from submitting a limit order in a market where everyone knows her private informa-
tion. There is more than one story that makes this assumption reasonable. For example,
revealing oneself as an informed trader invites scrutiny from regulators. Dealing with
regulatory scrutiny is costly (e.g., the cost of lawyers and the opportunity cost of time
invested in defending oneself) even if the private information itself is legal.9

This simple assumption ensures that informed traders do not reveal themselves and
the essence of the GMEO information environment is maintained. Alternatively, one
could achieve the same outcome by simply assuming that informed traders believe that

9In our model, an informed trader would reveal herself by choosing a limit order price that would
not be chosen in equilibrium by an uninformed trader, which would lead to an immediate adjustment
of the uninformed traders’ beliefs and a large price impact. Officials at the Market Regulation division
of the Financial Industry Regulatory Authority (FINRA) told us that they constantly scan market prices to
detect such abnormal moves. They also maintain an anonymous hot-line, receiving many calls from market
participants who wish to point their attention to certain price moves or order flow strategies. FINRA would
then pursue an investigation, and is able to identify the trader behind each order. As such, the assumption
that informed traders would choose not to submit a limit order at strange prices that would cause a price
dislocation because they fear regulatory scrutiny is very realistic.
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trading in the market stops if they are revealed as informed traders. In the Online Ap-
pendix, we demonstrate how the model can be solved without such an assumption,
though at the cost of added complexity. Given that the added complexity does not re-
sult in additional insights and that our goal is to replicate the information environment
in the traditional sequential trade models, we proceed in the paper making the simple
assumption on the off-equilibrium beliefs that prevents informed traders from revealing
themselves.

3.2 Equilibrium Concept

Preliminary Discussion

It is important to recognize that there are two distinct games that are nested within our
model. The first one is essentially the game at each node when players update their infor-
mation, but in our case it is every instant of time due to the use of Poisson processes for
order arrivals. We denote by Gt this instantaneous game at time t. The second game is the
long-horizon game G = (Gt)t∈[0,+∞), which is simply the collection of all instantaneous
games; it is how the instantaneous games are connected through time. This seems like a
typical structure that would call for applying the Perfect Bayesian Equilibrium concept,
but we follow Rosu (2009)’s approach to solving the instantaneous game, and this creates
a subtle distinction. A Perfect Bayesian Equilibrium reduces to a Bayes Nash Equilibrium
for the static game, which in turn reduces to a Nash equilibrium when one moves to the
agent normal form of the incomplete information game. In our case, the equilibrium in
the agent normal form game is a version of rationalizability that has been specifically for-
mulated in Rosu (2009) for the instantaneous game between liquidity providers in limit
order markets.

The equilibrium introduced in Rosu (2009) is not exactly Markov perfect: while player
strategies are indeed Markov in Rosu’s game, the equilibrium is not Markov because it
does not yield a Nash equilibrium in subgames.10 Instead, Rosu’s equilibrium criteria
reduces to the rationalizability solution concept in subgames (see, Bernheim (1984) and
Pearce (1984)). Rosu’s discussion about maintaining appropriate distances between or-

10It is easy to check that liquidity providers would keep undercutting each other in a cyclical fashion if
they were to use the Nash best-response criterion.
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ders to prevent undercutting by traders, which we formally model below, is a description
of a rationalizable strategy that follows from the common knowledge of rationality in the
game. Therefore, his limit order model implements a dynamic version of rationalizability.

In Rosu’s paper, however, all traders have the same information about the asset. In
order to introduce informed traders into the mix, we augment Rosu’s equilibrium crite-
ria with two additional requirements borrowed from the Perfect Bayesian Equilibrium
to create a solution concept tailored for limit order markets under asymmetric informa-
tion. First, traders choose their actions conditional on their beliefs at each node of play.
This implies that the patient uninformed traders choose their limit order prices in each
instantaneous game Gt conditional on their beliefs at time t. Second, trader beliefs over
information sets are updated using Bayes’ rule. This means that in the long-horizon game
G = (Gt)t∈[0,+∞), trader beliefs are updated from Gt′ to Gt′′ (t

′′
> t

′
) using Bayes’ rule. As

such, we create a Perfect Bayesian extension of Rosu’s equilibrium.

Formal Definition

To economize on notation, we use Λ and u to refer to the arrival rates and preferences of
all trader types, respectively. Denote the tuples of limit order sellers and limit order buy-
ers waiting in the book at some arbitrary time t by xt and yt, respectively, with (pi)i∈xt

and
(pk)k∈yt

as the prices of these limit sell and buy orders. Then, the instantaneous game at
time t can be represented as

Gt =
(

xt, yt, (pi)i∈xt
, (pk)k∈yt

, qt, Λ, u
)

. (3)

The players in Gt are the patient uninformed traders and informed traders who are present
in the market at t, represented by the variables xt and yt. Thus, traders who have not yet
arrived by t or who have already exited the market are not players in Gt. In terms of actions
available to the players in Gt, a patient uninformed trader chooses either to submit a limit
order (and needs to decide on his limit order price) or leave the market without trading.
An informed trader chooses between submitting a limit order, submitting a marketable
order, or leaving the market without trading. The infinite horizon game G = (Gt)t∈[0,+∞)

inherits its structure from Gt, and we implicitly assume the asset pays off at the end of
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game G.11 Using this structure, we define the equilibrium as follows.

Definition 1. (Equilibrium in games Gt and G). An equilibrium in the instantaneous game
Gt is:

(i) a set of limit order prices (pi)i∈xt
and (pk)k∈yt

, and
(ii) the choices of patient uninformed traders, conditional on their beliefs qt, between

submitting limit orders and leaving the market without trading, and
(iii) the choices of informed traders between submitting limit orders, submitting mar-

ketable orders, and leaving the market without trading,
such that, given common knowledge of rationality among the traders, they have no

incentives to reprice their limit orders or change their choices.
An equilibrium in the long-horizon game G is a sequence of equilibria in the instanta-

neous games (Gt)t∈[0,+∞) such that for any t
′′
> t

′
,

1. qt′′ ∈ Gt′′ is obtained from qt′ ∈ Gt′ using a Bayesian update process given the
orders submitted by informed and uninformed traders that arrive according to Λ in
the interval [t

′
, t
′′
), and

2. Traders update their choices, canceling and resubmitting limit orders or leaving the
market altogether, in accordance with these updated beliefs to effect the change
from Gt′ to Gt′′ .

Common knowledge of rationality in the equilibrium definition means that all mar-
ket participants know that no trader will choose an action that is dominated by another
action (in terms of utility) in the trader’s action space, and they all know that they know
this, and so on. Rosu (2009) provides an elegant discussion of how common knowledge
of rationality would cause traders to reprice their orders in Gt if prices were to deviate
from the equilibrium prices. The basic idea is that if a trader were to choose a limit order
price that is not an equilibrium price, it would trigger a repricing response from another
trader (because doing so would increase that trader’s utility), which in turn would trig-
ger a repricing response from another trader, and so on. Given common knowledge of
rationality, traders should be able to reason through this chain; thus, equilibrium prices
must satisfy the properties specified in Definition 1.

11We could equivalently assume that the asset pays off after an exponentially-distributed interval of
time. Either way, our goal is to focus on a stationary equilibrium.
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The repricing procedure that Rosu sketches (and we describe and solve in detail using
wait times) is a form of iterated elimination that follows from the notion of rationalizabil-
ity. It is important to emphasize that in the instantaneous game Gt, this iterative repric-
ing process is essentially a thought experiment that allows us to pin down equilibrium
prices. No repricing actually occurs because limit orders in the book are priced such that
no trader has an incentive to reprice his or her order.

The Perfect Bayesian Equilibrium element we borrow for the definition of equilib-
rium in the long-horizon game G embeds the equilibrium in each instant of time (Gt) in a
Bayesian rational framework that extends over time. Informed and uninformed traders
submit their orders when they arrive in the market, and uninformed traders use Bayes’
rule to update their beliefs on the value of the asset, which can lead to cancellations and
resubmissions of resting limit orders in the book to reflect the updated beliefs. In other
words, the process of moving from Gt′ to Gt′′ may involve traders actually repricing their
limit orders (if equilibrium prices change) or even canceling their orders and leaving the
market altogether. This equilibrium definition mirrors the Bayesian framework of the se-
quential trade models, except that the dealer-based core of these models is swapped for a
limit order market.12

4 Equilibrium in the Instantaneous Game: Wait Times and

Prices

In this section, we construct the equilibrium in the instantaneous game Gt. Our first con-
tribution is to show how trader strategies combine with the limit order market structure
to create a relationship between wait times for the execution of limit orders and prices
in the book. We then derive the arrival rates of orders from the perspective of the unin-

12In Rosu’s framework, prices at time t are solely determined using information in Gt. Nothing in our
Perfect Bayesian extension changes this structure. The first requirement we add is that the limit order price,
πt, is chosen by a patient uninformed trader based on his beliefs at time t, qt, such that no other trader
would undercut him in Gt (the rationalizability argument). The second requirement we add is that traders’
beliefs over information sets (qt) are updated using Bayes’ rule as we move from Gt′ to Gt′′ (t

′′
> t

′
). Note

that these two requirements do not create a situation in which traders consider Gt′′ when choosing limit
order prices in Gt′ . In other words, traders need not consider the possibility that prices may change in the
future when setting their limit order prices at each instantaneous game.
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formed traders, which enables us to present our second contribution: a novel recursive
procedure for calculating wait times of limit orders in the book. These steps complete the
construction of the equilibrium in the instantaneous game. The Bayesian update process
that characterizes the long-horizon game G is developed in Section 5.

4.1 Wait Times

Recall that xt and yt denote the tuples of limit sell and buy orders in the book at time t,
respectively. A particular configuration of the book with n limit sell orders and l limit
buy orders is represented by (x1, . . . , xn; y1, . . . , yl)t, where x1 is the limit sell order with
the highest price and xn is the limit sell order with the lowest price (or the ask price in
the market), although we often use the shorthand notation (xn; yl)t. We refer to a specific
limit sell order within a configuration, xm, by writing (xm|xn; yl)t, m ≤ n; for example,
(x4|x4; y2)t refers to the ask price at time t in a book with four limit sell orders and two
limit buy orders. The notation for the buy side of the book is symmetric (substituting y
for x).

Definition 2. (Wait time). Wait time wt
(
xm|xn; yl) , m ≤ n, is a real-valued function that

measures the expected value of the (random) time T̃ it takes for the order xm to be ex-
ecuted, where the expectation is taken with respect to the information set of the unin-
formed traders at time t. The wait time for the buy side of the book wt

(
yk|xn; yl) , k ≤ l,

is defined in an analogous fashion.

Essentially, we define a wait time to denote how long uninformed traders expect to
wait before execution of a particular order (xm) given a certain configuration of the book
(xn; yl).13 While the starting configuration of the limit order book is noted in the definition
of the wait time, we only know in advance the ending configuration on one side of the
book. Specifically, if xm is the particular order whose wait time we calculate, we know
that the sell side of the book will contain xm−1 following the execution. However, our
calculation of the wait time would need to take into account all possible states of the other

13We drop the word “expected” in front of wait time to simplify the writing but we always mean an
expected wait time.
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side of the book that can arise due to the random arrivals of limit buy and marketable sell
orders during the the time it takes for our particular limit sell order to execute.

In the next section, we show how trader decisions give rise to a relationship between
wait times and prices of limit order in the book. Development of the recursive formula-
tions to calculate the wait times follows in Section 4.3.

4.2 Trader Strategies

The strategies of the impatient uninformed traders are simple: buyers buy if askt ≤ v + σ

and sellers sell if bidt ≥ v− σ. The strategies of the patient uninformed traders are more
complex, and require us to look at their utility functions and the definition of equilibrium
in the instantaneous game Gt. The expected utility function of the patient uninformed
traders in equation (2) consist of two components: the first is the difference between the
expected value of the asset and the limit order price, and the second is the expected wait
time to execution of the limit order. The price priority rule of the limit order book implies
that the wait time of a limit sell order at a higher price is at least as long as the wait time
of a limit sell order at a lower price because the latter would need to execute before the
former would get a chance at execution:

wt

(
xn|xn+m; yl

)
≥ wt

(
xn|xn; yl

)
, m ≥ 1. (4)

Say there is a resting limit sell order in the book. The arrival of a new limit sell or-
der that is placed at a lower price pushes up the expected wait time and brings down
the expected utility of the seller with the resting limit sell order. Of course, that seller
could reprice his order by canceling and resubmitting at a lower price to reclaim priority.
However, if the newly arrived seller places his order at a price that is sufficiently below
that of the resting limit sell order, the seller with the resting limit sell order has no incen-
tive to cancel and resubmit—the loss in utility from reducing the price would outweigh
the gain in utility from the shorter wait time. Given common knowledge of rationality,
traders should be able to reason through this sequence, and thus in equilibrium the dis-
tance between the two limit sell orders should equal the the gain in utility from obtaining
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execution priority.14 This creates a link between wait times and prices, and allows us to
pin down the gap between limit order prices in equilibrium—a state in which no patient
seller has an incentive to reprice his limit order.

Definition 3. (Price gap). The price gap g
(
xn, xn+1|xn+m; yl) denotes the non-negative

difference in price between the nth and (n + 1)th limit sell orders when the book contains
n + m (m ≥ 1) limit sell orders and l limit buy orders at time t.

Our intuitive discussion above is proved formally in the following proposition.

Proposition 1. In equilibrium, the price gap between sell orders with consecutive priorities in a
limit order book with configuration

(
xn+m; yl)

t is given by

gt

(
xn, xn+1|xn+m; yl

)
= wt

(
xn|xn+m; yl

)
− wt

(
xn+1|xn+m; yl

)
, m ≥ 1. (5)

The price gap between buy orders is defined in an analogous fashion.

All proofs can be found in the Appendix. The price gap (or simply, gap) in equation (5)
essentially represents a thought experiment at an instant in time, which is why the limit
order book configuration is the same in all terms of the equation.15 This equation tells us
what distance should be between two prices in the book to prevent an endless cycle of
undercutting by the traders. Wait times (and price gaps) are indexed by t because, as we
will show later in this section, they are a function of the uninformed traders’ beliefs qt.
We postpone the discussion of how beliefs are updated over time to Section 5; here, we
establish the equilibrium in the instantaneous game Gt given the beliefs qt.

Of course, price gaps are not enough to pin down all equilibrium prices. To obtain the
prices, we need to anchor the first price and have a way of determining when the price
gaps stop, which we do by providing two boundary conditions. The lower boundary

14With a continuous price grid, multiple limit order traders would not find it optimal to wait at the same
price but rather would post their orders at other price levels. These levels are set exactly to give traders
on the same side of the book the same expected utility after taking into account the wait cost. Hence, time
priority does not play a role in our model.

15The discount rate r does not appear explicitly in the right-hand-side of equation (5) because to simplify
the exposition, we assume r = 1. All propositions and proofs in the paper can be rewritten with an arbitrary
discount rate at the cost of introducing some complexity to the expressions, but none of the results or
insights would change.
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condition for the sell side of the book comes from the break-even condition of the pa-
tient uninformed liquidity providers: πt,sp ≥ vt + E

[
(T̃sp − t) | qt

]
. To rewrite the lower

boundary condition in terms of our wait time notation, we introduce the notion of a full
book.

Definition 4. (Full book). The sell (buy) side of the book is full if the next patient unin-
formed trader to arrive in the market would choose to leave without submitting a limit
sell (buy) order because posting it at an equilibrium price satisfying equation (5) would
result in violating his break-even condition. The number of orders in the sell (buy) side
of the book when it is full is denoted by Fs (Fb) .

The lower boundary therefore is established to ensure that the expected gain from
selling at a particular price is sufficient to cover the expected cost of waiting at that price.
The upper boundary condition for the sell side of the book is essentially the limit order
price chosen by a seller who arrives when the sell side of the book is empty. Choosing
a higher price increases expected utility, but a higher price also means that more limit
orders can undercut our seller, increasing his wait time and reducing his expected utility.
The next proposition shows that the positive direct effect of a price increase on expected
utility outweighs the negative indirect effect through the wait-time channel.

Proposition 2. If the sell side of the book is empty, a patient uninformed seller would place his
order at the highest possible price, pt

(
x1|x1; yl) = v + σ. Moreover, the lowest-priced limit sell

order when the sell side of the book is full must satisfy the condition

pt

(
xFS |x

FS ; yl
)
≥ vt + wt

(
xFS |x

FS ; yl
)

. (6)

If the buy side of the book is empty, a patient uninformed buyer would place his order at the lowest
possible price, pt

(
y1|xn; y1) = v− σ. Moreover, the highest-priced limit buy order when the buy

side of the book is full must satisfy the condition

pt

(
yFB |x

n; yFB
)
≤ vt − wt

(
yFB |x

n; yFB
)

. (7)

The first patient uninformed seller who comes to an empty book would post the limit
order at the highest possible price. If the second one arrives before the first one executes,
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he would post his limit order at the equilibrium price, v + σ− gt
(
x1, x2|x2; yl) . As more

patient sellers arrive, they post limit sell orders at lower and lower prices. The sell side of
the book becomes full when, if one additional patient uninformed trader were to arrive
and submit a limit order, the equilibrium price according to the gap formula would have
violated the break-even condition. Any patient seller who arrives when the book is full
would leave the market without submitting a limit order.

The condition in equation (6) could hold with a strict inequality when the book be-
comes full. A natural question in this case is why limit sell order xFS+1does not undercut
limit sell order xFS by a small amount rather than leave the market. The answer is that
any attempt to undercut it by less than gt

(
xFS , xFS+1|xFS+1; yl) would not be an equilib-

rium. The other limit order traders would have an incentive to reprice their orders (the
rationalizability argument) repeatedly. This process of repricing would stop and an equi-
librium would prevail only if each order is priced such that the expected gain in utility by
undercutting and obtaining execution priority is equal to the expected loss in utility from
the lower price, which is described by the price gap function. An arriving patient trader
can think through this chain of events, and his equilibrium strategy is simply to leave
because he would not obtain higher expected utility in equilibrium by attempting to sub-
mit a limit order. Propositions 1 and 2 completely characterize the optimal strategies of
patient uninformed traders.16

The trading strategy of the informed traders is driven by three considerations that
reflect the information environment of the GMEO framework. First, each trader behaves
as if they arrive to the market only once to trade a unit order, and therefore she would
buy if the value of the asset is v + σ and sell if the value of the asset is v − σ.17 The
second consideration is the assumption on off-equilibrium beliefs: revealing oneself as an
informed trader entails a cost that is at least as high as the expected utility from submitting
a limit order in a market in which the private information is publicly known. This means
that the strategy of an informed trader must mimic the strategy of either a patient or

16For a limit order market without informed trading, Proposition 1 and 2 provide an alternative char-
acterization of the equilibrium described in Rosu (2009). The main advantage of our approach is that it is
constructive, and we can therefore calculate the prices that would prevail in the limit order book in equilib-
rium.

17As in traditional sequential trade models, this assumption eliminates any incentives to manipulate
prices by trading in the opposite direction to her information.
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an impatient uninformed trader in order not to be revealed. We make this assumption
to replicate the essence of the GMEO framework in which informed traders hide in the
order flow that comes from uninformed traders. The third consideration is that informed
traders do not bear waiting costs. This means that, holding everything else equal, an
informed trader would prefer to submit a limit order rather than a marketable order.

Therefore, if an informed trader who observes v− σ arrives in the market and the sell
side of the book is not full, she would submit a limit sell order with the same price that
a patient uninformed trader would choose (satisfying the price gap equation) so that she
is not revealed. If the same informed trader arrives in the market and the sell side of the
book is full, she cannot submit a limit sell order without being revealed. She would then
submit a marketable buy order if buy side of the book is not empty, and leave the market
without trading if the buy side of the book is empty.18 Thus, while informed traders in the
GMEO framework submit marketable orders to hide behind the uninformed traders, here
they choose to hide behind either patient or impatient uninformed traders by submitting
either limit or marketable orders depending on what is more profitable for them given
the state of the book.

Characterizing the strategy of the informed traders allows us to work out the equilib-
rium expected arrival rates of marketable and limit orders from the perspective of unin-
formed traders given various configurations of the book.

Proposition 3. At time t,
1. If the buy side of the book is not full, uninformed traders expect the arrival rate of limit buy

orders that enter the book to be λbp + qtλI , and the arrival rate of marketable buy orders
that execute limit sell orders to be λbi. If the buy side of the book is full, uninformed traders
expect the arrival rate of limit buy orders that enter the book to be λbp, and the arrival rate
of marketable buy orders that execute limit sell orders to be λbi + qtλI .

2. If the sell side of the book is not full, uninformed traders expect the arrival rate of limit sell
orders that enter the book to be λsp + (1− qt) λI , and the arrival rate of marketable sell
orders that execute limit buy orders to be λsi. If the sell side of the book is full, uninformed
traders expect the arrival rate of limit sell orders that enter the book to be λsp, and the arrival
rate of marketable sell orders that execute limit buy orders to be λsi + (1− qt) λI .

18The informed traders’ strategy is part of the proof of Proposition 3 in the Appendix.
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Proposition 3 formalizes the result that uninformed traders use their beliefs about the
value of the asset together with an understanding of the trading strategy of the informed
traders to infer the arrival rates of each type of order. Having derived the expected arrival
rates, we can now demonstrate how these can be used to calculate the wait times of orders
(and hence limit order prices) in order to complete the construction of the equilibrium in
the instantaneous game Gt.

4.3 A Recursive Formulation for Wait Times

One of the innovations in this paper is that we present a recursive formulation that can
be used to compute the wait times for limit orders in the book. This recursive formula-
tion works in limit order books with and without asymmetric information. In fact, it is
simpler in markets without informed traders because the arrival rates of limit orders are
independent of both time and the state of the other side of the book. For such markets, we
show in the Online Appendix that our formulation for wait times in limit order markets
reduces to a single recursive equation. The introduction of informed traders, however,
means that our calculation of wait times needs to take into account every possible state of
the other side of the book. This necessitates a multi-equation recursive system, which is
somewhat more complex. At the end of the day, however, the exercise of solving for the
wait times of limit orders on each side of the book is reduced to a system of F + 1 linear
equations in F + 1 (where the number of equations is determined by how many orders
can rest on the other side of the book) at each stage of the recursion, which means that
the system can always be solved. Below we describe how the recursive process works,
starting from the best price in the book and going towards the back of the book.

What is the wait time for execution of the lowest-priced limit sell order when the sell
side of the book is full? The answer depends on the configuration of the other side of the
book, and hence to answer this question we need to find the wait time for any possible
such configuration. We discuss in great detail the first couple of steps in the derivation
of these wait times to demonstrate the recursive logic that is at the core of our method.
Once this logic is clear, the same process can be applied to solve for any wait time on both
sides of the book. To economize on notation, we use ∑ λ = λbi + λsi + λbp + λsp + λI to
denote the sum of the arrival rates of all trader types. The expected time for the arrival of
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the next trader is 1
∑ λ , and we can write the probability that this trader is, for example, an

impatient uninformed buyer as λbi
∑ λ .

In the first step, we look for this wait time when the buy side of the book is also full,
wt
(
xFS |xFS ; yFB

)
. It can be written as the sum of four terms depending on which order

arrives next (marketable buy, marketable sell, limit buy, or limit sell), and we show each
term in a separate line of equation (8) below. The first line of this equation tells us that,
after an expected time interval of 1

Σλ , a marketable buy order arrives with probability
λbi+qtλI

Σλ . The marketable order will come from either impatient uninformed traders (λbi)
or from informed traders when the value of the asset is high (qtλI), because the buy side
of the book is full. If the marketable buy order arrives, our limit sell order executes and
we are done. The second line of the equation tells us that, after an expected time interval
of 1

Σλ , there is a probability of λsi+(1−qt)λI
Σλ that a marketable sell order will arrive that can

come from either impatient uninformed traders (λsi) or informed traders when the value
of the asset is low ((1− qt) λI) because the sell side of the book is full. In this case, a
limit buy order is executed (the buy side of the book moves from being full to being not
full with FB − 1 orders), and our limit sell order still needs to wait wt

(
xFS |xFS ; yFB−1) for

execution.
The third line of the equation deals with the possibility that a patient uninformed

buyer arrives with probability
λbp
Σλ . In this case, he leaves the market without submitting

an order because the buy side of the book is full, and our limit sell order still has to
wait wt

(
xFS |xFS ; yFB

)
for execution. Lastly, the fourth line of the equation describes the

possibility that a patient uninformed seller arrives with probability λsp
Σλ . In this case, he

leaves the market without submitting an order because the sell side of the book is full,
and our limit sell order still needs to wait wt

(
xFS |xFS ; yFB

)
for execution.

wt

(
xFS |x

FS ; yFB
)
=

(
λbi + qtλI

Σλ

)(
1

Σλ

)
+

(
λsi + (1− qt)λI

Σλ

)(
1

Σλ
+ wt

(
xFS |x

FS ; yFB−1
))

+

(
λbp

Σλ

)(
1

Σλ
+ wt

(
xFS |x

FS ; yFB
))
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+

(
λsp

Σλ

)(
1

Σλ
+ wt

(
xFS |x

FS ; yFB
))

. (8)

These four terms exhaust all possibilities, and we can rearrange the terms to show that
this is a simple linear equation for wt

(
xFS |xFS ; yFB

)
in terms of wt

(
xFS |xFS ; yFB−1

)
:

wt

(
xFS |x

FS ; yFB
)
=

1
λbi + λsi + λI

+ wt

(
xFS |x

FS ; yFB−1
)(λ + (1− qt) λI

λbi + λsi + λI

)
(9)

The next step, therefore, would be to calculate wt
(
xFS |xFS ; yFB−1), which represents

the case that the configuration of the buy side of the book is not full but rather has room
for one more limit order. Enumerating the four possibilities yields the following equation:

wt

(
xFS |x

FS ; yFB−1
)
=

(
λbi
Σλ

)(
1

Σλ

)
+

(
λsi + (1− qt)λI

Σλ

)(
1

Σλ
+ wt

(
xFS |x

FS ; yFB−2
))

+

(
λbp + qtλI

Σλ

)(
1

Σλ
+ wt

(
xFS |x

FS ; yFB
))

+

(
λsp

Σλ

)(
1

Σλ
+ wt

(
xFS |x

FS ; yFB−1
))

(10)

This equation has the same structure as equation (8) except now a marketable buy
order in the first line can only come from impatient uninformed buyers ( λbi

Σλ ) because the
buy side of the book is not full. A marketable sell order in the second line can still come
from both impatient uninformed and informed traders (because the sell side of the book
is full), executing a limit buy order and leaving FB − 2 orders on the buy side of the book.
A limit buy order in the third line can come from both patient uninformed traders and
informed traders (because the buy side of the book is not full) with probability

λbp+qtλI
Σλ ,

entering the buy side of the book and making it full again. The fourth line of the equation
describes the possibility that a patient uninformed seller arrives with probability λsp

Σλ . In
this case, he leaves the market without submitting an order, and our limit sell order still
needs to wait wt

(
xFS |xFS ; yFB−1) for execution.

23



Our wait time wt
(
xFS |xFS ; yFB−1) can therefore be expressed as a function of wt

(
xFS |xFS ; yFB

)
,

which we already had in equation (9), and a new wait time, wt
(
xFS |xFS ; yFB−2). We could

then create an equation for wt
(
xFS |xFS ; yFB−2), similar in structure to equation (10), that

would yield the wait time as a function of the one we had in the previous equation and
a new term, wt

(
xFS |xFS ; yFB−3). This process is repeated for any number of orders FB − i

on the buy side of the book, 0 < i < FB, and the resulting equation can be simplified to
obtain

wt

(
xFS |x

FS ; yFB−i
)
=

1
λsi + λbp + λbi + λI

+ wt

(
xFS |x

FS ; yFB−i−1
)( λsi + (1− qt)λI

λsi + λbp + λbi + λI

)

+ wt

(
xFS |x

FS ; yFB−i+1
)( λbp + qtλI

λsi + λbp + λbi + λI

)
. (11)

The last equation we need is therefore for i = 0, which means the buy side of the book
is empty. This equation is simpler because an arriving marketable sell order does not lead
to a change in the (empty) buy side of the book, and it can be rearranged to give

wt

(
xFS |x

FS ; y0
)
=

1
λbi + λbp + qtλI

+ wt

(
xFS |x

FS ; y1
)( λbp + qtλI

λbi + λbp + qtλI

)
(12)

The set of equations in (9), (11), and (12) is a system of FB + 1 linear equations in FB + 1
unknowns, and therefore it has a unique solution for the values of wt

(
xFS |xFS ; yFB

)
, . . . ,

wt
(
xFS |xFS ; y0) . Given any possible state of the other side of the book, we have now found

the wait time for the execution of the ask price in the market when the sell side of the book
is full.

We construct the wait time for all other orders on the sell side of the book in a similar
fashion, starting with the wait time for the limit sell order in the slot just above the ask
price, wt

(
xFS−1|xFS−1; yFB

)
. The construction is very similar to that of equation (8) with

two differences. The first difference is that the sell side of the book is not full, which
means informed traders who observe a low value would use a limit order rather than a
marketable order. This means that marketable sell orders arrive with probability λsi

Σλ and

limit sell orders arrive with probability λsp+(1−qt)λI
Σλ . The second difference is that if a limit
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sell order arrives, it becomes the new ask in the market, and hence we first need to wait
wt
(
xFS |xFS ; yFB

)
for it to execute for our order to become again the the ask price. Since we

have already found wt
(
xFS |xFS ; yFB

)
by solving the set of equations in (9), (11), and (12),

we get a similar recursive structure as before, which simplifies to

wt

(
xFS−1|xFS−1; yFB

)
=

1
λbi + λsi + qtλI

+ wt

(
xFS−1|xFS ; yFB

) λsp + (1− qt)λI

λbi + λsi + qtλI

+ wt

(
xFS−1|xFS−1; yFB−1

) λsi

λbi + λsi + qtλI
(13)

Solving a system of FB + 1 linear equations in FB + 1 unknowns provides us with a unique
solution for wait times wt

(
xFS−1|xFS−1; yFB

)
, . . . , wt

(
xFS−1|xFS−1; y0) .

The same structure can be used to solve for all wait times in every level of the book
on both sides. The only three variables we need in order to implement this method are
qt, FB, and FS. The first one, the beliefs of the uninformed traders, is known at time t. The
other two variables are found from the break-even conditions in Proposition 2 using the
guess-and-verify method or simply by starting with FB = 1, and FS = 1 and continuing
to increment on each side until the break-even conditions are violated.

The recursive systems of equations seem a bit complex, but they are straightforward
to implement and give the exact equilibrium wait times and limit order prices (pi)i∈xt

and
(pk)k∈yt

that we require for the equilibrium in Definition 1. The trading strategies of the
patient uninformed and informed traders that we use to derive the equilibrium price gaps
and arrival rates take care of the equilibrium requirements that traders have no incentives
to reprice their limit orders or change their choices. This completes the construction of the
equilibrium in the instantaneous game Gt.

Several important questions are still left unanswered by the construction of equilib-
rium in the instantaneous game. For example, how do traders learn about the true value?
What happens to prices in the book as orders arrive and bring new information? Can
new information cause limit order traders to leave the market without trading? What
information is known to traders when trade execution occurs? To answer these ques-
tions, we proceed in the next section to discuss the equilibrium in the long-horizon game
G = (Gt)t∈[0,+∞).
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5 Equilibrium in the Long-Horizon Game: Learning from

Order Flow19

The definition of equilibrium in the long-horizon game G borrows from the Perfect Bayesian
Equilibrium concept the requirement that beliefs are updated using Bayes rule. It also
specifies that traders update their choices, canceling and resubmitting their limit orders
or leaving the market altogether, in accordance with these updated beliefs to effect the
change from Gt′ to Gt′′ , t

′′
> t

′
. In Section 5.1, we show how uninformed traders’ be-

liefs are updated when orders arrive, and present empirical implications on the manner
in which the state of the book affects the permanent price impact of orders. Section 5.2
discusses what the change in beliefs means for market interactions, and Section 5.3 takes
a closer look at how time itself may impact the repricing of limit orders, providing addi-
tional empirical implications on this process.

5.1 Bayesian Updating of Uninformed Traders’ Beliefs

Proposition 3 implies that uninformed traders know in equilibrium which order type an
arriving informed trader would use by observing the configuration of each side of the
book (full versus not full). What uninformed traders do not know, however, is whether
the informed trader would want to buy or sell, which is why they employ Bayesian learn-
ing to update their beliefs about the asset’s value. The order type and direction of an
arriving order, in conjunction with the state of the book, are used to determine whether
beliefs are updated and how. Depending on the parameters of the economy, the passage
of time without the arrival of an order may also be used by the uninformed traders to
update their beliefs. In this section we first address how traders learn from the arrival of
orders.

As a concrete example of the Bayesian updating process when an order arrives, con-
sider the case in which the buy side of the book is full and uninformed traders hold the
prior qt when a marketable buy order (MB) arrives at time t. To see how the arrival of the
order would convey information to the limit order market, we use Bayes’ Rule to calculate

19We thank Bart Yueshen and Ciamac Moallemi for insightful discussions that resulted in substantial
revisions to this section.
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the uninformed traders’ posterior beliefs:

Pt [ṽ = v + σ|MB] =
Pt [MB|ṽ = v + σ]Pt [ṽ = v + σ]

Pt [MB|ṽ = v + σ]Pt [ṽ = v + σ] + Pt [MB|ṽ = v− σ]Pt [ṽ = v− σ]
.

(14)
Both impatient uninformed traders and informed traders submit marketable buy or-

ders when the buy side of the book is full and ṽ = v+ σ, while only impatient uninformed
traders submit marketable buy orders when ṽ = v − σ. Hence, Pt [MB|ṽ = v + σ] =
λbi+λI

Σλ and Pt [MB|ṽ = v− σ] = λbi
Σλ . Substituting these values into equation (14) above,

we get the posterior beliefs

Pt [ṽ = v + σ|MB] =
qt (λbi + λI)

λbi + qtλI
. (15)

Similarly, the posterior beliefs conditional on the arrival of a marketable sell order are

Pt [ṽ = v + σ|MS] =
qtλsi

λsi + (1− qt)λI
. (16)

The following proposition describes how limit order prices in the book change as be-
liefs are updated.

Proposition 4. If the buy (sell) side of the book is full, arrival of a marketable buy (sell) order
causes the posterior beliefs about the asset value to be go up (down) according to equation (15)
(equation (16)), which leads to repricing of limit orders in the book such that gaps between resting
buy (sell) orders widen and gaps between resting sell (buy) orders narrow. If the buy (sell) side of
the book is not full, arrival of a marketable buy (sell) order does not cause a change in the beliefs
of uninformed traders, but arrival of a limit buy (sell) order causes analogous effects on posterior
beliefs (replacing λbi with λbp in equation (15) and λsi with λsp in equation (16)) and price gaps.

Not every order arrival results in beliefs updates. Orders that could possibly come
from informed traders (e.g., limit orders when the same-side-book is not full) cause all
limit order traders in the book to cancel and resubmit their orders at different prices. This
repricing of limit orders in the book is driven by the revision in the uninformed traders’
beliefs about the true value, which changes the inferred arrival rates of orders specified in
Proposition 3. This leads to a revision in the wait times and the magnitude of equilibrium
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price gaps, resulting in limit orders being repriced.
Formally, the set of equilibrium limit order prices in the instantaneous game Gt′ is

determined by the uninformed traders’ beliefs at t′. As beliefs are updated in the infinite
horizon game G with the arrival of an order that could come from an informed trader, a
new instantaneous game Gt′′ with t

′′
> t

′
will have a different set of equilibrium prices.

The transition between Gt′ and Gt′′ implies that traders cancel and resubmit, or reprice,
their limit orders in the book.20

Proposition 4 gives rise to empirical implications concerning order-flow information
in limit order markets. One such implication is that the informativeness of marketable
and limit orders depends on the size of the prevailing spread. When the book is full and
therefore the bid-ask spread is narrow, informed traders use marketable orders. When
the book is not full and the bid-ask spread is therefore wider, informed traders use limit
orders. The size of the spread influences the desire of the patient uninformed traders to
supply liquidity. The informed traders’ order choice is driven by their need to hide in
the order flow of the uninformed traders, and therefore the size of the spread affects the
informativeness of incoming orders.

Empirical Implication 1. Marketable orders have a larger (smaller) permanent price impact
when the spread is narrow (wide). Limit orders have a larger (smaller) permanent price impact
when the spread is wide (narrow).

In general, testing the implications of any model involves making choices on the ap-
propriate design for the empirical analysis, and we want to comment briefly on several
relevant considerations. The first point is that Empirical Implication 1 is a time-series,
not a cross-sectional, implication. Hence, by a “narrow” or “wide” spread we mean rela-
tive to the time-series properties of spreads. The second point is that, while we model a
continuous price grid, empirical analysis needs to account for the minimum price incre-
ment. For example, stocks that are tick-constrained (i.e., trading with a one-tick spread)
will more often exhibit the state of the book in which informed traders cannot undercut
resting limit orders and therefore are more likely to submit marketable orders. As a re-

20Release of public information (e.g., an earnings announcement) will also result in repricing of limit
orders in the book as prices in the new instantaneous game Gt′′ reflect changes in the fundamental attributes
of the asset’s true value (e.g., v and σ).
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sult, there may be cross-sectional patterns in the use of marketable and limit orders by
informed traders that depend on market structure frictions.

The third point is that the size of the spread does not have a one-to-one correspon-
dence with whether each side of the book is full or not. The inference problem arises
when one side of the book is full and the other side is not full. One could reduce the po-
tential misclassification somewhat by introducing a sufficiently wide wedge between the
two spread size categories, but misclassifications cannot be eliminated completely simply
because the size of the spread only imperfectly distinguishes the four states of the book
in our model (i.e., full on both sides, not full on both sides, or a mixture with one side full
and the other side not full).

To try and reduce misclassifications, one could condition not just on the size of the
spread but also on the frequency of orders in a given interval. The arrival rate of information-
bearing orders is higher than that of non-information-bearing orders because it is the sum
of uninformed and informed arrival rates. As such, if the narrow spread is not narrow
enough to coax informed traders to submit marketable orders, for example, the frequency
of marketable orders and their information content would be lower. This is summarized
in the following empirical implication.

Empirical Implication 2. When the spread is narrow (wide), a higher frequency of marketable
(limit) orders should result in a larger permanent price impact than a lower frequency of marketable
(limit) orders.

To identify separately whether one or the other side of the book is full, one could look
at depth relative to its time-series properties. Holding everything else equal, the buy or
sell side of the book will have more shares (or limit orders) when it is full than when it is
not full. Our model implies that a marketable order will convey more information when
the same-side book has more depth and a limit order will convey more information when
the same-side book has less depth.

Empirical Implication 3. A marketable order will result in a larger permanent price impact
when there is more depth than usual on the same side of the book than when there is less depth on
that side. A limit order will result in a larger permanent price impact when there is less depth than
usual on the same side of the book than when there is more depth on that side.
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We know of two papers that contain evidence consistent with these empirical implica-
tions. Putnins and Michayluk (2018) show increased limit order use by informed traders
when spreads are wide, consistent with Empirical Implication 1. Kwan, Philip, and Shk-
ilko (2021) empirically test the predictions of our model using machine learning tech-
niques applied to limit order book data from the Australian Securities Exchange. They
find that, consistent with Empirical Prediction 1, price discovery through marketable or-
ders increases when the spread is narrow, while price discovery through limit orders
increases when the spread is wide. They also find that, consistent with Empirical Pre-
diction 2, marketable orders arriving frequently have larger price impacts compared to
marketable orders arriving infrequently when the spread is narrow, and a similar result
can be observed for limit orders when the spread is wide.

It is important to emphasize that our empirical implications involve the permanent
price impact, not the immediate price impact, of orders. Empirical studies in market
microstructure often define the permanent price impact of a sell order as the midquote
prevailing at the time the order arrives minus the midquote after a certain interval of
time that is sufficient for the reversal stemming from the temporary price impact to take
effect. How would the permanent price impact manifest in our market? Say, for example,
both sides of the book are not full. The arrival of a limit sell order that improves the best
ask will result in an immediate price impact, lowering the midpoint between the bid and
ask prices. This immediate price impact can be viewed as the sum of two components: the
price revision that occurs in the prices of all resting limit orders to reflect the information
content of the order (given that the book is not full), and a temporary effect that arises
mechanically from the addition of a new limit order below resting limit orders.

If a marketable buy order arrives after the limit sell order and executes it, there would
be no repricing of resting limit orders because the buy side of the book is not full. The
midquote following the execution will rise mechanically because the previous limit sell
order was executed, reversing its temporary price impact. However, the other resting
limit sell orders would be positioned at a lower price than they were initially, reflecting
the updated beliefs of uninformed traders brought about by the arrival of the limit sell
order, which is how the permanent price impact is manifested.

Therefore, the process by which a permanent price impact emerges in a limit order
market is more complex than that described in traditional sequential trade models of
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dealer markets. In the Glosten-Milgrom-Easley-O’Hara framework, all price impacts are
permanent (i.e., there is no distinction between immediate and permanent price impacts).
Incorporating informed traders in a limit order market gives rise to an immediate price
impact that is comprised of both permanent and temporary elements, and thus comes
closer to describing empirically-observed price patterns. This also implies that, unlike in
traditional sequential trade models, transaction prices in our market do not converge to
the true value because they are not expectations of the value of the risky asset. Rather,
transaction prices would deviate from the true value even as beliefs converge due to wait-
ing costs and the need to compensate liquidity suppliers.21

The empirical implications in this section focus on how the state of the book impacts
the information content of arriving orders. The arrival of orders, in turn, brings about
changes to the limit order book. The next section discusses how this process unfolds.

5.2 Changes in Beliefs and Market Interactions

In this section, we describe in more detail what the change in beliefs means for market
interactions. In particular, we discuss the sequence of events that unfolds when an or-
der arrives, the relationship between traders and orders, and what happens when the
equilibrium number of orders goes down after an update in beliefs.

It is useful to think in terms of a sequence of steps that happen instantaneously when
when beliefs change. The first step is that the new location of all limit orders is computed
based on the information in the incoming order. This step essentially finds the equilib-
rium prices in the new instantaneous game. The second step is that traders use whatever
protocol they agree on to decide who is in which slot in the book after repricing. In the
third step, if the incoming order is a limit order, the new order is added to the book at
a price distance computed using the new beliefs; if the incoming order is a marketable

21As uninformed traders update their beliefs, the book on one side will become empty at some point
when the expected value approaches the true value. For example, if the expected true value vt comes very
close to v− σ, patient uninformed traders will stop supplying liquidity on the buy side of the book because
there will be no limit prices that could satisfy the break-even condition. However, informed traders and
patient uninformed sellers will continue to submit limit sell orders to the book, and trading will continue as
impatient uninformed buyers submit their marketable orders. Thus, the arrival of limit sell and marketable
buy orders will convey information about the true value and the convergence of the expected value of the
asset to v− σ will continue.
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order, the limit order with the lowest price on the other side of the book is executed. This
step is simply a manifestation of the limit order market rules. While the series of steps
is straightforward, three aspects nonetheless deserve additional discussion: the sequenc-
ing, the relationship between traders and specific slots in the book that is alluded to in
the second step, and the possibility that traders cancel their orders and leave the market.

The sequencing of the steps specifies that uninformed traders first update their beliefs
upon the arrival of an order, and then the order is processed according to the market rules.
This seems like a natural sequence because, if a limit order were to arrive and be placed
in the book in a slot based on the old information, then immediately afterwards it would
need to be canceled and resubmitted to reflect the new information. Given that these two
things happen instantaneously, it seems reasonable to update beliefs first and then post
the order. If a marketable order arrives when the same-side-book is full, this sequence
of events means that traders in the book reprice their orders and therefore the bid and
ask prices change, and only then the marketable order executes at a price that reflects
its information content. This is similar in nature to the outcome in traditional sequential
trade models where execution prices are “regret-free” in the sense that they reflect the
information content of the arriving order.

The second issue that merits discussion is the relationship between specific traders and
slots in the book. The equilibrium definition of the instantaneous game Gt is done in terms
of a set of limit order prices (pi)i∈xt

and (pk)k∈yt
, but it does not require an identification

of a particular limit order price with a specific trader. Our uninformed patient traders
are indifferent between the slots because their expected utility at each slot is the same
in equilibrium.22 By indifferent we mean that patient uninformed traders could choose
any protocol they like to work out the priorities (or who is in which slot) following a
cancellation and resubmission—we do not need to take an explicit stand on the nature of
the protocol. For example, one such protocol could be that each trader on the sell side of
the book sticks to his original slot after repricing, and a new limit order is added below the
ask price to create the new ask. However, our model can accommodate any protocol on
which the patient uninformed traders agree. Informed traders in the book must follow the
protocol chosen by the patient uninformed traders in order not to be revealed as informed.
Hence, all traders with limit orders in the book—both uninformed and informed—follow

22This is also a key feature of the model in Rosu (2009).
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the same protocol. The exact nature of the protocol, or said differently, the identity of the
trader associated with each slot, is immaterial to the determination of equilibrium prices
in the book.

The third issue that requires clarification is what happens if an incoming order changes
beliefs in such a way that a full book in the new equilibrium contains fewer orders than
the number of orders resting in the book. For example, say the sell side of the book is full
and consists of 20 orders, while the buy side of the book is not full. The arrival of a limit
buy order will cause an upward revision in the expected value of the asset, and it could
happen that the updated break-even condition and price gaps in the new equilibrium
allow for only 19 orders on the sell side of the book. In such a case, the limit sell order
with the lowest price would be canceled and the trader would leave the market. Why
would the trader agree to leave the market without trading? A patient uninformed trader
would leave because remaining in the book would imply negative expected utility and he
can have zero expected utility by leaving the market.23 An informed trader would need
to follow exactly the same protocol as the patient uninformed traders if she wishes not to
be revealed, and hence would also leave the market without trading.24

5.3 Information and the Passage of Time

Beyond the arrival of orders, the passage of time itself without the arrival of an order may
cause uninformed traders to update their beliefs. It is useful to discuss time in the context
of a slightly more general model in which the intensity of informed trading when buying

23Which trader has to leave is part of the same protocol that patient uninformed traders agree on, and
it can simply be that the trader who happens to be in the slot with the lowest limit sell order price that
breaches the break-even condition is the one leaving the market.

24She would not cancel the limit order and simultaneously submit a marketable order because this would
also reveal her to the market (marketable orders otherwise arrive according to a Poisson process). As
we discuss in the Online Appendix, revelation of the true value essentially causes one side of the book
to become empty in the relevant price range ([v− σ, v + σ]). For example, a revelation that the value is
v − σ means that the break-even condition for the patient uninformed buyers would be violated for all
prices above v − σ, hence they would cancel all their limit buy orders. The sequence of steps whereby
prices adjust to information before execution takes place means that the informed trader’s marketable order
would therefore not execute. While the informed trader could in principle have placed a limit sell order at a
price that reflects symmetric information about the true value to gain from providing liquidity to impatient
uninformed buyers, our assumption about off-equilibrium beliefs implies that this is a worse outcome for
her than simply leaving the market without trading.
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can differ from their intensity when selling. Such a situation may arise in equity markets,
for example, because of short-sale constraints (as in Diamond and Verrecchia (1987)) or
because holding a short position in the asset exposes the informed traders to the risk of
being short-squeezed. We denote the arrival rate of informed traders when they observe
a high asset value λIH and their arrival rate when observing a low asset value λIL.

Let NMB, NMS, NLB and NLS denote the number of marketable buy, marketable sell,
limit buy, and limit sell orders, respectively, that arrive in an interval δ > 0. When
the asset value is v + σ, informed traders will buy using either marketable or limit or-
ders, and the assumption that trader types arrive according to independent Poisson pro-
cesses means that the probability that no order arrives during the interval is therefore
Pt [NMB = NMS = NLB = NLS = 0|ṽ = v + σ] = e−δ(λbi+λbp+λsi+λsi+λIH). Similarly, informed
traders would sell using either marketable or limit orders when v− σ, and the probability
that no order arrives during the interval is Pt [NMB = NMS = NLB = NLS = 0|ṽ = v− σ]

= e−δ(λbi+λbp+λsi+λsi+λIL). Therefore, the change in beliefs over the interval δ is

q(t + δ)− q(t) =
q(t)(1− q(t))

[
e−δ(λbi+λbp+λsi+λsi+λIH) − e−δ(λbi+λbp+λsi+λsi+λIL)

]
q(t)e−δ(λbi+λbp+λsi+λsi+λIH) + (1− q(t))e−δ(λbi+λbp+λsi+λsi+λIL)

Given that the Poisson process is right-continuous and that there are no arrivals during
the interval, we can take the right limit as δ goes to zero to obtain

q′(t) =lim
δ→0

q(t + δ)− q(t)
δ

=− q(t)(1− q(t))
[(

λbi + λbp + λsi + λsi + λIH
)
−
(
λbi + λbp + λsi + λsi + λIL

)]
=− q(t)(1− q(t)) (λIH − λIL) . (17)

Thus, beliefs are updated continuously to reflect the absence of arrival. Say, for example,
that some informed traders are not willing to risk a short squeeze and hence λIH > λIL.
Given that uninformed traders expect more orders to arrive when informed traders buy
than when they sell, the absence of an arrival means a lower likelihood that the value of
the asset is v + σ and hence beliefs drift downward. The discussion above in conjunction
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with Proposition 4 gives rise to the following result.

Proposition 5. When λIH > λIL (λIH < λIL), the passage of time without the arrival of an
order implies that qt is updated downward (upward), which leads to repricing of limit orders in
the book such that gaps between resting sell (buy) orders widen and gaps between resting buy (sell)
orders narrow. If λIH = λIL, the passage of time without the arrival of an order does not change
qt.

The repricing of limit orders follows the first two steps from Section 5.2: the new
location of all limit orders is computed based on the updated beliefs, and then traders
reprice their orders following whatever protocol they agree on to decide who is in which
slot in the book after repricing.

To simplify the exposition in the paper, we assumed in the previous sections that the
informed traders’ arrival rate is the same when they buy and when they sell. However,
the equilibrium in the instantaneous game and the recursive procedure we introduce to
compute the expected wait times can also be implemented when informed traders have
different buying and selling arrival rates.25 It is clear from looking at equation (17) that
when λIH = λIL = λI , the drift disappears and beliefs remain the same without an
order arrival. The intuition for this is simple: the total arrival rate of orders is the same
irrespective of whether the asset value is v + σ or v − σ, and hence the lack of arrival
cannot tell us anything about the value of the asset. Only when the total arrival rate of
orders differs depending on whether the asset value is high or low is the lack of arrival
informative.

Hypotheses about the differential arrival rates of informed traders can be tested em-
pirically by looking at repricing (cancellations and resubmissions) of limit orders in the
book when no new orders are arriving. Since only some order types are informative in
our model (depending on the state of the book), the drift in beliefs only occurs when in-
formative orders do not arrive, while beliefs do not change with the arrival of orders that
are known to come only from uninformed traders. This enable us to provide more refined
hypotheses from combining Proposition 4 and Proposition 5.

25The derivation of the expected wait time in the more general case with λIH 6= λIL is provided in the
Online Appendix.
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Empirical Implication 4. When the spread is narrow, the passage of time without the arrival
of marketable orders should result in lowering (raising) the prices of limit orders in the book if
the intensity of informed trader buying is higher (lower) than their intensity of selling. When the
spread is wide, the same effects should be associated with the passage of time without the arrival of
limit orders.

As in Empirical Implication 3, greater depth on a particular side of the book can be
used to indicate a full book, resulting in the following empirical implication.

Empirical Implication 5. When there is more depth than usual on both sides of the book, the
passage of time without the arrival of marketable orders should result in lowering (raising) the
prices of limit orders in the book if the intensity of informed trader buying is higher (lower) than
their intensity of selling. When there is less depth than usual on both sides of the book, the same
effects should be associated with the passage of time without the arrival of limit orders. If there
is more depth than usual on one side of the book and less depth than usual on the other side of
the book, the same effects should be associated with the passage of time without the arrival of
marketable orders from the side of the book with more depth and limit orders from the side of the
book with less depth.

The repricing of limit orders in the book as informative orders arrive according to
Proposition 4 and the repricing caused by the passage of time without the arrival of an
order imply a great amount of cancellations and resubmissions of limit orders as traders
reposition their orders to reflect their new beliefs. As such, a limit order market under
asymmetric information differs from traditional sequential trade models, where just the
best bid and ask prices (or the dealer’s quote) change, and also from a limit order mar-
ket under symmetric information, where limit orders are never repriced but rather rest
in the book until they execute. In a model with continuous prices and no cost of repric-
ing, it is clear why repricing would occur continuously. Price discreteness would imply
that repricing occurs only when beliefs move by more than a threshold dictated by the
minimum price increment. Similarly, costs associated with monitoring, submission, and
cancellation of limit orders would also inhibit the frequency of repricing that occurs both
with and without the arrival of a new order. Still, the process of updating beliefs in limit
order markets under asymmetric information should result in very active markets.
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Empirical Implication 6. Information asymmetry in a limit order market drives frequent can-
cellations and resubmission of limit orders throughout the book in response to the information
conveyed in the order flow.

This empirical implication may appear to trivially follow from the structure of the
model: traders dynamically learn about the asset value and hence reposition their limit
orders. Indeed, it is simply an attribute of the equilibrium. We highlight it because many
market observers have noted the high frequency with which limit orders are revised in
today’s limit order markets, and the correspondingly short duration of these orders (see,
for example, Hasbrouck and Saar (2009), Hasbrouck and Saar (2013) and the literature
on high-frequency trading). Some have contended that frequent cancellations and resub-
missions are an abnormality that must be due to nefarious activity on the part of high-
frequency traders, and could be detrimental to market integrity. We want to make the
point that frequent cancellations and resubmissions are a natural attribute of limit order
markets under asymmetric information: it is the optimal response on the part of unin-
formed limit order traders to the presence of informed trading in the order flow.26

6 Conclusions

On the whole, some things remain the same but others change dramatically in a sequen-
tial trade model when you replace the dealer with a dynamic limit order market. Order
flow still brings information to the market, and the expected value of the asset adjusts
toward the true value in a manner that is similar to the adjustment in traditional sequen-
tial trade models. Learning about private information from the order flow is an essential
property of both market structures simply because uninformed traders rationally learn
from their environment. Uninformed traders incur execution costs when submitting mar-
ketable orders in the limit order market exactly as they do in a dealer market. For the
no-trade theorem to be violated, some traders need to have non-informational reasons to

26Back and Baruch (2013) provide another explanation by modeling a game between liquidity suppliers
in a limit order market. They focus on a symmetric mixed-strategy equilibrium, and interpret the mixed
strategies as a manifestation of the actions of liquidity providers who manage their exposure to undercut-
ting by rapidly canceling their quotes and replacing them with new randomly chosen ones.
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trade immediately and these traders pay for the liquidity they demand. Beyond these
two results, however, the trading environment looks very different.

First, informed traders use both limit and marketable orders in a manner that depends
on the state of the book. If taking liquidity is cheap, they take liquidity; if it is expensive,
they supply liquidity. Thus, market participants need to use the state of the book, or-
der direction, and the passage of time in their inference about the asset’s value. Second,
transaction prices are not simply conditional expectations of the asset’s value given the
order flow as in the traditional sequential trade models. Rather, they reflect both the up-
dated beliefs of uninformed traders and the compensation that needs to be paid to patient
traders to induce them to provide liquidity.

Third, we see that many limit orders, not just those at the top of the book, get revised
(canceled and resubmitted) as traders learn information. They need not be revised with
every order, but they are revised with every order that could potentially come from an
informed trader, and when long stretches of time pass without the arrival of informative
orders. These constant revisions are now a ubiquitous feature of electronic limit order
markets in which submission and cancellation of orders is (almost) costless, and we pro-
vide one rationale for such behavior.

A reasonable question is why we have not observed such frequent cancellations and
resubmissions until the last couple of decades. The likely answer is that frictions in the
trading environment used to inhibit the rational price revisions of limit orders in response
to order flow. Throughout most of the history of U.S. equity markets, for example, the
large tick size (an eighth of a dollar) prevented effective repricing of limit orders, and it
was rather costly to monitor, cancel, and resubmit limit orders. As frictions were reduced
by decimalization and the rapid developments in trading technology, we began observing
more such price revisions of limit orders.27 If many of these price revisions stem from the
rational response of uninformed traders to adverse selection, as they do in our model,
then enacting policies that discourage them may not be beneficial.

Our goal to nest a limit order market in a sequential trade model committed us
to focusing on a rather simple setting to provide transparency into the inner workings of

27Remaining frictions may be causing limit orders closer to the best prices in the book to be revised more
frequently than limit orders deeper in the book because there is less urgency in updating the prices of limit
orders that are unlikely to execute soon.
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the limit order market. At the end of the day, some implications of the model may seem
rather stark. In particular, our results include price revisions of all orders in the book,
and perfect identification of the order type that informed traders use in each state of the
book. In actual markets, minimum price increments and uncertainty over the parameters
of the stock or trader arrival (and hence over what constitutes a “full” book) would work
to produce more subtle effects. Still, it is important to identify the implications without
these additional frictions to appreciate their importance for the market environment.

Our emphasis on simplicity in exposition also means that the model does not include
some features that have been investigated elsewhere. For example, we do not investi-
gate the horizon of private information (Kaniel and Liu 2006), information acquisition
(Goettler, Parlour, and Rajan 2009, Rosu 2020), market opening and closing effects (Ricco,
Rindi, and Seppi 2018), or information decay costs (Rosu 2020). The benefit of the ap-
proach we take is in creating a robust, intuitive framework for limit order markets that
could be extended along many dimensions.

Regulatory interventions coupled with technological progress have been transforming
markets worldwide, and in particular have propelled the rise of the electronic limit order
book market structure. Just as the adverse selection models of dealer-intermediated trad-
ing spurred an enormous research effort into the microstructure of dealer markets, we
hope that our simple model of limit order markets can help the effort to gain a better
understanding of today’s most important market structure.
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Appendix

Proof. (Proposition 1). The expected utility of a patient uninformed seller in equation (2)
has two components: (i) an expected profit component from price, E

[
πt,sp − vt

]
, and (ii)

an expected wait time component, E
[(

T̃sp − t
)]

. If the limit sell order in the nth lowest pri-
ority execution slot lowers its price to gain priority over the limit sell order in the (n + 1)th

slot, the gain in expected utility from the wait time component is wt
(
xn|xn+m; yl) −

wt
(
xn+1|xn+m; yl). At the same time, the loss in expected utility from the price com-

ponent is equal to the price reduction. Thus, when

gt

(
xn, xn+1|xn+m; yl

)
≥ wt

(
xn|xn+m; yl

)
− wt

(
xn+1|xn+m; yl

)
,

the seller in the nth priority slot has no incentive to cancel and resubmit his limit order to
claim priority. However, if the inequality above is strict, the seller in the (n + 1)th priority
slot can improve his expected utility by raising the limit order price. In equilibrium,
neither seller should want to cancel and resubmit, and we thus get equation (5).

Proof. (Proposition 2). We prove the proposition for the sell side book. The arguments for
the buy side book are symmetric.

From equation (5), we have

pt

(
x1|x2; yl

)
− pt

(
x2|x2; yl

)
= wt

(
x1|x2; yl

)
− wt

(
x2|x2; yl

)
.

Since wt
(
x1|x2; yl) ≥ wt

(
x1|x1; yl) from inequality (4), we can re-write the equality above

as
pt

(
x1|x2; yl

)
− pt

(
x2|x2; yl

)
≥ wt

(
x1|x1; yl

)
− wt

(
x2|x2; yl

)
.

In equilibrium, a patient uninformed seller at a particular execution slot should have no
incentive to reprice his order when a new patient seller places an order in the limit book,
which means pt

(
x1|x1; yl) = pt

(
x1|x2; yl). Thus, we can re-write the inequality above as

pt

(
x1|x1; yl

)
− pt

(
x2|x2; yl

)
≥ wt

(
x1|x1; yl

)
− wt

(
x2|x2; yl

)
.
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Using an inductive argument, this can be generalized to

pt

(
x1|x1; yl

)
− pt

(
xn|xn; yl

)
≥ wt

(
x1|x1; yl

)
− wt

(
xn|xn; yl

)
.

The above inequality shows that if a patient uninformed seller in an empty book lowers
his price, the gain in expected utility from having a shorter wait time cannot be greater
than the loss in expected utility from having a lower execution price. Hence, in equilib-
rium a patient uninformed sellers prefers a higher limit order price to a lower limit order
price, and since v + σ is the highest possible price in the empty book, he chooses this
price.

Condition (6) follows from the fact that patient sellers require non-negative expected
utility. From equation (2),

E
[

pt

(
xFS |x

FS ; yl
)
− vt − wt

(
xFS |x

FS ; yl
)]
≥ 0,

which implies pt
(
xFS |xFS ; yl) ≥ vt + wt

(
xFS |xFS ; yl).

Proof. (Proposition 3). The informed traders’ utility function in (??) together with the re-
lation askt > vt > bidt derived in footnote 8 imply that informed traders always prefer
limit orders over marketable orders because they do not bear waiting costs. The assump-
tion we make on the off-equilibrium beliefs of the informed traders means that they do
not want to get identified. This implies that, first, informed traders may use limit or-
ders only in scenarios when patient uninformed traders are expected to use limit orders,
and, second, they would only post limit order prices that could be chosen by the patient
uninformed papers. Since patient uninformed traders require non-negative utility, they
do not submit limit orders when the same-side-book is full. Consequently, an informed
trader would also not choose a limit order when the same-side-book is full, and by (??)
would then choose a marketable order. Thus, informed traders are expected to choose
marketable orders on a particular side of the book only when that side is full, and limit
orders otherwise.

At time t, the probability that the asset value is v + σ from the perspective of unin-
formed traders is qt. Therefore, from their perspective the probability that the informed
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traders use buy orders is qt, and the probability they use sell orders is (1− qt). Which
means that if the buy side of the book is not full, uninformed traders expect the arrival
rate of limit buy orders to be λbp + qtλI , and the arrival rate of marketable buy orders to
be λbi. If the buy side of the book is full, uninformed traders expect the arrival rate of
limit buy orders to be λbp, and the arrival rate of marketable buy orders to be λbi + qtλI .
The arguments for the sell side are symmetric.

Proof. (Proposition 4). Equations (15) and (16) show how the arrival of orders lead to revi-
sions in the uninformed traders’ beliefs, qt. Therefore, we need to show how price gaps
are affected by changes in qt. Gaps measure the difference between wait times at consec-
utive priority slots, so we have

gt

(
xFs−i−1, xFs−i|xFs−i; yFb−j

)
= wt

(
xFs−i−1|xFs−i; yFb−j

)
− wt

(
xFs−i|xFs−i; yFb−j

)
. (18)

Thus, the rest of the proof focuses on showing that gaps shrink as qt increase,

∂
(
wt
(
xFs−i−1|xFs−i; yFb−j)− wt

(
xFs−i|xFs−i; yFb−j))

∂qt
< 0. (19)

Following the arguments in Section 4.3, we may express the wait time for xFs−i when
there are Fs − i sell orders and Fb − j buy orders as

wt

(
xFs−i|xFs−i; yFb−j

)
=

1
λbp + λbi + λsi + qtλI

+ wt(xFs−i+1|xFs−i+1; yFb−j)
λsp + (1− qt)λI

λbp + λbi + λsi + qtλI

+ wt(xFs−i|xFs−i; yFb−j−1)
λsi

λbp + λbi + λsi + qtλI

+ wt

(
xFs−i|xFs−i; yFb−j+1

) λbp + qtλI

λbp + λbi + λsi + qtλI
. (20)

Similarly, the wait time for xFs−i−1 if there were Fs − i sell orders and Fb − j buy orders
would be

wt

(
xFs−i−1|xFs−i; yFb−j

)
=

1
λbp + λbi + λsi + qtλI

+ wt(xFs−i|xFs−i; yFb−j)
λsp + (1− qt)λI

λbp + λbi + λsi + qtλI
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+ wt(xFs−i−1|xFs−i; yFb−j−1)
λsi

λbp + λbi + λsi + qtλI

+ wt

(
xFs−i−1|xFs−i; yFb−j+1

) λbp + qtλI

λbp + λbi + λsi + qtλI
. (21)

Equations (20) and (21) are recursive expressions. Thus, the value for wt(xFs−i+1|xFs−i+1; yFb−j)

in equation (20), and wt(xFs−i|xFs−i; yFb−j) in equation (21), are plugged in from the previ-
ous round of the recursion, and are effectively constant in these calculations.

Differentiating wt
(
xFs−i|xFs−i; yFb−j) with respect to qt, we get

∂wt
(
xFs−i|xFs−i; yFb−j)

∂qt
= −wt(xFs−i+1|xFs−i+1; yFb−j)

(λI + λbp + λbi + 2λsi)λI

(λbp + λbi + λsi + qtλI)2

− wt(xFs−i|xFs−i; yFb−j−1)
λspλI

(λbp + λbi + λsi + qtλI)2

− wt

(
xFs−i|xFs−i; yFb−j+1

) (λbi + λsi)λI

(λbp + λbi + λsi + qtλI)2 −
λI

(λbp + λbi + λsi + qtλI)2 (22)

+
∂wt(xFs−i|xFs−i; yFb−j−1)

∂qt

λsi

λbp + λbi + λsi + qtλI

+
∂wt

(
xFs−i|xFs−i; yFb−j+1)

∂qt

λbp + qtλI

λbp + λbi + λsi + qtλI
.

Wait times are positive quantities, so we may rewrite equation (22) as

∂wt
(
xFs−i|xFs−i; yFb−j)

∂qt
=− Ki

i,j +
∂wt(xFs−i|xFs−i; yFb−j−1)

∂qt
Ci

i,j+1

+
∂wt

(
xFs−i|xFs−i; yFb−j+1)

∂qt
Ci

i,j−1, (23)

where Ki
i,j, Ci

i,j+1 and Ci
i,j−1 are positive constants, and Ci

i,j+1, Ci
i,j−1 < 1.

Similarly,

∂wt
(
xFs−i−1|xFs−i; yFb−j)

∂qt
=− Ki

i+1,j +
∂wt(xFs−i−1|xFs−i; yFb−j−1)

∂qt
Ci

i+1,j+1

+
∂wt

(
xFs−i−1|xFs−i; yFb−j+1)

∂qt
Ci

i+1,j−1, (24)
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where Ki
i+1,j, Ci

i+1,j+1 and Ci
i+1,j−1 are positive constants, and Ci

i+1,j+1, Ci
i+1,j−1 < 1.

When the book has Fs − i sell orders, xFs−i−1 has to wait for xFs−i to execute and exit
the market before a chance at execution. Therefore,

wt

(
xFs−i−1|xFs−i; yFb−j

)
> wt

(
xFs−i|xFs−i; yFb−j

)
for all i, j, (25)

which means that −Ki
i,j > −Ki

i+1,j. On the other hand, Ci
i,j+1 = Ci

i+1,j+1 and Ci
i,j−1 =

Ci
i+1,j−1.

Subtracting equation 23 from equation 24 and using the definition of price gaps, we
obtain

∂
(

gt
(
xFs−i−1|xFs−i; yFb−j))

∂qt
= −

(
Ki

i+1,j − Ki
i,j

)
+Ci

i,j+1
∂
(

gt
(
xFs−i−1|xFs−i; yFb−j−1))

∂qt

+Ci
i,j−1

∂
(

gt
(
xFs−i−1|xFs−i; yFb−j+1))

∂qt
. (26)

Similar relations can be derived for
∂(gt(xFs−i−1|xFs−i;yFb−j−1))

∂qt
and

∂(gt(xFs−i−1|xFs−i;yFb−j+1))
∂qt

,

and then for
∂(gt(xFs−i−1|xFs−i;yFb−j−2))

∂qt
and

∂(gt(xFs−i−1|xFs−i;yFb−j+2))
∂qt

, and then for
∂(gt(xFs−i−1|xFs−i;yFb−j−3))

∂qt
and

∂(gt(xFs−i−1|xFs−i;yFb−j+3))
∂qt

and so on, and substituted into equa-
tion (26). If such substitution is undertaken repeatedly, we are left with an expression of
the form

∂
(

gt
(
xFs−i−1|xFs−i; yFb−j))

∂qt
= −

N

∑
l=1

Kl

+

(
N

∏
m=1

Cm

)
∂
(

gt
(
xFs−i−1|xFs−i; y0))

∂qt

+

(
N

∏
n=1

Cn

)
∂
(

gt
(
xFs−i−1|xFs−i; yFb

))
∂qt

, (27)

where the Kl are of the form
(

Ki
i+1,j − Ki

i,j

)
, and Cm and Cn are of the form Ci

i,j+1 and
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Ci
i,j−1 in equation (26). Since each Cm and Cn are less than 1, the product of such terms

approaches zero as N becomes large. Therefore, lines 2 and 3 in the above equation ap-

proach zero, and
∂(gt(xFs−i|xFs−i;yFb−j))

∂qt
is negative, as we set out to prove.
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GMEO Core
• Lone/competitive dealer 

repeatedly sets bid-ask quote for 
a single order and clears market 

• Prices set at expected value of 
asset conditional on arriving 
order’s characteristics 

• Traders (uninformed/informed) arrive under a pre-
defined process to trade unit asset, one at a time

• Information environment precludes                 
direct identification of informed traders

Traders leave after 
transacting

Rosu Core
• Limit order market rules and 

trader strategies drive prices
• Output: array of limit buy and sell 

orders 

Figure 1: Modeling objective: GMEO meet Rosu (2009). This figure illustrates our
modeling objective: using the trader arrival and information environment of the Glosten-
Milgrom-Easley-O’Hara framework, but replacing its dealer-market trading core with the
dynamic equilibrium limit order market introduced by Rosu (2009).

49


	Introduction
	Literature Review
	A Model of Limit Order Trading
	Model Details
	Equilibrium Concept

	Equilibrium in the Instantaneous Game: Wait Times and Prices
	Wait Times
	Trader Strategies
	A Recursive Formulation for Wait Times

	Equilibrium in the Long-Horizon Game: Learning from Order FlowWe thank Bart Yueshen and Ciamac Moallemi for insightful discussions that resulted in substantial revisions to this section.
	Bayesian Updating of Uninformed Traders' Beliefs
	Changes in Beliefs and Market Interactions
	Information and the Passage of Time

	Conclusions

