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Abstract 

We examine the cross-section of international equity risk premia with machine learning 
methods. We identify, classify, and calculate 88 market characteristics and use them to 
forecast country returns with various machine learning techniques. While all algorithms 
produce substantial economic gains, a two-layer neural network proves particularly 
effective. The associated long-short portfolio generates 1.69% per month at a Sharpe ratio 
of 1.57. Most models select a consistent group of leading predictors: long-run reversal, 
earnings yield, size, market breadth, and momentum. The return predictability is driven 
by mispricing rather than risk. In consequence, it is boosted by high limits to arbitrage 
but gradually diminishes over time as global markets mature. 
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1. Introduction 

Asset pricing literature documents a growing list of predictors of the cross-section of 
country equity risk premia. It contains not only counterparts of traditional stock level 
anomalies—such as value, momentum, reversal, or beta—but also market-specific 
features: political risk, sovereign risk, or the interest rates.1 Though this abundance 
promises improved return predictability, it also gives rise to whole new questions. Which 
of these variables really matter? Do they interact with each other? How can they be 
integrated? While handling these problems with a traditional econometric toolset may 
be challenging, recent developments in machine learning offer promising solutions. Their 
capacity for feature selection and capturing interactions and nonlinearities appears well-
suited to deal with the proliferation of country-level return predictors. 

In this paper, we examine the cross-section of country equity returns with machine 
learning methods. Using nearly four decades of data from 71 markets, we identify, 
classify, and calculate a comprehensive set of 88 country-level return predictors. Next—
building on Gu, Kelly, and Xiu’s (2020) framework—we apply a repertoire of various 
machine learning algorithms. The aim of our study is twofold. First, we seek to scrutinize 
the performance of machine learning techniques in predicting the cross-section of country-
equity returns. Second—taking advantage of their unique properties—we want to gain 
novel insights into the dynamics of country risk premia around the world.  

Our explorations contribute in five major ways. First, we demonstrate substantial 
economic gains from using machine learning methods for forecasting country risk premia. 
In line with earlier stock-level evidence, accounting for interactions and nonlinearities 
brings significant benefits. The top-performing methods for data include neural networks 
and support vector machines. On the other hand, dimension reduction techniques visibly 
lag behind. Finally, the champion of this model horserace is the forecast combination. 
While individual algorithms fare either better or worse, combining them effectively 
reduces model variance and produces superior results. 

When evaluating the relative performance of different prediction techniques, we do not 
limit our tests to the classical out-of-sample R2 coefficient. While this measure is 
prevalent, its indications may be drowned in the noise of both return and forecast 
variance (Kelly et al., 2021; Coqueret, 2022). Hence, we supplement our results with a 
novel alternative measure: the cross-sectional R2. This measure focuses on cross-sectional 

                                                           
1 See, e.g., for value: Asness et al. (2013), Baltussen et al. (2021); for momentum: Chan et al. (2000), 
Bhojraj and Swaminathan (2006), Asness et al. (2013); for beta: Frazzini and Pedersen (2014); for reversal: 
Balvers et al. (2000); for political, sovereign, and economic risks: Erb et al. (1995, 1996), Diamonte et al. 
(1996), Bekaert et al. (1997), Avramov et al. (2012); for the influence of interest rates and bond markets: 
Hjalmarsson (2010), Pitkäjärvi et al. (2020). 
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fit rather than on global fit. Therefore, it guides how effectively a given method may sort 
assets into portfolios. Interestingly, we find that even the simplest methods (which 
produce seemingly low out-of-sample R2) can still exhibit a close cross-sectional fit. In 
consequence, even if the standard R2 is negative, the predictions could still be helpful in 
practice. 

Second, machine learning models allow the extraction of the crucial country return 
predictors from the existing “anomaly zoo.” The variable importance analysis reveals 
that a relatively sparse selection of covariates dominates the cross-section of country 
returns. Most models agree on several market characteristics that matter; these include 
long-term reversal, earnings yield, market value, market breadth, and momentum. These 
few variables capture most of the global variation in the cross-section of country equity 
risk premia. Notably, more sophisticated measures of momentum or value effects—as 
well as plenty of other political, credit, liquidity, or economic risks—are of secondary 
importance. 

Third, further analyses uncover the practical implications of our findings. The predictions 
taken from the machine learning models can be effectively coined into successful 
investment strategies. Remarkably, all the forecasting methods translate into evident 
patterns in the cross-section of stock returns. Consequently, univariate portfolio sorts 
that are based on machine learning predictions produce substantial profits. Contrary to 
the standard narrative, even the mere ordinary least squares method exhibits sizeable 
alphas. Nonetheless, the center stage belongs to neural networks. The two-layer feed-
forward network capitalizes on interactions and nonlinearities and, therefore, delivers the 
best results. An equal-weighted quintile of markets with the top forecasts outperforms 
the low-rated countries by 1.69% per month. The Sharpe ratio that is associated with 
such a long-short strategy equals 1.57.  

Importantly, the impressive profits on machine learning portfolios do not come from their 
exposure to common factors. The abnormal returns survive even after controlling for 
stock-level and country-level value, momentum, size, profitability, and investment 
effects. The alphas remain both sizeable and robust. 

However, from a practical perspective, the machine learning strategies come with 
a caveat. Because some of the market characteristics are short-term in nature, the 
portfolios exhibit substantial turnover. Similarly, as seen in the seminal stock-level study 
of Gu et al. (2020), the long-short strategies require replacing about half the portfolio 
each month. Although this may generate substantial trading costs, the portfolio rotation 
could be reduced in at least two ways. First, unlike typical stock-level anomalies 
(Stambaugh et al., 2012), most of the alphas on the long-short machine learning strategies 
come from the long side. Hence, the strategies can be effectively implemented via a long-
only approach with a limited decline in risk-adjusted performance. Second, the machine 
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learning signals prove relatively persistent through time. Consequently, even if the 
portfolios are reformed only once in 12 months, they continue to produce significant 
profits—albeit of limited magnitude.  

Fourth, we shed light on the sources of the cross-sectional predictability of country equity 
returns. The popular narrative on stock return predictability is linked with two 
competing explanations: risk vs. mispricing. Having tested both, we find no convincing 
evidence in support of the risk story. Bivariate sorts on country risk changes and machine 
learning forecasts reveal no link between variation in sovereign, financial, or political risk 
and return predictability. On the other hand, the predictability of market returns visibly 
interacts with mispricing. The abnormal returns on machine learning strategies are higher 
in both overpriced and underpriced markets, and visibly weaker in the countries with 
neutral pricing. To sum up, our findings favor mispricing as the critical driver of the 
predictability of country equity returns. 

Fifth, our final tests provide insights into time-series and cross-sectional variation in the 
predictability of country equity risk premia. The mispricing roots of the predictability 
have potential implications for its magnitude through time and across markets. To begin 
with the time-series dynamics, voluminous evidence from the security level points out to 
a gradual decay in return predictability; this is typically linked with investor learning, 
falling limits to arbitrage, or an improvement in market efficiency—which drive down 
asset mispricing overtime (e.g., Schwert, 2003; Chordia et al., 2014; McLean & Pontiff, 
2016; Calluzzo et al., 2019). We find that the cross-section of country equity returns is, 
apparently, plagued by a similar problem. While the information content of country 
characteristics was clear in both the 1990s and 2000s, their relevance has declined over 
the past decade. In consequence, the weaker return predictability leads to lower—though 
still observable—profits on machine learning portfolios. Although the abnormal returns 
survive through the entire study period, in its second half, they are roughly 50% lower 
than in its first half. 

The mispricing story also bears implications for international heterogeneity. If the 
machine learning alphas are driven by mispricing, they should be boosted by high limits 
to arbitrage. The empirical evidence supports this view. Although the return 
predictability is not limited to a particular market segment; it is measurably stronger in 
places where capital moves slower: across smaller and emerging markets with lower 
liquidity and higher idiosyncratic risk. The return predictability improves in these 
segments for most of the machine learning models we test.  

Our findings contribute to two major strains of asset pricing literature. First, we extend 
the research on machine learning applications in the cross-section of returns. Specifically, 
we are the first to explore the international country equity risk premia. While earlier 
studies gained insights from including multiple other asset classes, such as U.S. stocks, 
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(e.g., Freyberger et al., 2020; Gu et al., 2020, 2021; Avramov et al., 2021; Han et al., 
2021), international equities  (Leippold et al., 2021; Drobetz & Otto, 2021; Jiang et al., 
2018; Tobek & Hronec, 2021; Choi et al., 2021), corporate bonds (Bali et al., 2021), U.S. 
Treasury bonds (Bianchi et al., 2021), commodities (Struck & Cheng, 2020; Rad et al., 
2021), industries (Rapach et al. 2019), and currencies (Filippou et al., 2020), the cross-
section of international risk premia remained unexplored.  

Second, we add to the research on the predictability of cross-section of country equity 
returns. Earlier papers mainly focused on aggregate-level counterparts of individual 
stock-level anomalies, such as value, size, momentum, reversal, idiosyncratic and 
systematic risk, or seasonality.2 Moreover, many articles considered the role of various 
country-specific political and economic risks in asset pricing (e.g., Erb et al., 1995, 1996; 
Diamonte et al., 1996; Bekaert et al., 1997; Avramov et al., 2012). Few studies of multiple 
predictors examined them mainly in the context of their replicability and reliability (e.g., 
Zaremba et al., 2020; Baltussen et al., 2021). On the contrary, we integrate numerous 
variables using machine learning models in order to better understand the dynamics of 
international country risk premia. 

The remainder of the paper proceeds as follows. Section 2 presents the data and methods. 
Section 3 reports the major empirical findings. Section 4 discusses the portfolio 
implementation. Section 5 focuses on the sources of the return predictability, and Section 
6 explores its variation across space and time. Finally, Section 7 concludes. 

2. Research Design 

We start by outlining the data and variables utilized in this study. Subsequently, we 
discuss the machine learning methods that are employed. 

2.1. Data Sources and Sample Preparation 

Our sample encompasses a total of 71 country stock markets; the detailed composition 
is stipulated in Table A1 in the Online Appendix. The study period runs from January 
1985 to April 2021; however, older data is also used to calculate various variables when 
necessary. In general, we aim to build a possibly comprehensive representation of global 
stock markets, and its timeline and composition are dictated by data availability.  

                                                           
2 See, e.g., for value: Asness, Moskowitz, and Pedersen (2013), Baltussen, Swinkels, and Van Vliet (2021); 
for size: Asness, Liew, and Stevens (1997), Fisher, Shah, and Titman (2017); for momentum: Chan, 
Hameed, and Tong (2000), Bhojraj and Swaminathan (2006), Asness, Moskowitz, and Pedersen (2013), 
Geczy and Samonov (2017), Pitkäjärvi et al. (2020); for idiosyncratic risk: Bali and Cakici (2010), Umutlu 
(2015); for systematic risk: Frazzini and Pedersen (2014); for reversal: Balvers et al. (2000); and for 
seasonality: Keloharju, Linnainmaa, and Nyberg (2016, 2021). 
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As in Baltussen et al. (2021) and Zhang and Jacobsen (2021), we enhance market 
coverage by combining data from different sources. We calculate stock market returns 
using Datastream Global Equity Indices, representing value-weighted portfolios covering 
most of the investable equity universe in their respective countries (Thomson Reuters, 
2008). Thanks to their comparability across countries, the Datastream indices are a 
common choice in the studies of global equity risk premia (e.g., Chan et al., 2000; Ferreira 
& Gama, 2007; Bali & Cakici, 2010; Brusa et al., 2020; Zhang & Jacobsen, 2021). In the 
case of data unavailability, we extend the Datastream time-series (typically backfill) with 
Global Financial Data (GFD) Equity Indices. By assuring an extensive long-run 
historical coverage, the GFD indices have recently gained popularity in the examinations 
of global stock returns (e.g., Hjalmarsson, 2010; Zhang & Jacobsen, 2013; Albuquerque 
et al., 2015; Muir, 2017; Danielsson et al., 2018; Bekaert & Mehl, 2019; Miranda-
Agrippino & Rey, 2020; Cortes et al., 2021).  

To assure the data quality, we replicate the screens from Baltussen et al. (2021). 
Specifically, we ascertain that there are no zero, missing, or stale returns, nor any return 
interpolation. Furthermore, we eliminate the hyperinflation episodes. Building on the 
definition of Cagan (1956), if the ex-ante level of monthly inflation rate exceeds 50%, we 
discard all the observations within the subsequent 12 months.  

As in Fama and French (2012, 2017), we express all the stock market data (including 
the returns) in U.S. dollars. This approach allows us to cope with all the issues associated 
with foreign-exchange conversions and currency risk, as well as align our paper with a 
practical perspective of a U.S. investor. Consistent with this framework, we represent the 
risk-free return with the one-month U.S. Treasury bill rate from French (2022).  

The number of countries in the sample increases gradually along with the evolution of 
global stock markets, from 31 in 1985 to reach 71 in 2009, with the time-series average 
of 59. The total number of return-month observations is 25,789; however, the data 
available for specific variables may be lower. Figure 1 displays the size of our sample 
over time. In addition, Table A1 from the Online Appendix details the statistical 
properties. 

[Insert Figure 1 about here] 

2.2. Stock Market Characteristics 

With the country sample at hand, we form a collection of return predictors for the 
aggregate stock market returns. To this end, we identify, classify, and reproduce 88 
country characteristics from the asset pricing literature. These variables could be broadly 
categorized into two major groups: 1) replications of firm-level anomalies at the aggregate 
stock market level; and 2) country-specific macroeconomic or political features.  
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Within the first category, we consider the anomalies and risk factors that are documented 
in major finance journals. To keep our examination meaningful, manageable, and of 
practical relevance, we impose several conditions to include an anomaly in the sample. 
First, the stock market anomaly needs to have been demonstrated to hold—in a direct 
or a closely-related form—also at the level of country equity indices. Second, the return 
predicting signal can be derived from market or accounting data using standard 
databases, such as Datastream, GFD, or Bloomberg. Third, the anomaly pertains to the 
cross-section of returns—rather than time-series or seasonal patterns—and can be 
implemented via traditional quantile portfolios. Fourth, it can be captured at a monthly 
frequency. Our final selection return predictors can be classified into several groups that 
share a similar economic intuition: a) value vs. growth; b) size and liquidity; c) price 
risk; d) momentum; e) seasonality; f) profitability; g) indebtedness; h) skewness; i) long-
term reversal; j) technical analysis; and k) investment and issuance. 

The second major category contains variables that exist only at the level of countries 
and does not have their explicit counterparts for individual stocks. Again, we solely focus 
on country characteristics that have been explored within finance literature for their 
predictive powers over the country equity returns. This class of features encompasses 
principally macroeconomic conditions—variables derived from government bond and bill 
markets—as well as financial, economic, and political risks.  

Overall, our sample comprises 88 variables, forming—to the best of our knowledge—the 
most comprehensive sample of equity country predictors ever considered. Table 1 
contains their brief summary; furthermore, Table A2 in the Online Appendix details the 
calculation procedures, along with the essential literature references and data sources. 
The variables are calculated using various data sources; besides Datastream and GFD, 
we also rely on Bloomberg, PRS Group, or Varieties of Democracy (V-Dem)—where 
needed.3 All the accounting and macro are based on lagged data to avoid a look-ahead 
bias. As in Gu et al. (2020), any missing values are replaced by the cross-sectional 
median. Finally, for each month, we standardize all the variables cross-sectionally to 
have a zero mean and a standard deviation of 1.4 

 [Insert Table 1 about here] 

                                                           
3 For PRS Group, see: https://www.prsgroup.com/; for V-Dem: https://www.v-dem.net/.  
4 Notably, our approach here departs from Kelly et al. (2019), Gu et al. (2020), and Leippold et al. (2021), 
who cross-sectionally rank all the characteristics month-by-month, subsequently mapping them into the 
[-1,1] interval. By using standardization, we seek to keep the information on the magnitude of different 
variables—which is otherwise lost in the ranking process. In an unreported analysis, we find and compare 
the two methods and find the results qualitatively similar; furthermore, the standardization leads to only 
marginally better performance.   
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2.3. Machine Learning Methods 

Following Gu et al. (2020), we employ a general additive prediction model to describe 
the association between stock markets’ excess return and its different characteristics:  

 𝑟քӴ֏+φ = 𝐸֏ि𝑟քӴ֏+φी + 𝜀քӴ֏+φ, (1) 

where 𝑟քӴ֏+φ denotes the excess return on index 𝑖 = 1,… ,𝑁յ  in month 𝑡 = 1,… , 𝑇 . The 
expected excess returns are calculated as a constant function of predictor variables 
available at period t: 

 𝐸֏ि𝑟քӴ֏+φी = 𝑔ि𝑧քӴ֏ी, (2) 

where 𝑧քӴ֏ indicates a P-dimensional vector of return predicting variables. Notably, as in 
Gu et al. (2020), 𝑔ि𝑧քӴ֏ी estimates the expected returns independently of any information 
before t or from other markets than i. The vector 𝑁֏+φ comprises the 88 market 
characteristics from Table 1. 

The precise form of the model 𝑔ि𝑧քӴ֏ी is left unspecified. Hence, the approximation 
functions are both flexible and family-specific and can be parametric and non-parametric, 
as well as linear or nonlinear. Despite these differences, all prediction models are 
constructed to approximate the true returns by minimizing the out-of-sample mean 
squared forecast error: 

 𝑀𝑆𝐹𝐸֏+φ = φ
կՙ+ȯ

∑ ि𝜀ք̂Ӵ֏+φी
ϵկՙ+ȯ

ք=φ
, (3) 

where 𝜀ք̂Ӵ֏+φ represents the individual prediction error for the country stock market i 
coming from the forecast of a given model, and 𝑁֏+φ is the number of markets at period 
t+1. Our overall aim is to search for the forecasting model from a pool of candidates that 
exhibits a superior prediction performance. 

Our selection of machine learning models builds on the works of Gu et al. (2020), Bali et 
al. (2021), and Leippold et al. (2021). Specifically, we adopt 12 different methods: 
ordinary least squares (OLS) regression, partial least squares (PLS), principal component 
analysis (PCA), least absolute shrinkage and selection operator (LASSO), elastic net 
(ENET), support vector machines (SVM), gradient boosted regression trees (GBRT), 
random forest (RF), and feed-forward neural networks with one to three layers (FFN1, 
FFN2, FFN3). Moreover—following the arguments seen in Rapach et al. (2010) and 
Chen et al. (2020)—we also calculate a combination forecast (COMB) that averages 
individual return predictions from the 11 machine learning models stated above. A 
detailed description of the models that are employed is provided in Section B of the 
Online Appendix.  
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We estimate the models, select the hyperparameters, and assess their performance 
following the typical methods found in the literature. We pursue an increasing window 
approach and split our study period into three separate subsamples while holding the 
temporal ordering: the training sample (1985 to 1991), the validation sample (1992 to 
1994), and the testing sample (1995 to 2021). In the first step, the training sample is 
used to estimate the model parameters that are subject to some pre-specified model 
family-specific hyperparameters. Subsequently, the validation sample is utilized to tune 
the model’s hyperparameters subject to the objective loss function (Section B of the 
Online Appendix contains further details on models’ hyperparameters).5 Last, we test 
the model using the single month right after the validation sample; this testing month 
never enters the training and validation samples.  

Notably, Gu et al. (2020) only refit the prediction models annually (rather than monthly) 
due to the substantial computational intensity of their machine learning models. Since 
our sample of country indices is cross-sectionally smaller, we re-estimate the models each 
month. In line with the increasing window approach, whenever we refit the model, we 
increase the training period by one month while holding the length of the validation 
sample constant (three years).  

3. Baseline Empirical Findings 

We begin by exploring the forecasting abilities of different factor models; next, we explore 
the major drivers of predictability of the cross-section of country equity returns. 

3.1. Predictive Performance of the Machine Learning Models 

Table 2 presents the overall assessment and comparison of the machine learning models’ 
predictive performance. We run four different tests. First—as in Gue et al. (2020)—we 
compute out-of-sample predictive R2 metrics. Second, building on Lewellen (2015) and 
Drobetz et al. (2019), we estimate out-of-sample predictive slopes. Third, we introduce a 
new rank-based R2 evaluation metric. Finally, to evaluate the relative forecasting 
effectiveness of different models, we conduct pairwise comparisons using a modified 
Diebold and Mariano (1995) test. 

The first row of Table 2, Panel A reports the out-of-sample predictive R2 measures 
(𝑅հհմ

ϵ ). We closely follow Gu et al. (2020) and estimate the R2 based on our test sample 
and re-estimation dates. Overall, our results resemble earlier applications of the machine 

                                                           
5 If a model does not involve a validation sample, as in the case of OLS, then the training sample is 
extended to include the original validation period. For example, the first training sample is 1985-1992. 
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learning methods to the cross-section returns (Gu et al., 2020; Drobetz & Otto, 2021; 
Leippold et al., 2021), and the 𝑅հհմ

ϵ  exhibit a similar order of magnitude. 

[Insert Table 2 about here] 

The simple OLS method employing all 88 market characteristics yields the 𝑅հհմ
ϵ  of -

0.14%. The poor performance, matching the earlier findings of Gu et al. (2020), signifies 
that the OLS is beaten by a mere naïve forecast that assumes zero returns on all stocks. 
The OLS lacks any form of regularization, so the reliance on numerous potential 
predictors makes it prone to overfitting. This weakness, resulting in low 𝑅հհմ

ϵ  readings, 
may be overcome via dimension reduction techniques or enforcing a sparser model by 
penalizing excessive covariates. 

The dimension reduction methods do a mixed job in improving the OLS performance. 
While PLS fails to exhibit a substantial improvement, PCA shows a positive 𝑅հհմ

ϵ  of 
0.28%. The penalized regressions seem to be a more effective method regularization 
technique, effectively boosting the predictive abilities further. The 𝑅հհմ

ϵ  measures for 
LASSO and ENET amount to 0.91% and 0.90%, respectively. Both algorithms display 
very similar performance, suggesting that the precise form of the penalty term in these 
functions is of little importance. Finally, the SVM method leads to even further 
improvement—raising 𝑅հհմ

ϵ  to 1.47%. 

Noteworthily, the overall predictive performance of the regularized techniques dominates 
the seminal findings from the U.S. market by Gu et al. (2020). For example, their baseline 
𝑅հհմ

ϵ  for the elastic net reaches the level of 0.11%; i.e., more than 80% lower than in 
our case. This may be unsurprising as the cross-section of country equity returns is much 
narrower, encompassing considerably fewer assets relative to the number of available 
market characteristics. Furthermore, aggregation of individual stocks into country 
portfolios diminishes the impact of extreme observations.  

The regression tree methods, RF and GBRT, fail to demonstrate their competitiveness 
when compared to simple regularized regressions. The R2 does not reveal a substantial 
improvement that is relative to penalized regressions, suggesting that the two techniques 
may be prone to overfitting despite the boosting (Friedman et al., 2000; Fiedman, 2001) 
and bagging (Breiman, 2001) regularizers that are embedded in these methods. Our 
country-level findings, in this regard, are visibly weaker than in earlier stock-level 
research (Gu et al., 2020).  

On the other hand, the neural networks exhibit sizeable 𝑅ைைௌଶ —especially in the case of 
multiple hidden layers. The FFN1, comprising one hidden layer, has the 𝑅ைைௌଶ  value of 
1.52%. For the FFN2, this metric equals 1.29%. Finally, for FFN3—which contains three 
hidden layers—𝑅ைைௌ

ଶ  reaches 1.89%. Consequently, according to this metric, FFN3 
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exhibits the best predictive performance among all the individual models. Unlike simple 
regularized (or unregularized) regressions, neural networks effectively capture both 
nonlinear relationships and complex feature interactions. These benefits increase along 
with the depth of the neural network. The superiority of the neural networks is in line 
with both Gu et al. (2020) and Leippold et al. (2021), who also count it among the most 
effective forecasting techniques. 

Last, the top-performing prediction method is COMB. The combination of every 
forecasting technique produces 𝑅հհմ

ϵ  of 2.21%, noticeably dominating the individual 
methods. The greatest benefit of forecast combination is that it effectively reduces 
forecast variance that is associated with particular models. In consequence, reducing the 
impact of uncorrelated prediction errors generates more accurate forecasts (Rapach et 
al., 2010; Chen et al., 2020). Our findings match the observations of Bali et al. (2021), 
who also document substantial gains from averaging forecasts from different models and 
superior performance of the ensemble methods. In a nutshell, no model is the best; 
however, when combined, their performance thrives. 

The out-of-sample R2 coefficient is the most popular evaluation metric in machine 
learning literature. However, it is not free of flaws. While the pure 𝑅հհ

ϵ  measure may 
be disappointing for specific models, it can also be irrelevant. A large portion of the 
global fit is driven by the variance of the forecasts and realized returns; hence, the picture 
of the actual correlation between both the predicted and realized returns may be blurred 
(Coqueret, 2022). In consequence, investors may realize large economic gains—even if 
𝑅հհմ

ϵ  is large and negative (Kelly et al., 2021). To cope with these issues, we supplement 
a predictive power assessment with two further measures: predictive slopes and rank-
based correlations. 

The second row of Table 2, Panel A, uncovers the predictive slopes (PSOOS) originating 
from Drobetsz and Otto (2021). These measures are calculated based on pooled 
regressions of the monthly realized excess returns on the corresponding predictions from 
the machine learning models. The slopes close to one indicate that the forecast dispersion 
essentially mirrors the cross-sectional variation in country risk premia. On the other 
hand, the predictive slopes are larger (smaller) than one—implying overly narrow (wide) 
predictions.  

A quick overview of the predictive slopes broadly confirms the conclusions from the 𝑅հհմ
ϵ  

coefficients. OLS, PLS, and PCA display low PSOOS levels of approximately 0.5. This 
suggests a substantially lower realized return dispersion than what is seen in the models’ 
forecasts. On the contrary, however, the LASSO and ENET predictions typically 
undershoot the actual returns. Their PSOOS equal 1.24 and 1.25, respectively. These 
elevated values contain a clue that the traditional predictive R2 may undervalue the 
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actual economic gains from utilizing the forecasts; this is because the global fit may be 
drowned in the noise of the variance of realized returns.   

Next, SVM works relatively well, with an average slope of 0.85. On the other hand, both 
GBRT and RF’s performances are particularly disappointing—which corroborates the 
observations from the out-of-sample R2 coefficients. The respective PSOOS do not exceed 
0.48. Turning to the neural networks, their accuracy appears to be better than simple 
regularized regressions or tree methods; their slopes range from 0.6 to 0.7. Finally, the 
two top-performing methods—according to the predictive slopes metric—seem to be 
SVM and COMB. The combination forecast exhibits a slope of 0.83, highlighting the 
benefits of averaging the individual predictions again. 

Quantitative portfolio managers typically form portfolios by sorting stocks on their 
expected returns. Hence, from a practical perspective, it is of interest—not only by how 
accurately a model predicts future returns—but whether it can currently rank the stock 
from the best to the worst. In other words, to what extent the model can effectively 
separate losers from winners. As noted by Coqueret (2022) and Kelly et al. (2021), this 
information—oftentimes—cannot be inferred from the traditional 𝑅հհմ

ϵ . 

To shed light on this issue, we propose a new metric that is based on rank correlation. 
We aim to capture to what extent a model ranks the assets consistently with their ex-
post realized returns. For each month t, via the use of the test sample, we transform the 
predicted and realized returns into ranks i from 1 to Nt—where Nt denotes the number 
of available markets. Next, we map both the predictions and realizations into the interval 
[0,1]. Finally, we calculate the pseudo R2 metric of Cox and Snell (1989) in order to gauge 
the link between the order of forecasted and realized payoffs. 

The third row of Table 2, Panel A tabulates the outcomes of this exercise. The 
conclusions differ partly from the earlier analysis of the traditional 𝑅հհմ

ϵ . First and 
foremost, all the techniques yield positive and sizeable R2 values. In other words, all the 
methods do a decent job in ordering the markets. Notably, even if some models display 
negative classical 𝑅հհմ

ϵ , they may still be quite effective in separating losers from 
winners. Looking further into the details, the relative efficiency of different methods 
resembles our previous observations. The worst performing algorithm is GBRT, 
suggesting that its predictions may not always translate into successful portfolios from 
one-way sorts. Conversely, the top performers among the individual techniques are 
LASSO, ENET, and SVM. Moreover, in line with our earlier findings, the combination 
method (COMB) also performs very well.6 

                                                           
6 Importantly—despite its outstanding performance—the COMB model is dominated in this test by 
LASSO, ENET, and SVM. As noted by Bali et al. (2021), this is because its efficiency depends on the 
tradeoff between the reduction in model bias and variance (Rapach et al., 2010). The forecast combination 
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Last, Table 2, Panel B displays the pairwise comparisons of the predictions from different 
machine learning models using the modified test of Diebold and Mariano (2021), 
abbreviated DM. In essence, the DM test statistic compares the mean squared forecast 
errors to gauge which candidate produces more accurate forecasts. Our implementation 
closely follows Drobetz and Otto (2021); the DM statistic is computed as: 

 𝐷𝑀ռӴս =
տՆ̅ӱՇ

ᇐࣨՉ̅
ՆӱՇ

,  (4) 

where 𝑑ռӴսӴ֏+φ = 𝑀𝑆𝐹𝐸֏+φ

(ռ)
−𝑀𝑆𝐹𝐸֏+φ

(ս)  denotes the differences in the monthly mean 
squared forecast errors of models a and b, 𝑑ռ̅Ӵս =

տՆӱՇӱՙ+ȯ

յ
 indicates the time-series average 

of these differences; furthermore, �̂�տՆ̅ӱՇ
 is the Newey-West (1987) adjusted standard error. 

The DM test statistics follow the standard normal distribution. It is worth noting that 
we interpret them in two separate ways. First, to facilitate individual pairwise 
comparisons, we determine the standalone 5%-significance threshold corresponding with 
the |t-stat| of 1.96. Second, since we explore 12 models jointly, we address the multiple 
hypothesis problem by applying the Bonferroni correction (for discussion—see, e.g., 
Harvey et al., 2016). The adjusted hurdle for the t-statistics equals 2.87.  

The conclusions from the DM tests are broadly in line with our earlier findings that 
pertain to predictive R2 and slopes. Though not all differences are significant, we observe 
measurable gains from combining different forecasting methods together. The 
performance of the forecast combination method noticeably stands out. The COMB 
model reliably outperforms the individual algorithms in most cases. Again, this 
corroborates our earlier finding that whereas individual models have their ups and downs, 
the combination effectively extracts their strengths. 

3.2. Which Market Characteristics Matter?  

Having tested the overall predictive abilities of different machine learning models, we 
now explore the relative importance of individual country characteristics. We want to 
identify the crucial drivers of the cross-section of country returns while accounting for 
the impact of the entire “zoo” of predictors in the system. To ascertain the contribution 
of individual covariates, we follow the approach originating from Kelly et al. (2019). We 
compute the variable importance, denoted VI, of a given predictor as the reduction in 
the predictive out-of-sample R2 from setting all its values to zero while holding the other 
model estimates as fixed.  

                                                           
is an effective tool in decreasing the prediction variance; however, it may simultaneously augment the 
model’s bias. At the same time, some individual models may exhibit a superior ability in reducing biases—
overcoming the costs associated with elevated variance. 
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We begin by presenting a simple ranking of variable importance for the 12 machine 
learning methods. Figure 2 depicts the model-specific hierarchy of characteristics by 
assigning the color gradient to covariates, where the darkest (lightest) hue stipulates the 
most (least) important predictors. The variables are sorted according to their average 
rank across the 12 methods.   

Interestingly, the various machine learning techniques are in close agreement on the 
essential variables. The most influential predictors are the market size (MV) and long-
run return reversal (LtRev). Furthermore, many key variables pertain to the short-term 
past performance and belong to the momentum or technical analysis categories. This 
comprises various variants of momentum (LtMom, MtMom). In addition, two popular 
technical indicators are also included: the first indicator, market breadth (BRTH), 
represents the differences in the numbers of rising and falling stocks; the second indicator, 
moving average difference (MAD), compares the levels of long- and short-term averages. 
Among the valuation ratios, the earnings yield (EP) plays the first fiddle. Several models 
also emphasize net share issuance (NSI), mirroring the analogous firm-level anomaly 
(Pontiff & Woodgate, 2008). The role of macroeconomic variables is of lesser importance; 
furthermore, the top positions are taken by the inflation rate (Infl) and the real effective 
exchange rate dynamics (REERCh). Interestingly, numerous popular risk factors—such 
as credit, liquidity, political risk, or overall idiosyncratic risk—reach lower grades in the 
importance ranking. Only bureaucracy quality (BurQual) and control of corruption 
(Corr) appear to play some role. 

[Insert Figure 2 about here] 

As previously noted, most of the models designate similar features like the essential 
drivers of stock returns; this places most of the weight on the combination of size, value, 
long-term reversal, and momentum variables. On the other hand, PCA and the tree 
methods—including RF in particular—are more democratic, spreading the importance 
weights across other covariates. 

Figure 3 sheds further light on the issue of variable importance by depicting the specific 
and precise R2 reduction for the top 10 variables of each of the models. Most commonly, 
the leading variable is LtRev; it is then closely followed by predictors such as MV, EP, 
BRTH, or LtMom. RF sorts the variables differently, placing LtRev at a lower position. 
Yet, still, the top ranks in this method include technical analysis signals. 

[Insert Figure 3 about here] 

Notably, most methods favor a sparse selection with just a few factors that explain most 
of the cross-section of returns. While the top predictors are associated with very high R2 
reductions, the importance of the remaining positions declines rapidly. The average 

Electronic copy available at: https://ssrn.com/abstract=4028525



15 
 

aggregate importance of the 10 (five) top variables across all 12 models equals 57% (38%). 
This concentration is particularly pronounced for the regularized regressions and support 
vector machines. For example, in the case of ENET, the variable importance of the top 
five predictors (LtRev, EP, BRTH, NSI, and LtMom) adds up to 67%. 

The observations above lead to a surprising conclusion concerning asset pricing in global 
markets. Although the finance literature has cataloged a plethora of predictors of the 
cross-section of country risk premia, it appears that only a handful of them really matter. 
This apparent multidimensionality can be potentially reduced to just a few fundamental 
phenomena (such as size, value, momentum, and reversal) that effectively capture the 
most cross-sectional variability in country equity returns.  

Last, to supplement our analyses so far, we explore the importance of different groups of 
covariates. This additional test helps to uncover some variables that may be of minor 
importance on a standalone basis; however, as groups, they exert a measurable impact 
on asset pricing. To achieve this, we add the variable importance by category—as defined 
in Table 2. Figure 4 summarizes the results of this experiment.  

[Insert Figure 4 about here] 

In total, the most important groups of covariates pertain to long-term reversal and value 
versus growth phenomena. Not surprisingly, this is closely followed by both momentum 
and technical analysis variables. Interestingly, the regression trees models and neural 
networks also emphasize political risk and regimes. These two classes of machine learning 
techniques effectively integrate nonlinearities and interactions. Hence, they may 
capture—for example—the heightened importance of political risk in smaller markets, 
which evades the estimations in simple linear models. To conclude, once considered 
together as a group, political risks may contain incremental information pertaining to 
asset pricing in global equity markets. 

4. Portfolio Analysis 

Having established the basic properties of the machine learning predictions, we are now 
interested in whether they can be exploited in practice. Hence, we examine the 
profitability of machine learning strategies. Furthermore, we explore further practical 
aspects of portfolio implementation and their stability over time. 

4.1. Machine Learning Portfolios 

To capture the economic implications of the return predictability, we now continue with 
portfolio analysis. To keep our research both simple and intuitive, we form portfolios 
from one-way sorts on the predictions from the machine learning models. To this end, 
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each month, we rank all the countries in the sample on their return forecasts for one 
month ahead. Subsequently, we sort the markets into quintiles and form both equal- and 
value-weighted portfolios.7 Furthermore, we calculate a zero-investment hedge portfolio 
that assumes a long position in the quintile of markets with the highest returns 
predictions and, vice versa, a short position in the countries with the lowest forecasted 
payoffs. 

Table 3 presents the performance of portfolios from univariate sorts on machine learning 
predictions. Specifically, we report the average realized and predicted returns per market 
quintile—as well as their annualized Sharpe ratios. We also calculate alphas from the 
global CAPM, where the market risk factor is proxied by the excess return on a value-
weighted portfolio of global stocks.8  

[Insert Table 3 about here] 

A quick overview of the results indicates that all machine learning techniques can be 
coined into effective country allocation strategies. We can observe a monotonic (or nearly 
monotonic) pattern in the cross-section of realized returns in all cases. Moreover, in all 
circumstances, the long-short portfolios produce sizeable and significant abnormal 
returns—albeit their magnitude differs across the prediction techniques.  

The average return on the equal-weighted spread portfolio across all 12 models amounts 
to 1.44% per month. Interestingly, even the modest OLS proves very efficient—producing 
both robust and profitable portfolios. The equal-weighted long-short portfolio yields a 
mean monthly return of 1.39% (t-stat = 6.31) and an associated alpha of 1.44 (t-stat = 
6.44). The corresponding Sharpe ratio equals 1.21.  

The simple dimension reduction techniques and regularized regressions do not 
significantly improve strategy performance. Both the return and alphas on PLS, PCA, 
LASSO, or ENET portfolios are qualitatively similar to OLS. Apparently, overfitting is 
not a major issue that is dampening the performance of international country allocation.  

On the other hand, what does make a difference is effective accounting for nonlinearities 
and variable interactions. In consequence, neural network predictions prove highly 
effective in portfolio formation. The model with two hidden layers, FFN2, produces the 
best portfolios across all the considered techniques. The average monthly return on the 
equal-weighted long-short strategy is 1.69% (t-stat = 7.57) and the corresponding alpha 
equals 1.75% (t-stat = 7.95). Furthermore, FFN2 is also the winner in terms of the 
                                                           
7 To assure that the biggest countries do not dominate the portfolios, we closely follow Jensen, Kelly, and 
Pedersen (2021) and winsorize the market equity of the largest markets at the 80th percentile. This 
operation seeks to form tradable, yet balanced, strategies. 
8 We represent the global portfolio with the Datastream World Market Index.  
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Sharpe ratio—which equals 1.57. The superior performance of neural networks matches 
the findings of Gu et al. (2020) and Leippold et al. (2021)—who also deem these methods 
highly successful. Nonetheless, contrary to their findings, we do not observe substantial 
benefits of including additional hidden layers beyond two. The performance of FFN3 does 
not beat FFN2. Apparently, the nonlinearities and interactions in the universe of country 
equity indices—which is considerably lower than the universe of individual stocks—can 
be effectively handled by just two hidden layers.  

So far, our considerations have focused on individual machine learning techniques. 
Nonetheless, besides FFN2, another champion in the portfolio horserace also the COMB 
strategy. Blending individual predictions into a combination produces an impressive 
portfolio performance. The average monthly return equals 1.64% (t-stat = 6.75) and the 
associated alpha is 1.71% (t-stat = 7.07). Hence, the overall conclusion from this exercise 
is similar to the context of prediction accuracy: forecast combinations effectively 
eliminate the noise of individual models. In consequence, while different techniques have 
their pros and cons, the combination method clearly stands on the podium. 

The discussion has, so far, concentrated on equal-weighted portfolios. Yet, all the 
strategies also work effectively in the value-weighted framework—even though the 
abnormal returns are somewhat lower. For example, the value-weighted spread portfolio 
based on the COMB model displays a mean return of 0.98% (t-stat = 3.26) and an alpha 
of 0.87% (t-stat = 3.04). Overall, across all the strategies, the equal-weighted hedge 
portfolios produce average returns approximately 67% higher than their value-weighted 
counterparts. Our findings in this regard are qualitatively similar to the stock-level 
evidence. For example, Drobetz and Otto (2021) also found that the equal-weighted 
strategies beat the capitalization-weighted ones by more than 75%. The difference is 
associated with stronger return predictability in smaller firms and markets.  

Last, the final insight from Table 3 concerns the asymmetry in the cross-section of market 
returns. Across virtually all strategies, the abnormal returns on the spread portfolios 
principally come from the long side rather than short trades. The abnormal returns, in 
absolute terms, are typically higher for the top quintile than the bottom ones. On the 
one hand, this differs from the firm-level research—which typically attributes mispricing 
to the short legs (Stambaugh et al., 2012). On the other hand, this phenomenon has 
critical practical implications. Specifically, it allows investors to capture larger parts of 
the abnormal returns with the necessity of short-selling—which may be costly or even 
unavailable.  

4.2. Practical Investor Perspective 

To reflect deeper on the practical aspects of the international equity strategies building 
on machine learning, we run several additional calculations. First, following Gu et al. 
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(2020), we compute maximum monthly losses and drawdowns during the examination 
period. Second, we scrutinize the risk-adjusted performance in terms of multifactor 
models. Third, we check the portfolio turnover to understand the impact of trading costs. 
Finally, we examine the performance of strategies with extended holding periods.  

Table 4 reveals the first set of results of these tests, with Panels A and B concerning 
equa-weighted and value-weighted strategies, respectively. Panels A.1 and B.1 repor the 
maximum monthly losses and total drawdowns during the test period from 1995 to 2021. 
The worst months for the equal-weighted portfolios (Table 4, Panel A) were associated 
with losses in the range of 9.82% to 13.01%, depending on the machine learning technique. 
The drawdowns, in turn, ranged from 24.37% to 27.93%. The similar numbers of the 
value weighed portfolios were, on average, slightly higher; for example, the maximum 
daily losses were between 10.47% and 18.91%. This riskier behavior is associated with 
lower diversification of these portfolios, as they tend to be more concentrated in a few 
large countries. 

[Insert Table 4 about here] 

Comparing the risk metrics that were mentioned above with the U.S. market evidence, 
our strategies appear substantially safer. Only the most sophisticated neural networks 
techniques in Gu et al. (2020) may compete with our portfolios in terms of drawdowns 
or maximum losses. The superior performance of our strategies stem, unsurprisingly, from 
their vast international diversification across multiple developed and emerging markets. 

Next—as in Gu et al. (2020)—we are interested in whether the machine learning 
portfolios span popular factor strategies. Therefore, we test their performance with the 
Fama-French (2018) six-factor model; i.e., the five-factor model that is extended with 
momentum. We conduct this exercise in two ways. First, we utilize the standard stock-
level international factors from French (2022). Second, we form analogous ad-hoc country-
level factors. This alternative set builds on the same variables (book-to-market ratio, 
momentum, etc.); however, the portfolios comprise country indices and are structured 
identically as the evaluated strategies (i.e., equal- or value-weighted quintiles). This 
approach aims at assuring apple-to-apple comparisons; we want to ascertain that 
abnormal returns are solely driven by the return predicting signals and not by either 
asset universe or portfolio construction differences. For details of the country-level asset 
pricing factors, see Table A3 in the Online Appendix. 

Panels A.2 and B.2 report the risk-adjusted returns. Overall, the multifactor models 
cannot explain the abnormal performance of the machine learning strategies. Their 
predictions go clearly beyond the simple asset pricing factors—such as value, size, or 
momentum. Like in the earlier test, particularly impressive alphas are recorded on the 
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neural network and combination strategies; however, the abnormal returns are 
substantially positive in virtually all considered specifications.  

Table 4, Panels A.3 and B.3, present the average turnover and breakeven trading costs 
on different machine learning techniques. We calculate the portfolio turnover for month 
t (𝑃𝑇֏) in line with Bollersev et al. (2018) and Koijen (2018), i.e., as the average share 
of a portfolio that needs to be replaced each month: 

 𝑃𝑇֏ =
φ
ϵ
∑ ੵ𝑤քӴ֏−φ × ि1 + 𝑟քӴ֏ी − 𝑤քӴ֏ੵ

։

ք=φ
, (5) 

where 𝑤քӴ֏−φ and 𝑤քӴ֏ are the weights of country i in the tested portfolio in two consecutive 
months, and 𝑟քӴ֏ is the country index return. Notably, in order to avoid double-counting 
the buys and sells, we calculate a one-sided (rather than two-sided) metric.  

The portfolio turnover is generally high; however, it is not qualitatively more elevated 
than in stock-level machine learning strategies (Gu et al., 2020; Drobetz & Otto, 2021). 
In the case of the equal-weighted long-short portfolios, the average monthly turnover 
ratio ranges from 56.14% for PLS to 110.77% for RF. The elevated turnover has two 
major sources. First, the trading signals coming from the machine learnings techniques 
typically require dynamic portfolio rotation as they incorporate predictors—which may 
be short-term in nature. For example, the predictions in Gu et al. (2020) largely build 
on the short-term reversal effect—which is an anomaly that requires active portfolio 
reconstruction (Novy-Marx & Velikov, 2016). Likewise, our forecasts frequently 
incorporate the market breadth signal—which is also short-term in nature (Zaremba et 
al., 2021). Second, another contributing factor to the high turnover is the character of 
country portfolios. Our quintile portfolios, on average, comprise about 10 markets. Hence, 
replacing just one country in the portfolio automatically generates a turnover of 
approximately 10%. Finally, as the turnover derives mainly from changes in the 
composition—rather than rebalancing—the value-weighted portfolios reveal even higher 
portfolio rotation.  

The breakeven costs for the equal-weighted long-short strategies range from 0.70% (RF) 
to 1.44% (FFN). The trading cost threshold for the combination strategy is 1.19%. The 
cost-efficiency of the machine learning strategies may be improved in at least two ways. 
First, by embracing long-only portfolios. Empirical evidence shows that the performance 
of long-only factor strategies does not linger far behind their long-short counterparts 
(Blitz et al., 2020). Furthermore, in our case, the long-only quintiles of the markets with 
the best return forecast do not fall vividly behind the spread strategies. For example, the 
equal-weighted long-only COMB strategy produces a mean return of 1.64% with a Sharpe 
ratio of 1.37; meanwhile, the long-only variant based on the top portfolios also yields 
1.64% per month and with a Sharpe ratio of 1.05.  
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As seen in Table 4, pursuing the long-only strategies allows for the cutting of the portfolio 
turnover approximately by half. Consequently, the breakeven costs upsurge substantially, 
and their new range for the equal-weighted portfolios is 1.14% (RF) to 3.48% (FFN2). 
The new breakeven for the COMB portfolio is 2.57% per month. 

Another simple yet popular option of coping with elevated transaction costs is extending 
the portfolio holding period (Novy-Marx & Velikov, 2019). Less frequent portfolio 
rebalancing leads to fewer trades and, in turn, lower costs. This, however, requires 
relatively persistent trading signals that predict returns further than just one month 
ahead. We investigate portfolios with extended holding periods in order to shed light on 
this point.  

Table 5 reports the univariate portfolios that are formed on the machine learning 
forecasts using three-, six-, and 12-month holding periods. The portfolios are rebalanced 
monthly and, thus, incorporate an overlapping approach to holding periods. The overall 
results indicate that the machine learning profits are neither fragile nor short-term in 
nature. Although the magnitude of the abnormal returns declines along with the 
extension of the holding period, they remain robust and sizeable. Even if the portfolios 
are reformed only once in 12 months, the long-short strategies continue to produce 
significant abnormal returns. 

[Insert Table 5 about here] 

The alphas on the spread portfolios with the longest (12 month) holding period range 
from 0.36% to 0.84%. The best performing portfolio, in this case, is COMB. It exhibits 
a mean return of 0.73% (t-stat = 3.33) and the alphas equaling 0.84% (t-stat = 3.81). 
To sum up, despite the noticeable decline in profitability, the machine learning strategies 
survive—even in portfolios with 12-month holding periods. 

5. The Sources of Return Predictability 

Our evidence has, so far, demonstrated strong cross-sectional predictability of country 
equity premia around the world. We now explore the sources of this phenomenon. We 
confront two popular competing explanations: risk vs. mispricing. While neoclassical 
finance typically links return predictability with hidden risk premia, the behavioral view 
associates it with mispricing. Large-scale studies of stock-level anomalies seem to lean 
towards mispricing. For example, Engelberg et al. (2018) document that anomalies are 
incomparably stronger during earnings announcement days; they then link this 
observation with biased expectations and mispricing. Guo et al. (2020) reach similar 
conclusions—having studied the role of analysts’ recommendations. Jiang et al. (2021) 
find anomalies more pronounced on high-attention days. Han (2021) decomposes anomaly 
returns into mispricing and risk constituents to demonstrate that only the first one plays 
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a crucial role. Finally, Müller and Preissler (2021) also argue that risk cannot entirely 
explain anomaly returns. However, the evidence on predictability from other asset classes 
tends to be mixed. While Bartram et al. (2018) associate currency anomalies with 
mispricing, Choi and Kim (2018) and Bali et al. (2021)—who scrutinize corporate 
bonds—argue that risk-based explanations are more plausible.  

What is the primary driving force behind the return predictability of country equity 
indices? To shed light on this issue, we replicate the tests from Bali et al. (2021). To 
begin with, we concentrate on the interactions between both risk changes and risk premia 
predictability. For example, Bali et al. (2020, 2021) document that swings in credit risk 
capture the uncertainty premium in asset prices; furthermore, Avramov et al. (2013) 
argue that variation in distress risk contributes to the occurrence of many anomalies. 
Bali et al. (2021) show that risk fluctuations contribute to return predictability of 
corporate bonds, but not individual stocks. 

To picture various dimensions of country-specific risks, we use four different measures. 
First, we focus on numerical credit ratings—as in Bali et al. (2021).9 We calculate an 
average rating from three major agencies; S&P, Moody’s, and Fitch; and transform them 
into numeric scores—as in Avramov et al. (2013). We supplement the ratings with 
aggregate measures of a) financial; b) economic; and c) political risk from the 
International Country Risk Guide. With these four measures at hand, we first sort the 
markets into tertiles based on 24-month changes in risk estimates—as in Bali et al. (2021). 
Then, within each of the risk tertiles, the countries are sorted again based on the machine 
learning prediction. For the sake of brevity, we limit our presentation to the forecast 
combination (COMB); however, the results are qualitatively similar for individual 
prediction models—as well. The intersection produces nine double-sorted portfolios. 
Table 6 displays the results of this exercise. 

[Insert Table 6 here] 

The right-most columns of the table present the performance of long-short strategies that 
buy (sell) the markets with top (bottom) forecasts. First, the predictability is robust 
across all the risk-change tertiles. The mean returns and alphas are both positive and 
significant in all market segments.  

The bottom rows of each panel present the difference-in-difference (diff-in-diff) test 
results, i.e., the spreads between the COMB strategy returns in the top and bottom risk-
change subsamples. Overall, we observe no substantial influence of the risk changes on 
return predictability. The diff-in-diff returns and alphas are insignificant for three out of 

                                                           
9 Avramov et al. (2013) shows that credit risk captured with sovereign ratings is priced in global equity 
markets.  
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four of our risk measures. The sole exception is an economic risk. To sum up, we do not 
find solid evidence to support risk-based roots of the return predictability. This conclusion 
aligns with Bali et al. (2021), who also do not observe such a link for equity markets. 

We now continue the investigation with the influence of mispricing as a determinant of 
the return predictability in country equity indices. We expect the return predictability 
to be stronger in mispriced (overpriced or underpriced) markets. To explore this 
conjecture, we run two-way dependent sorts on mispricing (MISP) and expected returns.10 
We broadly follow our earlier approach from Table 6. Having initially grouped the 
countries into tertiles on MISP, we next sort them into tertiles on the machine learning 
predictions to obtain nine bivariate portfolios.  

Table 7 reports the results of these tests. For conciseness, we only present the outcomes 
that pertain to the COMB model predictions. The other machine learning methods yield 
consistent results; therefore, we only briefly summarize them in Table A3 in the Online 
Appendix). 

[Insert Table 7 here] 

The markets with the highest predicted returns outperform those with the lowest 
predicted returns across all the MISP segments. The mean returns and alphas are both 
positive and significant in all three tertiles. Nonetheless, we can observe some 
heterogeneity across the subsets. The abnormal returns on the long-short portfolios that 
are formed on COMB forecasts are visibly stronger in the Low MISP and High MISP 
tertiles than in the Medium MISP one. The bottom section of Table 7 displays the 
difference-in-difference results, focusing on the spread between the extreme MISP tertiles 
and the middle one. The differences are significant for both overpriced and underpriced 
markets. This signifies that mispricing is a critical determinant of the country-level return 
predictability with machine learning models. 

To conclude, among the two competing explanations—risk vs. mispricing—our evidence 
tends to lean towards mispricing. In this regard, our findings are entirely consistent with 

                                                           
10 Bali et al. (2021) use the mispricing score (MISP) of Stambaugh, Yu, and Yuan (2015). This measure 
assesses the overall mispricing by aggregating 11 stock level anomaly variables. Because most of them do 
not have direct country-level counterparts, we compute an ad-hoc mispricing score based on established 
cross-sectional predictors of country index returns. Concretely, we use five variables: dividend yield (DY), 
momentum (LtMom), long-term reversal (LtRev), moving average (MA), and seasonality (SEAS) (e.g., 
Balvers et al., 2000; Asness et al., 2013; Keloharju et al., 2016; Zaremba et al., 2020; Baltussen et al., 2021; 
Ilmanen et al., 2021). We compute the average rank associated with these anomalies for each country, so 
that the higher (lower) value indicates a more overpriced (underpriced) market. The average ranks of the 
five predictors, rescaled to range between zero and 100, serves as the aggregate measure of mispricing 
(MISP). Countries with higher scores are deemed to be overpriced, and vice versa. 
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Bali et al. (2021). Their examination of machine learning models in the equity universe 
also favors mispricing-based versus risk explanation. 

6. Global Variation in Return Predictability 

Our considerations have, so far, concentrated on unconditional return predictability 
across the broad cross-section of markets. Nonetheless, the mispricing story yields 
testable implications on potential time-series and cross-sectional variation in return 
predictability. In this section, we explore these two issues further.  

6.1. Does the Return Predictability Diminishes Over Time? 

Asset pricing literature generally points out that equity anomalies weaken—or even 
disappear—over time. According to a popular narrative, investor learning, institutional 
trading activity, and improvements in market efficiency and liquidity drive the mispricing 
down (Schwer, 2003; Chordia et al., 2014; McLean & Pontiff, 2016; Calluzzo et al., 2019). 
Moreover, similar troubles may also plague the stock index anomalies (Zaremba et al., 
2020). Hence, does the predictability of the cross-section of country risk premia weaken 
through time? Does the information content of country characteristics fade away?  

Figure 5 illustrates the changes in the out-of-sample predictive R2 coefficients through 
time. To reduce noise in the monthly values, we demonstrate rolling 10-year averages and 
report the values for both the traditional and rank-based R2 measures. Our findings 
broadly match the view emerging from the stock-level anomaly literature. The 
predictability appears to gradually fade over time. 

[Insert Figure 5 about here] 

The R2 coefficients that were relatively high in the 1990s and early 2000s then gradually 
declined through time. Whereas the magnitude of this decrease across various forecasting 
methods differs, the pattern is evident across all machine learning techniques. The precise 
timing of the decline is difficult to capture. Nevertheless, a brief overview—especially of 
the rank-based R2 measures—suggests that the drop in predictability began following the 
Global Financial Crisis. Next, the R2 measures reached a novel subdued plateau during 
the last decade. 

The decline in predictability seems particularly detrimental when the traditional R2 
measure is examined (Figure 5, Panel A). In such a case, the R2 coefficient has declined 
to approximately zero over the last decade. What this implies is that the return 
predictability essentially disappeared. The rank-based R2 measure (Figure 5, Panel B), 
however, indeed decreased but remained substantially positive. The exact values in 2021 
ranged between about 2% to 3.5%, meaning that market characteristics still contain 
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valuable information about future returns. In other words, the machine learning strategies 
still separate market losers from winners; however, their efficiency is lower than 10 or 20 
years earlier. 

To better comprehend the economic importance of the drop in return predictability over 
time, we—again—turn to the portfolio analysis. Figure 6 plots the cumulative returns on 
long-short machine learning portfolios from Table 2 through time. Furthermore, Table 8 
provides more formal insights by splitting the entire study period into halves. 

[Insert Figure 6 about here] 

 [Insert Table 8 here] 

These extra analyses confirm the diminishing efficiency of return forecasts. While the 
long-short machine learning strategies produce abnormal returns throughout the entire 
study period, their magnitude changes over time. The mean monthly returns on spread 
portfolios from 1995 to 2008 (Table 8, Panel 8) are between 1.63% and 2.32%, depending 
on the prediction technique. The best performing method, COMB, yields 2.32% per 
month (t-stat = 6.72). On the other hand, the average returns on the long-short strategies 
in the latter period (2008 to 2021) are lower—roughly by half. The average spread return 
ranges from 0.77% to 1.15%. The COMB strategy profits diminish to 0.95% monthly (t-
stat = 3.32). To sum up, although market characteristics still predict future country 
equity returns, the strength of this relationship has noticeably weakened. 

6.2. International Heterogeneity in Prediction Effectiveness 

The behavioral narrative of equity anomalies argues that they are driven by investors’ 
limited rationality, which cannot be easily arbitraged away (Pontiff, 1996; Shleifer & 
Vishny, 1997; Gromb & Vayanos, 2010). Hence, if the return predictability is mainly 
derived from mispricing, we would anticipate it to be boosted by high limits to arbitrage. 
Stock-level evidence tends to support this view, also in international markets (see, e.g., 
Watanabe et al., 2013; Hung et al., 2015; Azevado & Müller, 2020; Jacobs & Müller, 
2020; Lam et al., 2020; Cakici & Zaremba, 2021). In order to explore this conjecture at 
the country level, we examine whether internationally varying limits to arbitrage affect 
the return predictability—as captured with machine learning models.  

We employ four simple, yet common, proxies for limits to arbitrage: market size (SIZE), 
idiosyncratic risk (IRISK), liquidity (LIQ), and emerging market status (EMER).11 We 
                                                           
11 IRISK are binary variables taking a value of on when idiosyncratic volatility (IVol), as defined in Table 
A2 in the Online Appendix, take values higher than the cross-sectional median at t-1—and zero otherwise. 
LIQ is calculated identically using the Amihud illiquidity ratio (Illiq). SIZE is a dummy that takes a value 
of one (zero) if the market value (MV) at t-1 was lower (higher) than its cross-sectional median. Finally, 
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assume that limits of arbitrage are typically higher in small and emerging markets that 
are characterized by lower liquidity and higher idiosyncratic risk. Importantly, our simple 
measures tend to be positively correlated with more sophisticated metrics that capture 
market development: de jure and de facto indicators of financial openness, short-sale 
constraints, and other determinants of efficient capital movement across countries. 
Following the approach seen in Cosemans and Frehen (2021), we explore the impact of 
limits of arbitrage by interacting with the proxies above (SIZE, IRISK, LIQ, and EMER) 
in conjunction with the return forecast from machine learning models. We want to see 
whether stronger limits to arbitrage either improve or impair predictability. 

As seen in Cosemans and Frehen (2021), we run Fama-MacBeth regressions with 
interaction terms. The dependent variable is the realized market return; furthermore, the 
independent variables include machine learning predictions and the interactions with the 
proxies for limits to arbitrage. Panel A shows the estimation of univariate regressions; 
Panels B to E focus on multivariate tests accounting for SIZE, IRISK, LIQ, and EMER. 

[Insert Table 9 about here] 

First of all, the machine learning forecasts are strongly associated with realized returns 
in all the specifications: both in the univariate and multivariate test. This means that 
they powerfully predict returns even after accounting for the role of market size, 
idiosyncratic risk, liquidity, and development. In other words, the predictability does not 
derive only from some dusty segment of small and illiquid global markets. However, this 
does not mean that limits to arbitrage do not play any sort of role. On the contrary, we 
observe strong interactions with each of the considered arbitrage constraint proxies for 
most (though not all) of the machine learning models. The influence of market size, 
liquidity, development, and idiosyncratic risk is evident for regularized regressions, 
dimension reduction techniques, and tree methods. This evidence indicates that the 
return predictability is, indeed, stronger across markets with higher limits to arbitrage. 
Furthermore, this complies with our findings in Section 6 that identify behavioral 
mispricing as the vital source of return predictability of country equity returns.  

7. Conclusions 

This paper employs machine learning methods to gain insights into an entirely new 
setting: the cross-section of country equity risk premia. To this end, we study data from 
71 international stock markets from the years 1985 to 2021. We identify, classify, and 
reproduce 88 return predictors as inputs; with these variables at hand, we conduct an 
analysis using an array of different machine learning techniques: ordinary least squares, 

                                                           
EMER equals one if the market is classified as emerging in month t-1 by the International Monetary 
Fund—or zero otherwise (International Monetary Fund, 2020, 2021). 
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dimension reduction techniques, regularized regressions, support vector machines, 
regression trees, neural network, and forecast combinations.  

Our findings demonstrate that machine learning methods can successfully predict returns 
in country equity indices. As at the stock level, nonlinearities and interactions play an 
essential role. In consequence, we find that neural networks produce highly accurate 
forecasts—outperforming the simply dimension reduction techniques or penalized 
regressions. Furthermore, a particularly effective method is forecast combination. This 
approach, suppressing individual model variance, produces return forecasts of superior 
accuracy. Even though none of the machine learning methods is perfect, they work very 
well when combined. 

Importantly, when assessing the relative performance of different machine learning 
models, we supplement the traditional measures of global fit with the cross-sectional R2. 
This metric assists in gauging how effectively a given technique may sort assets into 
portfolios. We find that even the simplest methods—with a seemingly low global fit—
can still produce a decent cross-sectional fit. In consequence, they may still prove useful 
in practice despite the low or negative standard R2 values. 

A glimpse inside the black box of machine learning methods allows for determining 
principal drivers of the cross-section of market returns. Despite the growing factor zoo in 
asset pricing literature, a sparse set of variables can capture the variation in country 
equity returns. Nearly all models point to several simple predictors that really matter; 
these include long-term reversal, market value, earnings yield, market breadth, and long-
term momentum. Numerous other seemingly relevant signals—such as credit, liquidity, 
or idiosyncratic risks—are of secondary importance.  

All the machine learning techniques we consider can be forged into effective market 
allocation strategies. Portfolios from one-way sorts on the model predictions exhibit both 
economically and statistically significant abnormal returns; these cannot be explained by 
popular asset pricing factors. Interestingly, most alphas come from the long legs rather 
than short legs of the trading strategies, reducing the concerns of short selling limitations. 
Moreover, contrary to empirical findings from individual stocks, even the simple OLS 
method produces substantial alphas. The best performing strategy is neural networks. 
An equal-weighted quintile of top markets according to the FFN2 method outperforms 
their low-ranked counterparts by 1.69% per month. The associated long-short strategy 
displays a Sharpe ratio of 1.57. 

An exploration of sources of return predictability links it with behavioral mispricing. The 
predictability is not affected by the swings in country-specific risks. On the other hand, 
it is measurably affected by the level of mispricing—being the most pronounced in both 
the overvalued and undervalued markets. Furthermore, in line with the mispricing 
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narrative, it prevails in market segments with higher limits to arbitrage; these include 
smaller, riskier, and less liquid countries. Finally, similarly as for numerous stock-level 
anomalies, the return predictability of country index returns diminishes over time. In 
consequence, although it has not disappeared entirely, it was visibly weaker over the last 
10 to 15 years than it was a decade before. 

Future research on the topics in this paper could be extended to other asset classes. 
Machine learning methods have proven effective for the cross-section of equities, 
corporate bonds, and stock market indices. Do they work for international treasuries? Or 
currencies? Can they be applied across these asset classes?12 These questions remain to 
be answered.  

                                                           
12 An important research question is whether machine learning methods can be applied to international 
sovereign bonds as well as the role of cross-asset signals between stock and bond markets. Cakici and 
Zaremba (2022) pursue this line of research.  

Electronic copy available at: https://ssrn.com/abstract=4028525



28 
 

References 

Albuquerque, R., Eichenbaum, M., Papanikolaou, D., & Rebelo, S. (2015). Long-run bulls 
and bears. Journal of Monetary Economics, 76, S21-S36. 

Asness, C. S., Moskowitz, T. J., & Pedersen, L. H. (2013). Value and momentum 
everywhere.  Journal of Finance, 68(3), 929-985. 

Asness, C.S., Liew, J.M., & Stevens, R.L. (1997). Parallels between the cross-sectional 
predictability of stock and country returns. Journal of Portfolio Management, 23(3), 
79-87. 

Avramov, D., Cheng, S., & Metzker, L. (2021). Machine learning versus economic 
restrictions: Evidence from stock return predictability. Management Science, in 
press. 

Avramov, D., Chordia, T., Jostova, G., & Philipov, A. (2012). The world price of credit 
risk. Review of Asset Pricing Studies, 2(2), 112-152. 

Azevedo, V., & Müller, S. (2020). Analyst recommendations and mispricing across the 
globe. Available at SSRN 3705141. 

Bali, T. G., & Cakici, N. (2010). World market risk, country-specific risk and expected 
returns in international stock markets. Journal of Banking & Finance, 34 (6), 
1152–1165. 

Bali, T. G., Subrahmanyam, A., & Wen, Q. (2021). Long-term reversals in the corporate 
bond market. Journal of Financial Economics, 139(2), 656-677. 

Bali, T. G., Subrahmanyam, A., & Wen, Q. (2021). The macroeconomic uncertainty 
premium in the corporate bond market. Journal of Financial and Quantitative 
Analysis, 56(5), 1653-1678. 

Bali, T., Goyal, A., Huang, D., Jiang, F., & Wen, Q. (2021). Different strokes: Return 
predictability across stocks and bonds with machine learning and big data. 
Georgetown McDonough School of Business Research Paper No. 3686164. Swiss 
Finance Institute Research Paper No. 20-110. Available at SSRN: 
https://ssrn.com/abstract=3686164. 

Baltussen, G., Swinkels, L., & Van Vliet, P. (2021). Global factor premiums. Journal of 
Financial Economics, 142(3), 1128-1154. 

Balvers, R., Wu, Y., & Gilliland, E. (2000). Mean reversion across national stock markets 
and parametric contrarian investment strategies. Journal of Finance, 55(2), 745-
772.  

Bartram, S.M., Djuranovik, L., & Garratt, A. (2018). Currency anomalies. 31st 
Australasian Finance and Banking Conference 2018, Available at SSRN: 
https://ssrn.com/abstract=3222252 or http://dx.doi.org/10.2139/ssrn.3222252. 

Bekaert, G., & Mehl, A. (2019). On the global financial market integration “swoosh” and 
the trilemma. Journal of International Money and Finance, 94, 227-245. 

Bhojraj, S., & Swaminathan, B. (2006). Macromomentum: returns predictability in 
international equity indices. Journal of Business, 79(1), 429-451. 

Electronic copy available at: https://ssrn.com/abstract=4028525



29 
 

Bianchi, D., Büchner, M., & Tamoni, A. (2021). Bond risk premiums with machine 
learning. Review of Financial Studies, 34(2), 1046-1089. 

Blitz, D., Baltussen, G., & van Vliet, P. (2020). When equity factors drop their shorts. 
Financial Analysts Journal, 76(4), 73-99. 

Bollerslev, T., Hood, B., Huss, J., & Pedersen, L. H. (2018). Risk everywhere: Modeling 
and managing volatility. Review of Financial Studies, 31(7), 2729-2773. 

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. 
Brusa, F., Savor, P., & Wilson, M. (2020). One central bank to rule them all. Review of 

Finance, 24(2), 263-304. 
Cagan, P. (1956). The monetary dynamics of hyperinflation. M. Friedman (Ed.), Studies 

in the Quantity Theory of Money. University of Chicago Press, Chicago, IL, pp. 
25-117. 

Cakici, N., & Zaremba, A. (2021). Salience theory and the cross-section of stock returns: 
International and further evidence. Journal of Financial Economics, in press. 

Cakici, N., & Zaremba, A. (2022). Machine learning across asset classes: Return 
predictability in equity and government bond markets. Working paper.  

Calluzzo, P., Moneta, F., & Topaloglu, S. (2019). When anomalies are publicized broadly, 
do institutions trade accordingly? Management Science, 65(10), 4555-4574. 

Chan, K., Hameed, A., & Tong, W. (2000). Profitability of momentum strategies in the 
international equity markets. Journal of Financial and Quantitative Analysis, 
35(2), 153-172. 

Chen, L., Pelger, M., & Zhu, J. (2020). Deep learning in asset pricing. Available at SSRN: 
https://ssrn.com/abstract=3350138. 

Choi, D., Jiang, W., & Zhang, C. (2021). Alpha go everywhere: Machine learning and 
international stock returns. Available at SSRN 3489679. 

Choi, J., & Kim, Y. (2018). Anomalies and market (dis)integration. Journal of Monetary 
Economics, 100, 16-34. 

Chordia, T., Subrahmanyam, A., & Tong, Q. (2014). Have capital market anomalies 
attenuated in the recent era of high liquidity and trading activity? Journal of 
Accounting and Economics, 58(1), 41-58. 

Cochrane, J. H. (2011). Presidential address: Discount rates. Journal of Finance, 66(4), 
1047-1108. 

Coqueret, G. (2022). Persistence in factor-based supervised learning models. Journal of 
Finance and Data Science, 8, 12-34. 

Cortes, G. S., Taylor, B., & Weidenmier, M. D. (2021). Financial factors and the 
propagation of the Great Depression. Journal of Financial Economics, in press. 

Cosemans, M., & Frehen, R. (2021). Salience theory and stock prices: Empirical evidence. 
Journal of Financial Economics, 140(2), 460-483. 

Cox, D.R. & Snell, E.J. (1989). The Analysis of Binary Data, 2nd ed. London: Chapman 
and Hall. 

Electronic copy available at: https://ssrn.com/abstract=4028525



30 
 

Danielsson, J., Valenzuela, M., & Zer, I. (2018). Learning from history: Volatility and 
financial crises. Review of Financial Studies, 31(7), 2774-2805. 

Diamonte, R. L., Liew, J. M., & Stevens, R. L. (1996). Political risk in emerging and 
developed markets. Financial Analysts Journal, 52(3), 71-76. 

Diebold, F., and Mariano, R. (1995). Comparing predictive accuracy. Journal of Business 
& Economic Statistics, 13(3), 253-263. 

Drobetz, W., & Otto, T. (2021). Empirical asset pricing via machine learning: evidence 
from the European stock market. Journal of Asset Management, 22(7), 507-538. 

Drobetz, W., Haller, R., Jasperneite, C., and Otto, T. (2019). Predictability and the cross 
section of expected returns: Evidence from the European stock market. Journal of 
Asset Management, 20(7), 508-533. 

Engelberg, J.,R. McLean, D., & Pontiff, J. (2018). Anomalies and news. Journal of 
Finance, 73, 1971–2001. 

Erb, C. B., Harvey, C. R., & Viskanta, T. E. (1995). Country risk and global equity 
selection. Journal of Portfolio Management, 21(2), 74-83. 

Erb, C. B., Harvey, C. R., & Viskanta, T. E. (1996). Political risk, economic risk, and 
financial risk. Financial Analysts Journal, 52(6), 29-46. 

Fama, E. F., & French, K. R. (2017). International tests of a five-factor asset pricing 
model. Journal of Financial Economics, 123(3), 441-463. 

Ferreira, M. A., & Gama, P. M. (2007). Does sovereign debt ratings news spill over to 
international stock markets? Journal of Banking & Finance, 31(10), 3162-3182. 

Filippou, I., Rapach, D., Taylor, M. P., & Zhou, G. (2020). Exchange rate prediction 
with machine learning and a smart carry portfolio. Available at SSRN 3455713. 

Fisher, G. S., Shah, R., & Titman, S. (2017). Should you tilt your equity portfolio to 
smaller countries? Journal of Portfolio Management, 44(1), 127-141. 

Frazzini, A., & Pedersen, L.H. (2014). Betting against beta. Journal of Financial 
Economics, 111, 1-25. 

French, K.R. (2022). U.S. Research Return Data. Data Library. Retrieved from 
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 

Freyberger, J., Neuhierl, A., & Weber, M. (2020). Dissecting characteristics 
nonparametrically. Review of Financial Studies, 33(5), 2326-2377. 

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. 
Annals of Statistics, 5, 1189-1232. 

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A 
statistical view of boosting (with discussion and a rejoinder by the authors). 
Annals of Statistics, 28(2), 337-407. 

Geczy, C., & Samonov, M. (2017). Two centuries of multi-asset momentum (equities, 
bonds, currencies, commodities, sectors and stocks). Available at SSRN 2607730. 

Gromb, D., & Vayanos, D. (2010). Limits of arbitrage. Annual Review of Financial 
Economcs, 2(1), 251-275. 

Electronic copy available at: https://ssrn.com/abstract=4028525



31 
 

Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. Review 
of Financial Studies, 33(5), 2223-2273. 

Gu, S., Kelly, B., & Xiu, D. (2021). Autoencoder asset pricing models. Journal of 
Econometrics, 222(1), 429-450. 

Guo, L., Li, F. W., & Wei, K. J. (2020). Security analysts and capital market anomalies. 
Journal of Financial Economics, 137(1), 204-230. 

Han, X. (2020). Risks versus mispricing: Decomposing asset pricing anomalies via 
classification. Available at SSRN: https://ssrn.com/abstract=3604970 or 
http://dx.doi.org/10.2139/ssrn.3604970. 

Han, Y., He, A., Rapach, D., & Zhou, G. (2021). Expected stock returns and firm 
characteristics: E-LASSO, assessment, and implications. Available at SSRN: 
https://ssrn.com/abstract=3185335 or http://dx.doi.org/10.2139/ssrn.3185335. 

Hjalmarsson, E. (2010). Predicting global stock returns. Journal of Financial and 
Quantitative Analysis, 45(1), 49-80. 

Hung, M., Li, X., & Wang, S. (2015). Post-earnings-announcement drift in global 
markets: Evidence from an information shock. Review of Financial Studies, 28(4), 
1242-1283. 

Ilmanen, A., Israel, R., Lee, R., Moskowitz, T. J., & Thapar, A. (2021). How do factor 
premia vary over time? A century of evidence. Journal Of Investment 
Management, 19(4), 15-57. 

International Monetary Fund (2020). Country Composition of WEO Groups. World 
Economic and Financial Surveys. World Economic Outlook. Available at 
https://www.imf.org/external/pubs/ft/weo/2020/01/weodata/groups.htm. 

International Monetary Fund (2021). Changes to the Database. World Economic Outlook 
Database.. Available at 
https://www.imf.org/external/pubs/ft/weo/data/changes.htm. 

Jacobs, H., & Müller, S. (2020). Anomalies across the globe: Once public, no longer 
existent? Journal of Financial Economics, 135(1), 213-230. 

Jensen, T. I., Kelly, B. T., & Pedersen, L. H. (2021). Is there a replication crisis in 
finance? NBER Working Paper No. w28432. National Bureau of Economic 
Research. Available at https://www.nber.org/papers/w28432. 

Jiang, F., Tang, G., & Zhou, G. (2018). Firm characteristics and Chinese stocks. Journal 
of Management Science and Engineering, 3(4), 259-283. 

Jiang, L., Liu, J., Peng, L., & Wang, B. (2021). Investor attention and asset pricing 
anomalies. Review of Finance, in press. 

Kelly, B. T., & Malamud, S. (2021). The virtue of complexity in machine learning 
portfolios. Swiss Finance Institute Research Paper No. 21-90. Available at SSRN: 
https://ssrn.com/abstract=3959708 or http://dx.doi.org/10.2139/ssrn.3959708. 

Kelly, B. T., Pruitt, S., & Su, Y. (2019). Characteristics are covariances: A unified model 
of risk and return. Journal of Financial Economics, 134(3), 501-524. 

Electronic copy available at: https://ssrn.com/abstract=4028525



32 
 

Keloharju, M., Linnainmaa, J. T., & Nyberg, P. (2021). Are return seasonalities due to 
risk or mispricing? Journal of Financial Economics, 139(1), 138-161. 

Keloharju, M., Linnainmaa, J.T., & Nyberg, P. (2016). Return seasonalities. Journal of 
Finance, 71(4), 1557-1589. 

Koijen, R. S., Moskowitz, T. J., Pedersen, L. H., & Vrugt, E. B. (2018). Carry. Journal 
of Financial Economics, 127(2), 197-225. 

Lam, F. E. C., Li, Y., Prombutr, W., & Wei, K. J. (2020). Limits‐to‐arbitrage, 
investment frictions, and the investment effect: New evidence. European Financial 
Management, 26(1), 3-43. 

Leippold, M., Wang, Q., & Zhou, W. (2021). Machine learning in the Chinese stock 
market. Journal of Financial Economics, in press. 

Lewellen, J. (2015). The cross-section of expected stock returns. Critical Finance Review, 
4(1), 1-44. 

McLean, R. D., & Pontiff, J. (2016). Does academic research destroy stock return 
predictability? Journal of Finance, 71(1), 5-32. 

Miranda-Agrippino, S., & Rey, H. (2020). US monetary policy and the global financial 
cycle. Review of Economic Studies, 87(6), 2754-2776. 

Muir, T. (2017). Financial crises and risk premia. Quarterly Journal of Economics, 
132(2), 765-809. 

Müller, S., & Preissler, F. (2021). In good and in bad times? The relation between 
anomaly returns and market states. Available at SSRN: 
https://ssrn.com/abstract=3926059 or http://dx.doi.org/10.2139/ssrn.3926059. 

Newey, W. K., & West, K. D. (1987). Hypothesis testing with efficient method of 
moments estimation. International Economic Review, 28(3), 777-787. 

Novy-Marx, R., & Velikov, M. (2016). A taxonomy of anomalies and their trading costs. 
Review of Financial Studies, 29(1), 104-147. 

Novy-Marx, R., & Velikov, M. (2019). Comparing cost-mitigation techniques. Financial 
Analysts Journal, 75(1), 85-102. 

Pitkäjärvi, A., Suominen, M., & Vaittinen, L. (2020). Cross-asset signals and time series 
momentum. Journal of Financial Economics, 136(1), 63-85. 

Pontiff, J. (1996). Costly arbitrage: Evidence from closed-end funds. Quarterly Journal 
of Economics, 111(4), 1135-1151. 

Pontiff, J., & Woodgate, A. (2008). Share issuance and cross‐sectional returns. Journal 
of Finance, 63(2), 921-945. 

Rad, H., Low, R. K. Y., Miffre, J., & Faff, R. W. (2021). The commodity risk premium 
and neural networks. Available at SSRN 3816170. 

Rapach, D. E., Strauss, J. K., Tu, J., & Zhou, G. (2019). Industry return predictability: 
A machine learning approach. Journal of Financial Data Science, 1(3), 9-28. 

Rapach, D.E., Strauss, J. K., & Zhou, G. (2010). Out-of-sample equity premium 
prediction: Combination forecasts and links to the real economy. Review of 
Financial Studies, 23(2), 821-862. 

Electronic copy available at: https://ssrn.com/abstract=4028525



33 
 

Schwert, G. W. (2003). Anomalies and market efficiency. Handbook of the Economics of 
Finance, 1, 939-974. 

Shleifer, A., & Vishny, R. W. (1997). The limits of arbitrage. Journal of Finance, 52(1), 
35-55. 

Stambaugh, R. F., Yu, J., & Yuan, Y. (2012). The short of it: Investor sentiment and 
anomalies. Journal of Financial Economics, 104(2), 288-302. 

Stambaugh, R. F., Yu, J., & Yuan, Y. (2015). Arbitrage asymmetry and the idiosyncratic 
volatility puzzle. Journal of Finance, 70(5), 1903-1948. 

Struck, C., & Cheng, E. (2020). The cross section of commodity returns: A nonparametric 
approach. Journal of Financial Data Science, 2(3), 86-103. 

Thomson Reuters. (2008). Datastream Global Equity Indices: User Guide, Issue 5. 
Thomson Reuters Ltd. 

Tobek, O., & Hronec, M. (2021). Does it pay to follow anomalies research? Machine 
learning approach with international evidence. Journal of Financial Markets, 56, 
100588. 

Watanabe, A., Xu, Y., Yao, T., & Yu, T. (2013). The asset growth effect: Insights from 
international equity markets. Journal of Financial Economics, 108(2), 529-563. 

Zaremba, A., Szyszka, A., Karathanasopoulos, A., & Mikutowski, M. (2021). Herding for 
profits: Market breadth and the cross-section of global equity returns. Economic 
Modelling, 97, 348-364. 

Zaremba, A., Umutlu, M., & Maydybura, A. (2020). Where have the profits gone? 
Market efficiency and the disappearing equity anomalies in country and industry 
returns. Journal of Banking & Finance, 121, 105966. 

Zhang, C. Y., & Jacobsen, B. (2013). Are monthly seasonals real? A three century 
perspective. Review of Finance, 17(5), 1743-1785. 

Zhang, C. Y., & Jacobsen, B. (2021). The Halloween indicator, “Sell in May and Go 
Away”: Everywhere and all the time. Journal of International Money and Finance, 
110, 102268. 

 
 

Electronic copy available at: https://ssrn.com/abstract=4028525



34 
 

Figure 1. Research Sample Through Time 

The figure exhibits the evolution of the research sample through time—the monthly number of markets 
covered and aggregate stock market capitalization in U.S. dollars. 
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Figure 2. Characteristic Importance 

The figure displays the rankings of 88 market characteristics employed in the study in terms of their overall model 
contribution. The color gradients indicate the rank of the variable importance; the dark blue (white) represent the 
most influential (least influential) predictors. The variables are ordered based on their average rank across all 
models. The sample comprises 71 country stock markets and the testing period is from January 1995 to April 2021. 
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Figure 3. Relative Importance of Top Variables in Different Models 

The figure presents the importance of the top 10 variables in the machine learning models examined in this study. The 
panels display the reduction in R2 from setting all values of a given variable to zero in the training sample. The numbers 
are averaged across all the training samples and are rescaled to sum to 1. The sample comprises 71 country stock markets 
and the testing period is from January 1995 to April 2021. 
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Figure 4. Characteristic Importance per Category 

The figure displays the importance of 15 different categories of market characteristics, as classified in Table 1, in 
terms of their overall model contribution. The color gradients indicate the aggregate importance weight of 
individual characteristics summed within the categories. The dark blue (white) colors represent the most influential 
(least influential) groups. The variables are ordered based on their average rank across all the models. The sample 
comprises 71 country stock markets and the testing period is from January 1995 to April 2021. 
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Figure 5. Predictive R2 Coefficients from Machine Learning Models Through Time  

The figure presents the predictive R2 coefficients from different machine learning models through time. 
Each month, using our test samples at re-estimation dates, we run cross-sectional regressions of the realized 
excess returns on the respective predictions of different machine learning models. Panel A concerns the 
Predictive R2; i.e., the out-of-sample adjusted R2 (Rୗଶ ) coefficient from the models. Panel B focuses on 
the Rank R2 measure, which is obtained in a two-step procedure: first, we transform the predicted and 
realized returns into ranks and then map them into the [0,1] interval; second, we calculate the pseudo R2 
measure of Cox and Snell (1989). The exhibit below plots trailing 120-month averages of these estimates 
expressed in percentage terms. The sample comprises 71 country stock markets and the testing period is 
from January 1995 to April 2021. 
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Figure 6. Cumulative Returns on Machine Learning Portfolios 

The figure presents cumulative returns on long-short portfolios formed on the machine learning methods 
forecasts. The portfolios buy (sell) the quantile of markets with the highest (lowest) return predictions by 
the machine learning models. The portfolios are rebalanced monthly and equal-weighted. The returns are 
cumulated additively and are expressed in percentage terms. The reported period is from December 1994 
to April 2021, and the sample comprises 71 country stock markets. 
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Table 1. Market Characteristics 

The table summarizes the 88 market characteristics used in this study along with their Symbols used throughout the paper. 
We also report the variable averages and standard deviation. All the data in this table are winsorized at the 99% level. 
The sample comprises 71 country stock markets and the study period is from January 1985 to April 2021. Further details 
concerning the computations of the variables, along with relevant literature references, are provided in Table A1 in the 
Online Appendix.  

Symbol Variable Average 
Standard 
deviation 

  Symbol Variable Average 
Standard 
deviation 

Panel A: Value vs. growth  Panel J cont. 
EP Earnings yield 0.076 0.046  H52 52-week high effect 0.873 0.140 
BM Book-to-market ratio 0.652 0.313  MAD Moving average distance 1.031 0.132 
CP Cash flow-to-price ratio 0.162 0.087  BRTH Market breadth 0.001 0.129 
SP Sales-to-price ratio 0.667 0.415  Panel K: Investment and issuance 
EDEV EBITDA-to-EV ratio 0.129 0.074  AG Asset growth 0.183 0.266 
FEP Forward earnings yield 0.089 0.042  CEI Composite equity issuance 0.075 0.246 
DY Dividend yield 3.082 1.716  NSI Net share issuance 0.017 0.224 
CAPE Cyclically adjusted P/E ratio 19.506 8.707  HR Hiring rate 0.092 0.191 

Panel B: Size and liquidity  PY Payout ratio 0.431 0.196 
MV Market value 11.022 2.191  Panel L: Macroeconomic conditions 
Illiq Amihud ratio 0.001 0.005  Unemp Unemployment rate 0.075 0.045 
Turn Turnover ratio 0.538 0.598  Infl Inflation rate 0.073 0.170 
Dvol Dollar volume 16.903 3.060  GDPGr GDP growth 0.114 0.172 
TurnVar Turnover volatility 0.001 0.002  REERCh REER change 0.000 0.003 
VolVar Volume volatility 10.802 2.526  DebtGDP Debt-to-GDP ratio 0.539 0.329 

Panel C: Price risk  PrimBal Primary balance 0.009 0.034 
Beta Beta 0.899 0.502  M1Ch M1 change 0.152 0.217 
Cor Correlation 0.556 0.268  M2Ch M2 change 0.153 0.314 
Vol Total volatility 0.076 0.042  PopCh Population 0.113 0.128 
IVol Idiosyncratic volatility 0.058 0.038  DebtGDPCh Debt-to-GDP ratio change 0.445 5.900 
RNG Price range 0.412 0.241  MacroMom Macro momentum 0.000 0.483 
VAR Value at risk 0.111 0.060  Panel M: Fixed-income markets 

Panel D: Momentum  BillYld Treasury bill yield 0.072 0.104 
LtMom Long-term momentum 0.007 0.029  BondYld Government bond yield 0.059 0.039 
MtMom Medium-term momentum 0.008 0.037  YldCrv Yield curve slope 0.012 0.019 
StMom Short-term momentum 0.008 0.075  CrvCh Yield curve change 0.000 0.016 
ResMom Residual momentum -0.036 0.287  YldCh Yield change -0.326 1.310 

Panel E: Seasonality  BondMom Bond momentum 0.007 0.008 
Seas Cross-sectional seasonality 0.010 0.027  Panel N: Financial and economic risk 

Panel F: Profitability  ForDebt Foreign debt (% GDP) 6.606 2.150 
ROA Return on asset 0.024 0.019  XRStab Exchange rate stability 8.697 1.715 
ROE Return on equity 0.119 0.061  DebtServ Foreign debt serv. (%export) 8.394 1.537 
CFA Cash profitability 0.041 0.027  CAXGS Current account (% exports) 11.964 1.264 
EBA EBIT-to-asset 0.044 0.030  IntLiq Net international liquidity 2.302 1.398 
NM Net margin 0.089 0.063  GDPHead GDP per head 3.102 1.444 
SG Sales growth 0.162 0.244  CACC Current account (% GDP) 10.832 2.422 
ROACh ROA change -0.001 0.013  SovRet Sovereign risk 6.363 4.693 
ROECh ROE change -0.002 0.050  Panel P: Political risks and regimes 
NMCh Net margin change -0.001 0.038  GovStab Government stability 7.831 1.720 
EarVol Earnings volatility 0.008 0.010  SocCond Socioeconomic conditions 7.117 1.968 
AT Asset turnover 0.317 0.206  IntConf Internal conflict 9.640 1.964 

Panel G: Indebtedness  ExtConf External conflict 10.283 1.439 
DE Debt-to-equity ratio 0.931 1.002  Corr Corruption 3.643 1.322 
DM Debt-to-capitalization ratio 0.391 0.477  MilPol Military in politics 4.657 1.478 

Panel H: Skewness  RelTen Religious tensions 4.784 1.299 
SKEW Total skewness -0.396 1.134  LawOrd Law and order 4.438 1.319 
COSKEW Co-skewness -0.377 7.163  EthnTens Ethnic tensions 4.289 1.329 

Panel I: Long-term reversal  DemAcc Democratic accountability 4.745 1.429 
LrRev Long-run reversal 0.008 0.015  BurQual Bureaucracy quality 2.979 0.903 

Panel J: Technical analysis  Dem Democracy index 0.589 0.267 
MA Moving average 1.044 0.165   DemCh Democratization 0.001 0.016 
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Table 2. Predictive Performance of the Machine Learning Models 

The table reports the predictive performance measures of the machine learning models that are examined in this study (see Section 2.3 for details). Panel A concerns 
the R2 coefficients and slopes. Each month, using our test samples at re-estimation dates, we run cross-sectional regressions of the realized excess returns on the 
respective predictions of different machine learning models. Predictive slope indicates the time-series average of the slopes estimated in the monthly regressions, and 
Predictive R2 is the out-of-sample adjusted R2 (𝑅ைைௌଶ ) coefficient. Rank R2 (%) is obtained in a two-step procedure: first, we transform the predicted and realized returns into 
ranks and map them into the [0,1] interval; second, we calculate the pseudo R2 measure of Cox and Snell (1989). Panel B presents the pairwise comparisons of the machine 
learning models using modified Diebold and Mariano (1995) tests (DM). The test statistic DM compares the mean squared forecast errors of a model in column a and 
row b: 𝐷𝑀, =

ௗതೌ,್

ఙෝഥೌ,್

, where 𝑑,,௧ାଵ = 𝑀𝑆𝐹𝐸௧ାଵ
()

−𝑀𝑆𝐹𝐸௧ାଵ
()  denotes the differences in the monthly mean squared forecast errors, �̅�, =

ௗೌ,್,శభ

்
 indicates the time-series 

average of these differences, and 𝜎ොௗതೌ,್ is the standard error adjusted for heteroskedasticity and autocorrelation using the HAC estimator (Newey & West, 1987). The 
bold font denotes the values significant at the 5% level in standalone pairwise comparisons (|t-stat|>1.96), and the underline indicates the 5%-significance incorporating 
the Bonferroni adjustment for the multiple hypothesis framework ((|t-stat|>2.87). The sample comprises 71 countries and the testing period is from January 1995 to 
April 2021. 

Panel A: Predictive R2 and slopes 

  OLS PLS PCA LASSO ENET SVM GBRT RF FFN1 FFN2 FFN3 COMB 
Predictive R2 (%) -0.14 -0.23 0.28 0.91 0.90 1.47 0.95 -0.28 1.52 1.29 1.89 2.21 
Predictive slopes 0.49 0.47 0.52 1.24 1.25 0.85 0.36 0.48 0.66 0.70 0.60 0.83 
Rank R2 (%) 3.33 3.78 3.68 4.03 4.03 3.84 2.87 3.90 3.56 3.44 3.61 3.95 

Panel B: Diebold-Mariano (1995) tests 

  PLS PCA LASSO ENET GBRT SVM RF FFN1 FFN2 FFN3 COMB 
OLS -0.15 -0.36 0.97 0.95 2.84 1.40 0.89 5.54 5.90 5.99 5.16 
PLS  -0.02 0.51 0.50 1.33 1.53 1.15 1.74 1.40 1.85 2.93 
PCA   2.45 2.42 2.59 1.22 0.87 2.83 3.08 4.24 3.70 
LASSO    -1.53 1.54 0.78 0.61 1.83 1.72 3.00 2.89 
ENET     1.58 0.79 0.62 1.86 1.74 3.04 2.92 
GBRT      0.36 0.38 1.30 0.60 2.44 3.15 
SVM       0.30 0.15 -0.16 0.27 1.09 
RF        -0.16 -0.29 -0.09 0.16 
FFN1         -1.41 0.34 1.62 
FFN2          2.01 2.49 
FFN3                     1.37 
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Table 3. Portfolios from Univariate Sorts on Machine Learning Model Predictions 

The table presents the monthly returns on quintile portfolios from univariate sorts on the predictions of 
different machine learning models from Section 2.3. Low (High) denotes the quintiles of markets with the 
lowest (highest) predicted return. H-L is the spread portfolio that assumes a long (short) position in the 
High (Low) quintiles. The portfolios are equal- or value-weighted (Panels A and B, respectively), and are 
reformed on a monthly basis. Pred and Avg indicate the average predicted and realized returns, 
respectively. SD is the standard deviation of monthly returns, SR is the annualized Sharpe ratio, and α is 
the average abnormal return from the global CAPM. R, Avg, SD, and α are expressed in percentages. The 
numbers in parentheses are t-statistics calculated using the HAC estimator (Newey & West, 1987). The 
sample comprises 71 country stock markets and the testing period is from January 1995 to April 2021. 

  Panel A: Equal-weighted portfolios   Panel B: Value-weighted portfolios 
OLS  

  Pred Avg SD SR α   Pred Avg SD SR α 
Low (L) -0.51 0.12 5.27 0.08 -0.47  -0.37 0.28 5.22 0.19 -0.34 
2 0.43 0.48 5.07 0.33 -0.14  0.43 0.50 5.03 0.34 -0.13 
3 0.98 0.69 4.91 0.49 0.09  0.98 0.62 5.16 0.42 -0.03 
4 1.58 0.86 4.91 0.61 0.29  1.56 0.73 5.24 0.49 0.10 
High (H) 2.96 1.51 5.27 0.99 0.97  2.68 1.15 6.57 0.60 0.41 
H-L 3.47 1.39 3.60 1.34 1.44  3.06 0.87 4.25 0.71 0.75 
t-stat  (6.31)   (6.44)   (3.39)   (3.09) 

PLS  
  Pred Avg SD SR α   Pred Avg SD SR α 
Low (L) -1.19 0.24 5.29 0.16 -0.37  -1.07 0.48 5.28 0.32 -0.17 
2 -0.36 0.67 4.82 0.48 0.07  -0.36 0.71 4.81 0.51 0.10 
3 0.19 0.40 4.71 0.30 -0.16  0.17 0.43 5.16 0.29 -0.22 
4 0.79 0.79 5.14 0.53 0.20  0.76 0.58 5.69 0.36 -0.09 
High (H) 2.11 1.56 5.51 0.98 1.01  1.85 1.15 6.92 0.58 0.40 
H-L 3.30 1.32 3.99 1.14 1.38  2.92 0.67 4.68 0.50 0.56 
t-stat  (5.60)   (5.83)   (2.46)   (2.08) 

PCA  
  Pred Avg SD SR α   Pred Avg SD SR α 
Low (L) -0.10 0.30 5.28 0.20 -0.31  0.01 0.45 5.17 0.33 -0.19 
2 0.62 0.54 4.90 0.38 -0.05  0.62 0.71 4.94 0.49 0.08 
3 1.08 0.50 4.72 0.37 -0.06  1.07 0.44 4.98 0.31 -0.17 
4 1.62 0.79 5.23 0.52 0.19  1.60 0.50 5.70 0.31 -0.18 
High (H) 2.72 1.53 5.44 0.97 0.98  2.52 1.14 6.77 0.60 0.41 
H-L 2.82 1.22 3.95 1.07 1.30  2.51 0.69 4.65 0.51 0.60 
t-stat  (5.24)   (5.48)   (2.59)   (2.28) 

LASSO  
  Pred Avg SD SR α   Pred Avg SD SR α 
Low (L) 0.50 0.18 5.29 0.12 -0.43  0.57 0.33 5.27 0.25 -0.30 
2 0.90 0.65 4.88 0.46 0.05  0.90 0.69 5.01 0.47 0.05 
3 1.12 0.57 4.90 0.41 -0.02  1.12 0.59 5.03 0.41 -0.04 
4 1.39 0.72 5.16 0.48 0.13  1.38 0.57 5.78 0.32 -0.11 
High (H) 2.04 1.54 5.45 0.98 1.01  1.87 1.19 6.66 0.62 0.51 
H-L 1.54 1.36 4.24 1.11 1.44  1.29 0.86 5.01 0.56 0.81 
t-stat  (5.53)   (5.77)   (2.89)   (2.79) 

ENET  
  Pred Avg SD SR α   Pred Avg SD SR α 
Low (L) 0.50 0.19 5.28 0.12 -0.42  0.57 0.34 5.23 0.26 -0.30 
2 0.90 0.64 4.89 0.45 0.04  0.90 0.69 5.02 0.46 0.04 
3 1.12 0.57 4.89 0.40 -0.02  1.12 0.59 5.02 0.41 -0.05 
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4 1.39 0.72 5.17 0.48 0.13  1.38 0.59 5.76 0.33 -0.09 
High (H) 2.04 1.54 5.45 0.98 1.01  1.87 1.19 6.67 0.62 0.51 
H-L 1.54 1.35 4.24 1.11 1.43  1.29 0.86 5.00 0.56 0.81 
t-stat  (5.50)   (5.74)   (2.86)   (2.76) 

SVM  
  Pred Avg SD SR α   Pred Avg SD SR α 
Low (L) 0.18 0.11 5.27 0.07 -0.49  0.27 0.30 5.08 0.21 -0.31 
2 0.67 0.55 5.09 0.38 -0.07  0.66 0.62 4.96 0.43 -0.01 
3 0.95 0.74 4.90 0.52 0.14  0.94 0.73 5.25 0.48 0.07 
4 1.29 0.76 5.17 0.51 0.18  1.27 0.65 5.70 0.40 -0.04 
High (H) 2.07 1.50 5.23 0.99 0.98  1.88 1.23 6.46 0.66 0.54 
H-L 1.89 1.39 3.98 1.21 1.47  1.61 0.93 4.40 0.73 0.85 
t-stat  (6.45)   (6.60)   (3.97)   (3.75) 

GBRT  
  Pred Avg SD SR α   Pred Avg SD SR α 
Low (L) -0.87 0.22 5.24 0.14 -0.38  -0.81 0.39 5.33 0.25 -0.25 
2 0.16 0.43 4.83 0.31 -0.14  0.17 0.44 5.00 0.30 -0.19 
3 0.83 0.66 4.90 0.46 0.08  0.83 0.51 5.25 0.34 -0.13 
4 1.51 1.00 4.98 0.69 0.40  1.50 0.71 5.40 0.46 0.05 
High (H) 2.71 1.36 5.43 0.86 0.77  2.57 0.99 5.94 0.58 0.29 
H-L 3.57 1.14 3.74 1.06 1.15  3.37 0.60 3.77 0.55 0.54 
t-stat  (5.57)   (5.68)   (2.65)   (2.38) 

RF  
  Pred Avg SD SR α   Pred Avg SD SR α 
Low (L) -0.98 0.06 5.40 0.04 -0.55  -0.83 0.18 5.77 0.11 -0.48 
2 0.14 0.40 5.04 0.27 -0.19  0.15 0.47 5.20 0.31 -0.17 
3 0.76 0.67 4.82 0.48 0.08  0.76 0.54 5.13 0.36 -0.11 
4 1.39 0.91 4.95 0.64 0.34  1.37 0.79 5.17 0.53 0.15 
High (H) 2.82 1.61 5.45 1.02 1.05  2.58 1.15 5.71 0.70 0.51 
H-L 3.79 1.55 4.13 1.30 1.61  3.41 0.97 4.47 0.75 1.00 
t-stat  (6.50)   (6.79)   (3.59)   (3.77) 

FFN1  
  Pred Avg SD SR α   Pred Avg SD SR α 
Low (L) -0.33 0.01 5.21 0.01 -0.57  -0.18 0.29 5.22 0.20 -0.32 
2 0.48 0.50 5.02 0.34 -0.12  0.48 0.56 4.99 0.39 -0.07 
3 0.89 0.67 4.99 0.46 0.06  0.87 0.62 5.13 0.42 -0.03 
4 1.36 0.79 4.97 0.55 0.21  1.33 0.73 5.48 0.46 0.07 
High (H) 2.59 1.68 5.25 1.11 1.15  2.38 1.33 6.76 0.68 0.58 
H-L 2.92 1.67 3.73 1.55 1.72  2.56 1.04 4.51 0.80 0.90 
t-stat  (7.74)   (7.88)   (3.89)   (3.51) 

FFN2  
  Pred Avg SD SR α   Pred Avg SD SR α 
Low (L) -0.22 0.04 5.26 0.03 -0.56  -0.12 0.31 5.12 0.21 -0.30 
2 0.50 0.59 4.92 0.41 -0.01  0.50 0.65 4.91 0.46 0.03 
3 0.93 0.71 4.93 0.50 0.11  0.92 0.56 5.17 0.38 -0.08 
4 1.42 0.59 4.95 0.41 0.01  1.41 0.56 5.41 0.36 -0.10 
High (H) 2.61 1.74 5.36 1.12 1.20  2.39 1.44 6.76 0.74 0.69 
H-L 2.83 1.69 3.73 1.57 1.75  2.51 1.13 4.54 0.86 1.00 
t-stat  (7.57)   (7.95)   (4.47)   (4.14) 

FFN3  
  Pred Avg SD SR α   Pred Avg SD SR α 
Low (L) 0.04 0.04 5.18 0.03 -0.54  0.10 0.33 5.28 0.22 -0.28 
2 0.58 0.53 5.01 0.37 -0.08  0.58 0.56 4.97 0.39 -0.07 
3 0.92 0.74 4.85 0.53 0.16  0.91 0.67 5.20 0.44 0.02 
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4 1.33 0.73 4.77 0.53 0.17  1.31 0.56 5.33 0.36 -0.08 
High (H) 2.35 1.60 5.57 0.99 1.03  2.19 1.25 7.00 0.62 0.48 
H-L 2.31 1.56 3.72 1.45 1.57  2.10 0.92 4.69 0.68 0.77 
t-stat  (7.07)   (7.12)   (3.51)   (3.08) 

COMB  
  Pred Avg SD SR α   Pred Avg SD SR α 
Low (L) -0.02 0.00 5.36 0.00 -0.61  -0.17 0.25 5.36 0.16 -0.38 
2 0.54 0.59 5.02 0.41 -0.02  0.46 0.64 4.99 0.44 0.00 
3 0.88 0.67 4.92 0.47 0.07  0.88 0.58 5.13 0.39 -0.06 
4 1.27 0.76 4.84 0.54 0.20  1.35 0.75 5.41 0.48 0.09 
High (H) 2.23 1.64 5.39 1.05 1.10  2.25 1.23 6.83 0.63 0.49 
H-L 2.25 1.64 4.13 1.37 1.71  2.42 0.98 5.06 0.67 0.87 
t-stat   (6.75)     (7.07)     (3.26)     (3.04) 
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Table 4. Practical Properties of the Machine Learning Portfolios  

The table presents the drawdown, turnover statistics, and multifactor alphas of quintile portfolios formed on using the 
machine learning models. The equal- and value-weighted strategies (Panels A and B, respectively) are based on predictions 
from different machine learning models that are indicated in the first row (see Section 2.3 for details). Panels A.1 and B.1 
concern portfolio turnover. The long-only (LO) portfolios buy the quintile of markets with the highest predictions; the 
long-short strategies (LS) additionally sell the quintile of markets with the lowest predictions. The portfolios are rebalanced 
monthly. Turnover denotes the average monthly one-sided turnover, calculated following Koijen et al. (2018), as a share 
of portfolio that needs to be replaced each month. Breakeven indicates the associated breakeven transaction costs. Panes 
A.2 and B.2 display the maximum monthly loss on both the long-short strategy (Max 1M loss) and maximum drawdown 
(Max DD). Panels A.3 and B.3 report the results of spanning tests of the long-short machine learning strategies with the 
six-factor model of Fama and French (2018). 𝛼էէϩ denotes the monthly alpha and 𝑅էէϩ

ϵ  is the adjusted coefficient of 
determination. The subscript “S” denotes global stock-level factors from French (2022).  The subscript “C” indicates the 
factors formed of country indices that mimic the portfolio structure as the evaluated strategies (equal- or value-weighted 
quintiles) and are derived from identical asset universe. All values are reported in percentages. The numbers in parentheses 
are Newey-West (1987) adjusted t-statistics. The sample comprises 71 country stock markets and the testing period is 
from January 1995 to April 2021. 

Panel A: Equal-weighted portfolios 

  OLS PLS PCA LASSO ENET SVM GBRT RF FFN1 FFN2 FFN3 COMB 
Panel A.1: Loss statistics 

Max 1M loss (%) 12.19 10.90 10.63 11.80 11.80 13.35 13.63 12.87 10.63 11.18 9.82 13.01 
Max DD (%) 26.73 25.45 25.00 27.18 27.18 25.44 30.72 25.85 24.37 24.81 25.43 27.93 

Panel A.2: Spanning tests 
αΑΑϩ−Ϣ 1.37 1.35 1.19 1.21 1.21 1.24 0.96 1.42 1.62 1.73 1.60 1.62 

 (4.89) (4.51) (4.52) (4.14) (4.11) (4.79) (3.95) (5.79) (6.28) (6.40) (5.76) (5.85) 
RΑΑϩ−Ϣ

ϵ  2.55 0.87 2.56 4.23 4.15 4.80 2.93 9.41 3.52 2.72 2.90 4.23 
αΑΑϩ−ͨ 1.00 1.00 0.79 0.95 0.94 0.89 0.68 1.07 1.22 1.29 1.11 1.12 
 (4.77) (4.11) (3.73) (3.83) (3.80) (4.00) (3.21) (5.19) (6.33) (5.97) (5.25) (4.97) 
RΑΑϩ−ͨ

ϵ  21.74 22.10 25.68 24.75 24.67 26.09 18.28 23.82 21.89 21.59 20.68 27.66 
Panel A.3: Portfolio turnover 

LO Turnover (%) 28.40 25.69 26.00 32.03 31.95 31.98 44.96 53.89 27.35 26.31 27.51 30.36 
LO Breakeven (%) 2.66 3.03 2.94 2.40 2.41 2.34 1.51 1.49 3.08 3.30 2.91 2.69 
LS Turnover (%) 63.11 56.14 57.47 71.13 71.08 72.66 95.21 110.77 58.65 58.84 58.21 68.95 
LS Breakeven (%) 1.10 1.17 1.06 0.96 0.95 0.95 0.60 0.70 1.43 1.44 1.34 1.19 

Panel B: Value-weighted portfolios 

  OLS PLS PCA LASSO ENET SVM GBRT RF FFN1 FFN2 FFN3 COMB 
Panel B.1: Loss statistics 

Max 1M loss (%) 11.75 13.35 12.39 12.76 12.76 16.21 12.54 14.58 10.47 18.91 16.27 15.24 
Max DD (%) 26.39 32.37 32.07 31.20 31.20 29.34 25.97 28.01 29.81 36.39 34.84 36.00 

Panel B.2: Spanning tests 
αΑΑϩ−Ϣ 0.76 0.57 0.60 0.64 0.63 0.72 0.48 0.94 0.80 0.92 0.66 0.79 
 (2.82) (2.06) (2.29) (2.13) (2.10) (2.88) (1.82) (3.47) (3.09) (3.45) (2.49) (2.69) 
RΑΑϩ−Ϣ

ϵ  6.72 2.50 2.05 1.63 1.74 4.81 3.60 8.18 8.64 6.02 6.62 9.45 
αΑΑϩ−ͨ 0.58 0.31 0.32 0.52 0.51 0.57 0.34 0.79 0.62 0.75 0.56 0.57 
 (2.40) (1.37) (1.44) (2.07) (2.08) (2.72) (1.69) (3.66) (2.95) (3.49) (2.59) (2.44) 
RΑΑϩ−ͨ

ϵ  11.92 25.47 25.16 20.52 20.91 21.23 15.99 15.00 19.88 19.82 19.40 24.15 
Panel B.3: Portfolio turnover 

LO Turnover (%) 47.94 41.40 40.70 53.47 53.20 52.08 58.06 68.23 41.96 40.10 43.60 45.53 
LO Breakeven (%) 1.20 1.39 1.45 1.11 1.12 1.18 0.85 0.84 1.59 1.79 1.44 1.35 
LS Turnover (%) 89.99 77.87 79.50 101.95 101.79 99.05 117.29 136.67 78.49 79.42 78.86 94.45 
LS Breakeven (%) 0.48 0.43 0.43 0.39 0.40 0.47 0.26 0.35 0.66 0.71 0.58 0.52 
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Table 5. Performance of Machine Learning Portfolios with Extended Holding Periods 

The table presents the monthly returns on quintile portfolios from univariate sorts on the predictions of different machine 
learning models from Section 2.3. Low (High) denotes the quintiles of markets with the lowest (highest) predicted return. 
The portfolios are equal-weighted and are reformed once in three (Panel A), six (Panel B), or 12 (Panel C) months. The 
table also reports the average return (H-L R) and alpha from the global CAPM (H-L α) on a long-short strategy buying 
(selling) the long (short) quintile. The returns and alphas are reported in percentages. The numbers in parentheses are t-
statistics calculated using the HAC estimator (Newey & West, 1987). The sample comprises 71 country stock markets and 
the testing period is from January 1995 to April 2021. 

  OLS PLS PCA LASSO ENET SVM GBRT RF FFN1 FFN2 FFN3 COMP 
Panel A: Three-month holding period 

Low (L) 0.29 0.28 0.35 0.18 0.17 0.13 0.30 0.28 0.18 0.27 0.19 0.18 
2 0.39 0.63 0.52 0.61 0.62 0.60 0.44 0.51 0.59 0.46 0.48 0.46 
3 0.75 0.45 0.53 0.76 0.74 0.63 0.77 0.70 0.63 0.65 0.76 0.70 
4 0.83 0.87 0.94 0.79 0.80 0.89 0.93 0.91 0.83 0.77 0.74 0.77 
High (H) 1.38 1.41 1.33 1.32 1.32 1.40 1.22 1.25 1.41 1.50 1.47 1.54 
H-L R 1.09 1.13 0.98 1.15 1.15 1.27 0.91 0.97 1.22 1.23 1.28 1.36 

  (5.17) (5.00) (4.44) (4.85) (4.84) (5.73) (4.95) (4.52) (5.74) (6.09) (6.60) (6.41) 
H-L α 1.14 1.21 1.05 1.23 1.23 1.36 0.88 1.02 1.29 1.30 1.33 1.46 

 (5.38) (5.34) (4.78) (5.12) (5.13) (5.98) (4.26) (4.54) (5.93) (6.05) (6.12) (6.58) 
Panel B: Six-month holding period 

Low (L) 0.48 0.44 0.45 0.31 0.30 0.27 0.48 0.37 0.45 0.41 0.38 0.32 
2 0.46 0.61 0.64 0.66 0.67 0.77 0.47 0.70 0.60 0.60 0.61 0.53 
3 0.74 0.61 0.62 0.71 0.69 0.63 0.75 0.60 0.54 0.47 0.57 0.80 
4 0.66 0.77 0.70 0.86 0.86 0.79 1.01 0.80 0.76 0.82 0.68 0.67 
High (H) 1.29 1.21 1.24 1.11 1.11 1.17 0.93 1.17 1.29 1.35 1.38 1.33 
H-L R 0.81 0.77 0.79 0.80 0.80 0.90 0.45 0.80 0.84 0.93 1.00 1.01 

  (3.63) (3.54) (3.76) (3.32) (3.33) (3.77) (2.31) (3.97) (3.78) (4.34) (4.76) (4.44) 
H-L α 0.85 0.86 0.85 0.88 0.89 0.98 0.41 0.87 0.93 0.98 1.05 1.11 

 (3.99) (3.91) (3.90) (3.63) (3.65) (4.17) (2.04) (3.93) (4.20) (4.57) (4.90) (4.73) 
Panel C: Twelve-month holding period 

Low (L) 0.56 0.54 0.49 0.49 0.49 0.42 0.55 0.44 0.53 0.51 0.52 0.50 
2 0.44 0.54 0.71 0.59 0.61 0.81 0.61 0.76 0.69 0.53 0.50 0.46 
3 0.72 0.63 0.58 0.69 0.67 0.52 0.74 0.74 0.58 0.66 0.53 0.84 
4 0.74 0.84 0.80 0.88 0.88 0.76 0.83 0.68 0.73 0.72 0.85 0.62 
High (H) 1.18 1.08 1.07 0.99 0.99 1.13 0.93 1.00 1.11 1.24 1.23 1.23 
H-L R 0.62 0.55 0.58 0.49 0.50 0.71 0.38 0.56 0.59 0.73 0.71 0.73 

  (2.88) (2.53) (2.87) (2.07) (2.09) (2.87) (2.05) (2.79) (2.70) (3.39) (3.50) (3.33) 
H-L α 0.70 0.62 0.68 0.59 0.60 0.81 0.36 0.55 0.69 0.78 0.75 0.84 
  (3.39) (2.92) (3.15) (2.43) (2.44) (3.44) (1.81) (2.77) (3.19) (3.59) (3.59) (3.81) 
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Table 6. Bivariate Portfolio Sorts on Risk Changes and Predicted Returns 

The table presents the monthly returns on portfolios from bivariate sorts on risk changes and return 
predictions from the forecast combination (COMB) machine learning model. In the first step, we sort the 
markets into tertiles based on 24-month changes in the measures of sovereign risk (Panel A), financial risk 
(Panel B), economic risk (Panel C), and political risk (Panel D). Subsequently—within each of these 
subsets—we sort portfolios into Low, Medium, and High tertiles (as indicated in the top row) based on 
the COMB predictions. Furthermore, we calculate a spread H-L portfolio that buys (sells) the markets 
with the High (Low) return predictions. All portfolios are equally weighted and rebalanced monthly. H-L 
R is the average monthly return on this portfolio and H-L α is the associated alpha from the global CAPM. 
The last row of each panel reports the differences in returns on the H-L portfolios between the tertiles of 
high and low risk changes. The numbers in parentheses are bootstrap (for returns) and Newey-West (1987) 
adjusted (for alphas) t-statistics. Both the returns and alphas are reported in percentages. The sample 
comprises 71 country stock markets and the testing period is from January 1995 to April 2021. 

  Low (L) Medium High (H) H-L R t-statR H-L α t-statα 
Pane A: Changes in sovereign risk 

High Δ sovereign risk 0.29 0.72 1.27 0.99 (4.74) 1.06 (5.34) 
Medium Δ sovereign risk 0.38 0.72 1.04 0.66 (4.28) 0.75 (4.65) 
Low Δ sovereign risk 0.27 0.74 1.09 0.82 (4.17) 0.89 (4.03) 
High - Low Δ sovereign risk    0.16 (0.66) 0.17 (0.70) 

Pane B: Changes in financial risk 
High Δ financial risk 0.12 0.54 1.45 1.33 (4.55) 1.39 (4.64) 
Medium Δ financial risk 0.40 0.72 1.12 0.72 (3.60) 0.77 (3.05) 
Low Δ financial risk 0.28 0.89 1.03 0.75 (3.25) 0.80 (2.80) 
High - Low Δ financial risk    0.58 (1.75) 0.59 (1.55) 

Pane C: Changes in economic risk 
High Δ economic risk 0.21 0.70 1.51 1.30 (4.50) 1.34 (5.44) 
Medium Δ economic risk 0.17 0.52 0.87 0.70 (3.33) 0.80 (3.63) 
Low Δ economic risk 0.49 0.88 1.16 0.67 (2.98) 0.66 (2.89) 
High - Low Δ economic risk    0.63 (1.86) 0.68 (2.11) 

Pane D: Changes in political risk 
High Δ political risk 0.49 0.55 1.38 0.89 (3.73) 0.92 (3.96) 
Medium Δ political risk 0.27 0.45 1.19 0.91 (4.10) 0.99 (4.16) 
Low Δ political risk 0.24 0.70 1.24 0.99 (3.80) 1.04 (4.14) 
High - Low Δ political risk       -0.11 (-0.33) -0.12 (-0.39) 
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Table 7. Bivariate Portfolio Sorts on Mispricing and Predicted Returns 

The table presents the monthly returns on portfolios from bivariate sorts on the mispricing score (MISP) 
and return predictions from the forecast combination (COMB) machine learning model. In the first step, 
we sort the markets into tertiles based on MISP. Subsequently—within each of these subsets—we sort 
portfolios into Low, Medium, and High tertiles (as is indicated in the top row) based on the COMB 
predictions. Furthermore, we  calculate a spread H-L portfolio that buys (sells) the markets with the High 
(Low) return predictions. All portfolios are equally weighted and rebalanced monthly. H-L R is the average 
monthly return on this portfolio and H-L α is the associated alpha from the global CAPM. The bottom 
rows report the differences in returns on the H-L portfolios between the Low and High MISP tertiles and 
the middle one. The numbers in parentheses are bootstrap (for returns) and Newey-West (1987) adjusted 
(for alphas) t-statistics. The returns and alphas are reported in percentages. The sample comprises 71 
country stock markets and the testing period is from January 1995 to April 2021. 

  Low (L) Medium High (H) H-L R H-L α 
Low MISP 0.58 0.94 1.78 1.20 1.21 

 (2.08) (3.63) (5.38) (5.08) (5.09) 
Medium MISP 0.33 0.71 0.69 0.36 0.40 

 (1.14) (2.54) (2.47) (2.11) (2.41) 
High MISP -0.08 0.46 1.08 1.16 1.15 

 (-0.23) (1.40) (3.14) (4.12) (4.09) 
Low-Medium MISP    0.84 0.81 

    (2.98) (2.82) 
High-Medium MISP    0.80 0.75 
        (2.43) (2.46) 
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Table 8. Performance of Machine Learning Portfolios in Subperiods 

The table presents the monthly returns on quintile portfolios from univariate sorts on the predictions of different machine learning models from Section 2.3. Low 
(High) denotes the quintiles of markets with the lowest (highest) predicted return. The table also reports the average return (H-L R) and alpha from the global 
CAPM (H-L α) on a long-short strategy buying (selling) the long (short) quintile. Both the returns and alphas are reported in percentages. The numbers in 
parentheses are t-statistics that are calculated using the HAC estimator (Newey & West, 1987). The sample comprises 71 country stock markets. The results are 
reported for two subperiods: January 1995 to February 2008 (Panel A) and March 2008 to April 2021 (Panel B).  

  OLS PLS PCA LASSO ENET SVM GBRT RF FFN1 FFN2 FFN3 COMB 
Panel A: First half (January 1995 - February 2008) 

Low (L) 0.11 0.35 0.50 0.23 0.24 0.17 0.23 0.13 0.04 0.13 0.04 -0.04 
2 0.59 0.96 0.69 0.85 0.85 0.64 0.59 0.85 0.76 0.85 0.63 0.78 
3 1.03 0.65 0.85 0.90 0.89 1.11 0.98 0.96 0.83 0.96 1.16 1.05 
4 1.43 1.16 1.10 1.28 1.30 1.35 1.53 0.97 1.33 0.97 1.21 1.18 
High (H) 2.12 2.15 2.13 2.01 2.00 1.98 1.94 2.37 2.30 2.37 2.21 2.29 
H-L R 2.01 1.80 1.63 1.78 1.76 1.81 1.71 2.23 2.26 2.23 2.16 2.32 
  (7.03) (5.36) (4.54) (4.77) (4.70) (6.65) (6.03) (6.96) (8.20) (6.96) (7.33) (6.72) 
H-L α 2.06 1.89 1.75 1.90 1.88 1.90 1.75 2.29 2.33 2.29 2.14 2.39 
  (7.12) (5.63) (4.87) (5.14) (5.06) (6.74) (6.53) (7.07) (8.36) (7.07) (7.11) (6.91) 

Panel B: Second half (March 2008 - April 2021) 
Low (L) 0.13 0.13 0.11 0.13 0.14 0.05 0.20 -0.04 -0.02 -0.04 0.04 0.03 
2 0.37 0.38 0.39 0.44 0.43 0.46 0.27 0.32 0.23 0.32 0.44 0.40 
3 0.35 0.16 0.15 0.25 0.25 0.36 0.34 0.45 0.51 0.45 0.33 0.28 
4 0.29 0.43 0.48 0.16 0.15 0.17 0.46 0.20 0.24 0.20 0.24 0.34 
High (H) 0.90 0.96 0.92 1.07 1.08 1.01 0.77 1.11 1.07 1.11 0.99 0.99 
H-L R 0.77 0.83 0.81 0.94 0.95 0.96 0.57 1.15 1.09 1.15 0.95 0.95 
  (2.61) (2.72) (2.94) (3.11) (3.13) (3.08) (2.24) (4.14) (3.67) (4.14) (3.33) (3.32) 
H-L α 0.82 0.88 0.85 0.99 1.00 1.04 0.56 1.22 1.12 1.22 1.00 1.02 
  (2.75) (2.87) (3.11) (3.17) (3.19) (3.25) (2.32) (4.65) (3.78) (4.65) (3.63) (3.65) 
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Table 9. Machine Learning Predictions and International Variation in Limits to Arbitrage 

The table reports the average slope coefficients from cross-sectional regressions of monthly country equity returns 
on the predictions from machine learning models, proxies for limits to arbitrage, and interaction terms. We interact 
the model predictions (PRED) with four binary variables associated with limits to arbitrage and market 
development: SIZE, IRISK, LIQ, and EMER. SIZE takes the value of one if market capitalization at time t-1 is 
lower than a cross-sectional median, and zero otherwise. IRISK takes the value of one if idiosyncratic risk at t-1 
is higher than a cross-sectional median, and zero otherwise. LIQ takes the value of one if Amihud’s (2002) illiquidity 
ratio at t-1 is higher than a cross-sectional median, and zero otherwise. Finally, EMER takes the value of one for 
emerging and developing markets—and zero otherwise. The monthly predictions of country index returns come 
from 11 different models that were described in Section 2.3. The numbers in parentheses are t-statistics that are 
calculated using the HAC estimator (Newey & West, 1987). The coefficients for SIZE, IRISK, LIQ, and EMER 
are multiplied by 100. Rଶതതത is the average cross-sectional adjusted coefficient of determination (expressed in 
percentage terms). The sample comprises 71 country stock markets, and the testing period is from January 1995 
to April 2021. 

  OLS PLS PCA LASSO ENET GBRT RF FFN1 FFN2 FFN3 COMP 
Panel A: Univariate regressions 

PRED 0.49 0.47 0.52 1.24 1.25 0.36 0.48 0.66 0.70 0.60 0.83 
 (4.91) (4.70) (4.81) (4.37) (4.37) (5.46) (5.59) (5.80) (5.70) (4.23) (5.41) 

Rଶതതത 4.53 4.44 4.55 5.90 5.91 2.43 6.69 6.44 5.61 4.64 6.07 
Panel B: Controlling for market size 

PRED 0.23 0.20 0.20 0.58 0.59 0.18 0.37 0.64 0.60 0.38 0.72 
 (2.75) (2.36) (2.08) (2.17) (2.20) (3.59) (4.76) (5.85) (5.23) (2.60) (5.04) 

SIZE -0.25 -0.38 -0.41 -0.45 -0.45 -0.39 -0.28 -0.13 -0.17 -0.27 -0.15 
 (-1.15) (-1.89) (-2.03) (-2.46) (-2.46) (-2.11) (-1.56) (-0.73) (-0.90) (-1.31) (-0.80) 

PRED*SIZE 0.34 0.40 0.45 0.39 0.39 0.49 0.38 0.04 0.13 0.28 0.13 
 (2.02) (2.60) (2.96) (3.21) (3.22) (3.75) (3.70) (0.36) (0.97) (1.67) (0.97) 

Rଶതതത 7.75 9.24 9.15 10.14 10.15 7.93 10.82 9.66 9.21 8.99 9.55 
Panel C: Controlling for market idiosyncratic risk 

PRED 0.36 0.27 0.26 0.75 0.75 0.22 0.38 0.76 0.72 0.46 0.82 
 (4.85) (2.84) (2.29) (2.67) (2.69) (4.19) (4.99) (5.82) (6.07) (3.15) (5.66) 

IRISK -0.21 -0.48 -0.57 -0.49 -0.50 -0.56 -0.49 -0.02 -0.13 -0.27 -0.21 
 (-1.01) (-2.25) (-2.71) (-2.64) (-2.65) (-2.80) (-2.82) (-0.11) (-0.62) (-1.22) (-1.06) 

PRED*IRISK 0.15 0.29 0.38 0.29 0.29 0.42 0.31 -0.15 -0.04 0.16 0.00 
 (1.06) (1.86) (2.34) (2.85) (2.87) (3.44) (3.49) (-1.42) (-0.37) (0.99) (0.01) 

Rଶതതത 6.51 8.02 8.24 8.98 9.00 6.79 10.04 8.64 8.09 7.60 8.46 
Panel D: Controlling for market liquidity 

PRED 0.38 0.30 0.30 0.71 0.72 0.23 0.40 0.73 0.68 0.49 0.84 
 (4.58) (3.31) (2.78) (2.51) (2.42) (4.53) (5.27) (6.89) (6.01) (3.30) (5.87) 

LIQ -0.09 -0.33 -0.40 -0.44 -0.44 -0.33 -0.24 0.00 -0.05 -0.17 -0.09 
 (-0.51) (-1.94) (-2.42) (-2.93) (-2.93) (-2.02) (-1.70) (-0.03) (-0.31) (-0.95) (-0.60) 

PRED*LIQ 0.14 0.27 0.34 0.30 0.31 0.42 0.30 -0.09 0.01 0.16 0.01 
 (0.80) (1.71) (2.21) (2.58) (2.59) (3.22) (3.01) (-0.77) (0.08) (0.92) (0.06) 

Rଶതതത 6.79 8.26 8.26 8.84 8.86 6.62 9.76 8.72 8.21 7.94 8.70 
Panel E: Controlling for market development 

PRED 0.27 0.23 0.26 0.67 0.68 0.16 0.36 0.71 0.68 0.49 0.84 
 (3.13) (2.45) (2.34) (2.71) (2.74) (3.33) (4.77) (5.68) (5.50) (3.12) (5.38) 

EMER -0.22 -0.36 -0.40 -0.39 -0.39 -0.38 -0.31 -0.03 -0.09 -0.21 -0.11 
 (-1.02) (-1.54) (-1.76) (-1.87) (-1.87) (-1.86) (-1.60) (-0.14) (-0.44) (-0.96) (-0.55) 

PRED*EMER 0.25 0.33 0.36 0.34 0.34 0.46 0.31 -0.10 0.01 0.17 0.00 
 (1.59) (2.06) (2.26) (2.75) (2.76) (3.39) (3.10) (-0.85) (0.05) (1.01) (-0.01) 

Rଶതതത 7.65 9.45 9.33 10.29 10.30 8.15 10.90 9.85 9.32 9.23 9.65 
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Online Appendix for “Empirical Asset Pricing via 
Machine Learning: The Global Edition”  

 

[FOR ONLINE PUBLICATION ONLY] 

 

Abstract 

Section A provides additional tables and figures from the study. Table A1 presents basic 
statistics of returns on country stock markets that are included in the sample. Table A2 
details the market characteristics that are covered in the study. Table A3 displays the 
statistical properties of country-level asset pricing factors. Table A4 reports the results 
of the bivariate portfolio sorts mispricing and return predictions from the different 
models. Section B contains the description of the machine learning methods that are used 
in this study:  linear regressions (B.1), dimension reduction techniques (B.2), penalized 
linear regressions (B.3),  support vector machine(B.4), tree models (B.5), neural networks 
(B.6), and forecast combination (B.7).
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A. Additional Tables and Figures From the Study 

Table A1. Country Stock Markets Covered in the Study 

The table presents the list of country stock markets considered in this study along with the essential statistical 
properties of index excess returns: average, standard deviation, skewness, kurtosis, minimum, and maximum. All the 
return data is in percentages. No. is the running number. Start date indicates the first available monthly return. 
#Obs. is the number of observations in the sample. The last column, Market value, displays the average monthly 
aggregate market capitalization—expressed in U.S. dollars. 

No. Country Average 
Standard 
deviation 

Skewness Kurtosis Minimum Maximum 
Start 
date 

#Obs. 
Market 
value 

1 Argentina 1.07 14.30 2.07 15.71 -54.53 118.14 Jan 1985 414 28.83 
2 Australia 0.87 6.54 -1.08 5.85 -43.86 18.09 Jan 1985 436 610.74 
3 Austria 0.95 7.17 0.18 4.37 -34.33 36.57 Jan 1985 436 65.97 
4 Bahrain 0.33 3.56 -0.39 3.04 -15.56 11.29 Jan 2004 208 15.58 
5 Belgium 0.80 5.67 -0.51 4.05 -32.41 23.90 Jan 1985 436 189.11 
6 Brazil 1.74 14.49 0.85 5.17 -56.67 89.07 Jan 1985 421 428.34 
7 Bulgaria 1.42 9.46 0.38 3.31 -36.67 38.56 Nov 2000 246 2.26 
8 Canada 0.67 5.31 -0.79 3.63 -26.58 20.33 Jan 1985 436 910.28 
9 Chechia 0.95 8.32 1.37 13.10 -26.96 68.45 Dec 1993 329 27.41 

10 Chile 1.31 7.70 0.96 9.56 -32.16 62.36 Jan 1985 436 104.03 
11 China 1.21 12.04 6.40 78.76 -28.08 153.22 Jun 1994 323 1729.92 
12 Colombia 0.85 8.39 0.49 3.95 -35.39 48.68 Jan 1988 400 60.17 
13 Croatia 0.52 6.94 0.13 5.40 -31.15 32.34 Nov 2005 186 13.90 
14 Cyprus 0.13 11.51 0.81 10.06 -65.03 69.54 Jan 1993 340 5.53 
15 Denmark 1.03 5.47 -0.39 2.06 -26.47 20.36 Jan 1985 436 151.04 
16 Egypt 0.67 8.21 0.11 2.72 -33.84 39.67 Jan 1995 316 25.68 
17 Estonia 1.42 9.22 0.26 3.65 -41.35 42.25 Aug 1995 309 1.62 
18 Finland 1.08 7.68 0.03 1.45 -29.08 29.44 Jan 1985 436 137.15 
19 France 0.94 5.96 -0.27 1.01 -21.61 21.43 Jan 1985 436 1206.26 
20 Germany 0.77 6.04 -0.39 1.10 -20.79 19.23 Jan 1985 436 1027.39 
21 Greece 1.01 10.72 0.79 3.99 -33.68 57.84 Jan 1985 436 51.26 
22 Hong Kong 1.04 7.21 -0.57 5.48 -45.99 28.93 Jan 1985 436 945.28 
23 Hungary 0.85 9.45 0.45 5.96 -39.22 59.52 Feb 1991 363 18.54 
24 Iceland 0.66 8.95 -3.14 23.35 -75.07 23.70 Jul 2002 225 8.22 
25 India 0.98 9.66 0.51 3.38 -32.14 53.62 Jan 1985 436 556.92 
26 Indonesia 1.15 12.12 2.04 15.56 -41.15 93.68 Jan 1988 400 126.28 
27 Ireland 0.96 6.50 -0.37 2.34 -25.66 26.28 Jan 1985 436 57.83 
28 Israel 0.80 6.14 -0.36 0.76 -19.84 16.85 Jan 1985 436 69.66 
29 Italy 0.70 7.05 0.11 0.80 -23.19 26.56 Jan 1985 436 456.96 
30 Japan 0.41 5.87 0.26 1.17 -18.19 26.42 Jan 1985 436 3473.27 
31 Jordan 0.32 5.55 -0.07 6.01 -31.05 29.32 Dec 1987 398 13.64 
32 Korea 1.05 9.73 1.02 6.54 -32.48 70.35 Jan 1985 436 436.05 
33 Kuwait 0.52 5.27 -0.31 2.14 -18.10 17.42 Jan 2004 208 50.60 
34 Latvia 1.08 9.21 1.49 11.97 -35.49 63.52 May 1996 299 1.42 
35 Lithuania 0.93 9.11 3.22 27.03 -32.98 81.10 Jan 1996 304 2.39 
36 Luxembourg 0.76 5.73 -0.41 3.26 -27.51 22.64 Jan 1985 436 22.46 
37 Malaysia 0.63 7.73 0.32 5.95 -33.72 45.76 Jan 1985 436 174.99 
38 Malta 0.36 4.95 -0.13 1.22 -18.11 14.02 Feb 2000 255 3.63 
39 Mauritius 0.72 5.33 -0.22 4.02 -24.59 20.00 Aug 1989 380 4.40 
40 Mexico 1.50 9.49 -0.99 6.31 -60.89 35.57 Jan 1985 436 199.86 
41 Morocco 0.82 4.93 -0.02 3.82 -24.36 23.23 Apr 1994 325 26.87 
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42 Netherlands 0.85 5.37 -1.00 3.95 -30.99 16.27 Jan 1985 436 444.64 
43 New Zealand 0.86 6.54 -0.25 2.87 -34.96 29.21 Jan 1985 436 35.07 
44 Nigeria 0.26 7.37 -0.54 1.20 -25.45 16.02 Oct 2009 139 21.77 
45 Norway 1.03 7.42 -0.54 1.88 -30.70 23.82 Jan 1985 436 128.85 
46 Oman 0.27 4.36 -0.60 3.67 -20.76 15.47 Nov 2005 186 10.44 
47 Pakistan 0.79 9.06 0.09 2.94 -38.34 34.96 Jan 1988 400 21.71 
48 Peru 0.83 6.61 -0.05 4.10 -29.48 30.96 Jan 1993 340 34.04 
49 Philippines 1.29 8.98 0.92 6.45 -34.12 55.90 Jan 1985 436 79.21 
50 Poland 1.22 11.99 1.82 13.68 -33.79 100.65 May 1991 360 77.80 
51 Portugal 0.22 6.16 -0.27 1.36 -28.08 21.62 Feb 1988 399 47.95 
52 Qatar 1.02 8.04 0.66 5.06 -24.39 44.88 Jan 2004 208 96.62 
53 Romania 1.27 12.51 1.07 8.20 -43.97 84.53 Jan 1997 292 13.25 
54 Russia 1.74 12.95 0.03 2.50 -57.04 48.06 Jan 1995 316 380.59 
55 Saudi Arabia 0.18 7.19 -0.33 1.23 -23.90 21.17 Nov 2005 186 254.90 
56 Singapore 0.65 6.67 -0.44 4.21 -37.62 25.97 Jan 1985 436 238.44 
57 Slovakia 0.47 4.33 -0.50 2.37 -18.86 14.55 Apr 2006 181 4.31 
58 Slovenia 0.47 5.97 -0.33 1.99 -23.40 19.77 Jan 1999 256 5.71 
59 South Africa 0.92 7.61 -0.61 1.78 -35.78 19.45 Jan 1985 436 220.83 
60 Spain 0.92 6.79 0.02 1.77 -24.69 28.18 Jan 1985 436 423.18 
61 Sri Lanka 0.70 8.13 0.74 2.58 -24.31 37.72 Jul 1987 406 5.50 
62 Sweden 1.09 6.89 -0.29 1.16 -26.20 22.42 Jan 1985 436 302.00 
63 Switzerland 0.92 4.76 -0.44 1.16 -18.85 15.23 Jan 1985 436 768.40 
64 Taiwan 0.94 9.63 0.73 4.08 -33.87 56.73 Jan 1988 400 339.97 
65 Thailand 1.11 9.42 0.13 2.68 -32.61 40.57 Jan 1985 436 126.92 
66 Turkey 1.77 15.83 1.54 8.69 -41.25 119.58 Feb 1986 423 93.35 
67 UAE 1.12 7.56 0.59 3.61 -22.83 33.89 Jan 2004 208 124.94 
68 UK 0.68 5.16 -0.33 1.55 -21.83 16.35 Jan 1985 436 2100.75 
69 USA 0.82 4.33 -0.73 2.36 -20.87 13.48 Jan 1985 436 13193.37 
70 Venezuela 3.31 23.43 1.82 14.62 -95.54 172.47 Jan 1988 388 10.34 
71 Vietnam 0.47 8.09 -0.41 1.40 -25.27 23.29 May 2007 168 50.50 
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Table A2. Market Characteristics 

The table details the market characteristics that are  considered in the study. No. is the running number. Symbol denotes the abbreviation of the anomaly that is used in the study. 
Panels A to L contain a replication of anomalies from the stock level, so both original references and their country-level replications are provided. The signals in Panels M to P do 
not have their firm-level parallels. The data sources in the last column are indicated in the order of priority. If the data from the first source is unavailable, it is spliced and backfilled 
with the data from the second source. 

No. Abbr. Anomaly Key Original References Key Country-Level References Implementation Details Data source(s) 

Panel A: Value vs. Growth 

1 EP Earnings yield Basu (1977) 

Macedo (1995), Heckman et al. 
(1996), Asness, Liew et al. 
(1997), Kim (2012), Asness et 
al. (2013), Angelidis and 
Tessaromatis (2017), Lawrenz 
and Zorn (2017), Zaremba et 
al. (2020), Baltussen et al. 
(2021), Radha (2021) 

Trailing 12-month net profit at t-5 to the market value of equity 
at t-1. 

Datastream, Global 
Financial Data 

2 BM 
Book-to-market 
ratio 

Rosenberg et al. (1985) Book value of equity at t-5 to market value of equity at t-1.  Datastream 

3 CP 
Cash flow-to-price 
ratio 

Lakonishok et al. (1994) 
Trailing 12-month cash flow at t-5 to the market value of equity 
at t-1. 

Datastream 

4 SP Sales-to-price ratio Barbee et al. (1996) 
Trailing 12-month sales at t-5 to the market value of equity at 
t-1. 

Datastream 

5 EDEV 
EBITDA-to-EV 
ratio 

Loughran and Wellman 
(2011) 

Trailing 12-month earnings before interest, taxes, depreciation, 
and amortization (EBITDA) at t-5 to enterprise value (EV) at 
t-1. 

Datastream 

6 FEP 
Forward earnings 
yield 

Elgers et al. (2001) 
I/B/E/S estimates of forward 12-month earnings to the market 
value of equity at t-1. 

Datastream 

7 DY Dividend yield 
Litzenberger and 
Ramaswamy (1979) 

Trailing 12-month dividend yield at t-1. 
Datastream, Global 
Financial Data 

8 CAPE 
Cyclically adjusted 
price-to-earnings 
ratio 

Cambell and Shiller (1998, 
2001), Bunn et al. (2014), 
Siegel (2016) 

The current market value of an index portfolio divided by the 
average annual earnings during the past 10 years that has been 
adjusted for the inflation rate—all recorded at t-5. Where net 
earnings for the country were negative, the ratio of 100 has been 
used. 

Global Financial 
Data 

Panel B: Size and Liquidity 

9 MV Market value Banz (1981) Keppler and Traub (1993), Lee 
(2011), Liang and Wei (2012), 
Fisher et al. (2017), Chen et al. 
(2018) 

The natural logarithm of market value of equity in USD at t-1 
(multiplied by -1). 

Datastream, Global 
Financial Data 

10 Illiq Amihud ratio Amihud (2002) 
A reciprocal of the annualized average ratio of the dollar trading 
volume-to-return ratio over the last 260 trading days (≈one 
year).  

Datastream 
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11 Turn Turnover ratio Datar et al. (1998) 
The average ratio of the dollar trading volume to the market 
value of equity over the last 780 trading days (≈one year). The 
final value is annualized and multiplied by -1. 

Datastram 

12 Dvol Dollar volume Brennan et al. (1998) 
The natural logarithm of the annualized value of the average 
daily trading value over the last 22 trading days (multiplied by -
1). 

Datastream 

13 TurnVar Turnover volatility Chordia et al. (2001) 
The standard deviation of the daily turnover ratio over the last 
260 days (≈one year). 

Datastream 

14 VolVar Volume volatility Chordia et al. (2001) 
The natural logarithm of the standard deviation of the daily 
dollar volume over the last 260 days (≈one year). 

Datastream 

Panel C: Price Risk 

15 Beta Beta 
Fama and MacBeth 
(1973) 

Macedo (1995), Bali and Cakici 
(2010), Frazzini and Pedersen 
(2014), Umutlu (2015), 
Baghdadabad and Mallik 
(2018), Atilgan et al. (2019), 
Gao et al. (2019), Hollstein et 
al. (2019), Zaremba et al. 
(2020), Liang and John Wei 
(2020), Baltussen et al. (2021) 

The slope coefficient from the regression of index excess returns 
on the global market factor (MKT), estimated over a trailing 
36-month period. 

Datastream, Global 
Financial Data 

16 Cor Correlation Asness et al. (2020)  
Pearson’s product-moment correlation coefficient between the 
index excess returns and the global market factor (MKT), 
estimated over a trailing 36-month period (multiplied by -1). 

Datastream, Global 
Financial Data 

17 Vol Total volatility 
Ang et al. (2006), Baker, 
Bradley, and Wurgler 
(2011) 

The standard deviation of the excess returns, estimated over a 
trailing 36-month period. 

Datastream, Global 
Financial Data 

18 IVol 
Idiosyncratic 
volatility 

Ang et al. (2006) 
The volatility of the residuals from a regression of index excess 
returns on the global market factor (MKT), estimated over a 
trailing 36-month period. 

Datastream, Global 
Financial Data 

19 RNG Price range Blau and Whitby (2017) 
The difference between the natural logarithms of the maximum 
and minimum index values over the last 260 trading days (≈one 
year). 

Datastream 

20 VAR Value at risk Bali and Cakici (2004) 
The 5th percentile of monthly returns over the last 60 months 
(multiplied by -1). 

Datastream, Global 
Financial Data 

Panel D: Momentum 

21 LTMom 
Long-term 
momentum 

Fama and French (1996) Asness et al. (1997), Chan et 
al. (2000), Kortas et al. (2005), 
Balvers and Wu (2006), 
Bhojraj and Swaminathan 
(2006), Asness et al. (2013),  
Clare et al. (2016), Geczy and 

The average monthly log-return in months t-12 to t-2. 
Datastream, Global 
Financial Data 

22 MtMom 
Medium-term 
momentum 

Jegadeesh and Titman 
(1993) 

The average monthly log-return in months t-7 to t-2. 
Datastream, Global 
Financial Data 

23 StMom 
Short-term 
momentum 

Medhat and Schmelling 
(2021) 

The log-return in the last month (t-1). 
Datastream, Global 
Financial Data 
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24 ResMom 
Residual 
momentum 

Blitz et al. (2011), Blitz et 
al. (2020) 

Samonov (2016), Zaremba et 
al. (2020), Baltussen et al. 
(2019, 2021) 

The average residual from the regression of index excess returns 
on the global market factor (MKT) in months t-12 to t-2. The 
regression model is estimated for months t-36 to t-1. Following 
Blitz, Hanauer, and Vidojevic (2020), the residuals are scaled by 
their standard deviation. 

Datastream, Global 
Financial Data 

Panel E: Seasonality   

25 Seas 
Cross-sectional 
seasonality 

Heston and Sadka (2008) 
Keloharju et al. (2016, 2021), 
Baltussen et al.(2021) 

The average same-calendar month log-return over trailing 20 
years (as available). 

Datastream, Global 
Financial Data 

Panel F: Profitability 

26 ROA Return on asset 
Balakrishnan et al. 
(2010), Kogan and 
Papanikolaou (2013) 

Calice and Lin (2021), Zaremba 
and Andreu (2018) 

Trailing 12-month net profit to total assets at t-5. Datastream 

27 ROE Return on equity Haugen and Baker (1996) Trailing 12-month net profit to shareholder equity at t-5. Datastream 

28 CFA Cash profitability Ball et al. (2016) Trailing 12-month cash flow to total assets at t-5. Datastream 

29 EBA EBIT-to-asset Cakici et al. (2021) 
Trailing 12-month earnings before interest and taxes (EBIT) to 
total assets at t-5. 

Datastream 

30 NM Net margin Soliman (2008) Trailing 12-month net profit to total sales at t-5. Datastream 

31 SG Sales growth Lakonishok et al. (1994) 
The 12-month change in the natural logarithms of trailing 12-
month total sales recorded at month t-5. 

Datastream 

32 ROACh ROA change Balakrishnan et al. (2010) 
The difference between the return on assets ROA at month t-5 
and its value 12-months earlier. 

Datastream 

33 ROECh ROE change Balakrishnan et al. (2010) 
The difference between the return on assets ROE at month t-5 
and its value 12-months earlier. 

Datastream 

34 NMCh Net margin change Soliman (2008) 
The difference between the net margin at month t-5 and its 
value 12-months earlier. 

Datastream 

35 EarVol Earnings volatility Francis et al. (2004) 
The standard deviation of the return on assets (ROA) over the 
last 16 quarters. 

Datastream 

36 AT Asset turnover Soliman (2008) The ratio of trailing 12-month sales to total assets at t-5. Datastream 

Panel G: Indebtedness 

37 DE 
Debt-to-equity 
ratio 

Fama and French (1992), 
Barbee et al. (1996) Calice and Lin (2021), Zaremba 

and Andreu (2018) 

The ratio of net debt to equity at month t-5. Datastream 

38 DM 
Debt-to-
capitalization ratio 

Bhandari (1998), Penman 
et al. (2007) 

The ratio of net debt at t-5 to market value of equity at month 
t-1. 

Datastream 

Electronic copy available at: https://ssrn.com/abstract=4028525



57 
 

Panel H: Skewness 

39 SKEW Total skewness 
Amaya et al. (2015), Bali 
et al. (2016) 

Harvey (2000), Baltas and 
Salinas (2019) 

The moment measure of skewness of daily returns over the last 
780 trading days (≈three years). If the daily data is not 
available, then the skewness estimated over the last 36 monthly 
returns is used. 

Datastream, Global 
Financial Data 

40 COSKEW Co-skewness 
Harvey, and Siddique 
(2000) 

The co-skewness that is calculated following the method of 
Harvey and Siddique (2000); i.e., as a slope coefficient on the 
squared market factor return, estimated over the last 36 months. 

Datastream, Global 
Financial Data 

Panel I: Long-Term Reversal 

41 LrRev Long-run reversal 
DeBondt and Thaler 
(1985) 

Richard (1997), Balvers et al. 
(2000), Balvers and Wu (2006), 
Spierdijk et al. (2012), Zaremba 
et al. (2019) 

The average log-return in months t-60 to t-13 (multiplied by -1). 
Datastream, Global 
Financial Data 

Panel J: Technical Analysis 

42 MA Moving average 
Brock et al. (1992), 

Sullivan et al. (1999), Han 
et al. (2013) Du (2008), Malin and Bornholt 

(2010), Hsu et al. (2010), Neely 
et al. (2015), Clare et al. 
(2016), Zaremba et al. (2020, 
2021a), Baltussen et al. (2021), 
Sermpinis et al. (2021) 

The ratio of the most recent index value to the average value 
over the last 250 days. 

Datastream 

43 H52 52-week high effect George and Hwang (2004) 
The ratio of the most recent index value to the maximum value 
over the previous 260 days (≈one year). 

Datastream 

44 MAD 
Moving average 
distance 

Avramov et al. (2021) 
The ratio of the average index value over the last 21 days to the 
average value over the last 200 days. 

Datastream 

45 BRTH Market breadth 
Qi and Zhao (2008), Fang 
et al. (2014) 

The difference in the numbers of raising and falling stocks 
within the index portfolio over the last month divided by their 
sum. 

Datastream 

Panel K: Investment and Issuance 

46 AG Asset growth Cooper et al. (2008) 
Baker and Wurgler (2000), 
Boudoukh et al. (2007), 
Zaremba and Andreu (2018), 
Wen (2019), Calice and Lin 
(2021) 

The 12-month change in the natural logarithms of total assets at 
t-5 (multiplied by -1). 

Datastream 

47 CEI 
Composite equity 
issuance 

Daniel and Titman (2006) 
The 36-month change in the natural logarithms of market value 
minus the 36-month total log-return. 

Datastream, Global 
Financial Data 

48 NSI Net share issuance 
Pontiff and Woodgate 
(2008) 

The 12-month change in the aggregate number of shares 
outstanding in each country (from t-13 to t-1). The shares 
outstanding are estimated through the use of the Share Value 
Index by Global Financial Data. 

Global Financial 
Data 
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49 HR Hiring rate Belo et al. (2014)  
The 12-month change in the natural logarithms of the number 
of employees at t-5 (multiplied by -1). 

Datastream 

50 PY Payout ratio Lamont (1998) The ratio of 12-month trailing dividend to earnings ratio at t-5. 
Datastream, Global 
Financial Data 

Panel L: Macroeconomic Conditions 

51 Unemp 
Unemployment 
rate 

Erb et al. (1995b), Flannery and Protopapadakis (2002), 
Rapach et al. (2005, 2010), Campbell and Thompson (2008), 
Welch and Goyal (2008),  Rapach and Zhou (2013), Møller 
and Rangvid (2015), Baetje and Menkhoff (2016), Hollstein 
et al. (2020), Atanasov (2021), Goyal et al. (2021),  

The unemployment rate at t-5. 
Global Financial 
Data 

52 Infl Inflation rate The 12-month consumer inflation rate at t-5. 
Global Financial 
Data 

53 GDPGr GDP growth 
The annual nominal gross domestic product (GDP) growth rate 
at t-5. 

Global Financial 
Data 

54 REERCh 
Real effective 
exchange rate 
change 

The average monthly log-change on the real effective exchange 
rate in months t-60 to t-1. 

Global Financial 
Data 

55 DebtGDP Debt-to-GDP ratio 
The government debt-to-gross domestic product (GDP) ratio at 
t-5. 

Global Financial 
Data 

56 PrimBal Primary balance 
The difference between government revenues and expenditures 
scaled by the gross domestic product (GDP) at t-5. 

Global Financial 
Data 

57 M1Ch M1 change 
The 12-month log-change in the M1 measure of money supply 
(i.e., from t-13 to t-1). 

Global Financial 
Data 

58 M2Ch M2 change 
The 12-month log-change in the M2 measure of money supply 
(i.e., from t-13 to t-1). 

Global Financial 
Data 

59 PopCh Population 
Geanakoplos et al. (2004), Goyal (2004), Ang and Maddaloni 
(2005), Brunetti and Torricelli (2010), Cornell (2012), 
Arnott and Chaves (2012) 

The change in the country's total population over the last 10 
years (i.e., from t-121 to t-1). 

Global Financial 
Data 

60 DebtGDPCh 
Change in the 
debt-to-GDP ratio 

Wisniewski and Jackson (2021) 
The 12-month change in the government debt-to-gross domestic 
product (GDP) ratio recorded at t-5 (i.e. from t-17 to t-5). 

Global Financial 
Data 

61 MacroMom Macro momentum Brooks (2017) 

An average of three monthly z-scores that are associated with 
the 12-month changes in the following macroeconomic variables: 
a) Annual gross domestic product (GDP) growth rate at t-5; b) 
unemployment rate at t-5; and c) 12-month consumer inflation 
rate at t-5. The z-scores for components b and c are multiplied 
by -1. 

Global Financial 
Data 

Panel M: Fixed-Income Markets 

62 BillYld Treasury bill yield 
Chen et al. (1986), Campbell (1987), Fama and French 
(1989), Welch (2008), Rapach et al. (2005), Hjalmarsson 

The annualized yield to redemption of the three-month treasury 
bills at t-1. 

Global Financial 
Data 
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63 BondYld 
Government bond 
yield 

(2010), Rapach and Zhou (2013), Pettenuzzo et al (2014), 
Baetje and Menkhoff (2016), Andrade and Chhaochharia 
(2018), Goyal et al. (2021) 

The yield to maturity (expressed on the annual basis) of the 10-
year government bonds at t-1. 

Datastream, Global 
Financial Data 

64 YldCrv Yield curve slope 
The difference between the annual yields to redemption of 10-
year government bonds and three-month treasury bills at t-1. 

Datastream, Global 
Financial Data 

65 CrvCh Yield curve change 

The 12-month change in the yield curve slope; where the yield 
curve slope is defined as the difference between the annual yields 
to redemption of 10-year government bonds and three-month 
treasury bills at t-1. 

Datastream, Global 
Financial Data 

66 YldCh Yield change Zaremba et al. (2021b) 
The 12-month change in the yield to maturity of the 10-year 
government bonds (from t-13 to t-1). 

Datastream, Global 
Financial Data 

67 BondMom Bond momentum Pitkäjärvi et al. (2020) 
The average monthly log-return on 10-year government bonds 
over the last 12 months (t-12 to t-1), expressed in local 
currency. 

Datastream, Global 
Financial Data 

Panel N: Financial and Economic Risk 

68 ForDebt 
Foreign debt as a 
percentage of GDP 

Erb et al. (1995a, 1996a, 1996b, 1997), Ferson and Harvey 
(1994), Bekaert et al. (1997), Harvey (2004), Aggarwal and 
Goodell (2008), Harvey and Ferson (2008), Suleman et al. 
(2017)  

The estimated gross foreign debt in a given year, converted into 
U.S. dollars at the average exchange rate for that year, is 
expressed as a percentage of the gross domestic product 
converted into U.S. dollars at the average exchange rate for that 
year (ICRG risk rating). 

PRS Group 

69 XRStab 
Exchange rate 
stability 

The appreciation or depreciation of a currency against the U.S. 
dollar (against the German mark /euro in the case of the USA) 
over a calendar year or the most recent 12-month period is 
calculated as a percentage change (ICRG risk rating). 

PRS Group 

70 DebtServ 

Foreign debt 
service as a 
percentage of 
exports of goods 
and services 

The estimated foreign debt service for a given year (converted 
into U.S. dollars at the average exchange rate for that year) is 
expressed as a percentage of the sum of the estimated total 
exports of goods and services for that year. It is converted into 
U.S. dollars at the average exchange rate for that year (ICRG 
risk rating). 

PRS Group 

71 CAXGS 

Current account as 
a percentage of 
exports of goods 
and services 

The balance of the current account of the balance of payments 
for a given year (converted into U.S. dollars at the average 
exchange rate for that year) is expressed as a percentage of the 
sum of the estimated total exports of goods and services for that 
year. It is converted into U.S. dollars at the average exchange 
rate for that year (ICRG risk rating). 

PRS Group 
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72 IntLiq 

Net international 
liquidity as 
months of import 
cover 

The total estimated official reserves for a given year (converted 
into U.S. dollars at the average exchange rate for that year), 
including official holdings of gold (converted into U.S. dollars at 
the free market price for the period), but excluding the use of 
IMF credits and the foreign liabilities of the monetary 
authorities. It is divided by the average monthly merchandise 
import cost, which is converted into U.S. dollars at the average 
exchange rate for the period (ICRG risk rating). 

PRS Group 

73 GDPHead 
Gross domestic 
product per head 

The estimated GDP per head for a given year (converted into 
U.S. dollars at the average exchange rate for that year) is 
expressed as a percentage of the average of the estimated total 
GDP of all the countries covered by ICRG (ICRG risk rating). 

PRS Group 

74 CACC 
Current account as 
a percentage of 
GDP 

The estimated balance on the current account of the balance of 
payments for a given year (converted into U.S. dollars at the 
average exchange rate for that year) is expressed as a percentage 
of the estimated GDP of the country concerned, which is 
converted into U.S. dollars at the average rate of exchange for 
the period covered (ICRG risk rating). 

PRS Group 

75 SovRet Sovereign risk Erb et al. (1995a, 1996a), Avramov et al. (2012) 

We closely follow Avramov et al. (2012) and transform sovereign 
ratings from three agencies; S&P, Fitch, and Moody's; into 
numerical values from 1 to 24—increasing in credit risk. The 
final score is the average numerical rating of the available 
agencies. 

Bloomberg 

Panel P: Political Risks and Regimes 

76 GovStab 
Government 
stability 

Diamonte et al. (1996), Erb et al. (1996b), Bilson et al. 
(2002), Lehkonen and Heimonen (2015), Vortelinos and Saha 
(2016), Dimic et al. (2015) 

An assessment of both the government’s ability to carry out its 
declared program(s), as well as its ability to stay in office 
(ICRG risk rating). 

PRS Group 

77 SocCond 
Socioeconomic 
conditions 

An assessment of the socioeconomic pressures at work in society 
that could either constrain government action or fuel social 
dissatisfaction (ICRG risk rating). 

PRS Group 

78 IntConf Internal conflict 
An assessment of political violence in the country and its actual 
(or potential) impact on governance (ICRG risk rating). 

PRS Group 

79 ExtConf External conflict 

An assessment of both the risk to the incumbent government 
from foreign action; this ranges from non-violent external 
pressure (diplomatic pressures, withholding of aid, trade 
restrictions, territorial disputes, sanctions, etc.) to violent 
external pressure (cross-border conflicts to all-out war) (ICRG 
risk rating). 

PRS Group 
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80 Corr Corruption 
An assessment of corruption within the political system (ICRG 
risk rating). 

PRS Group 

81 MilPol Military in politics 
An assessment of military involvement within politics (ICRG 
risk rating). 

PRS Group 

82 RelTen Religious tensions 
An assessment of religious tensions within a society (ICRG risk 
rating). 

PRS Group 

83 LawOrd Law and order 

A joint assessment of two components: the “Law” element, 
expressing the strength and impartiality of the legal system; and 
the “Order” element, reflecting the popular observance of the 
law (ICRG risk rating). 

PRS Group 

84 EthnTens Ethnic tensions 
An assessment of the degree of tension within a country—being 
attributable to racial, nationality, or language divisions (ICRG 
risk rating). 

PRS Group 

85 DemAcc 
Democratic 
accountability 

A measure of how responsive government is to its people; on the 
basis that the less responsive it is, the more likely it is that the 
government will fall either peacefully in a democratic society or 
potentially violently in a non-democratic one (ICRG risk 
rating). 

PRS Group 

86 BurQual 
Bureaucracy 
quality 

The institutional strength and quality of the bureaucracy, which 
helps to absorb shocks and minimize revisions of policy when 
governments change (ICRG risk rating). 

PRS Group 

87 Dem Democracy index 
Lehkonen and Heimonen (2015), Lei and Wisniewski (2018), 
Burnie (2021) 

The Liberal Democracy Index by V-Dem, indicating to what 
extent the ideal of liberal democracy is achieved a t-1. 

V-Dem 

88 DemCh Democratization Miller (2021) 
The 12-month change in the Liberal Democracy Index by V-
Dem. The index indicates to what extent the ideal of liberal 
democracy is achieved a t-1. 

V-Dem 
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Table A3. Counry-Level Asset Pricing Factors 

The table presents the basic statistical properties of monthly returns on country-level asset pricing factors: 
market excess returns (MKT), small minus big (SMB), high minus low (HML), momentum (MOM), robust 
minus weak (RMW), and conservative minus aggressive (CMA). The cross-sectional facors SMB, HML, 
MOM, RMV, and CMA are based on country sorts on MV, BM, LtMom, ROE, and AG (see Table A2 for 
variable definitions). The long-short factor portflios take positions in extreme quintiles and use an equal- 
or value-weighting scheme (Panels A and B, respectively). Average, standard deviation, minimum, and 
maximum are all reported in percentages. The sample comprises 71 country stock markets and the study 
period is January 1995 to April 2021.  

  MKT SMB HML MOM RMW CMA 
Panel A: Equal-weighted factor portfolios 

Average 0.60 0.34 0.50 0.86 0.28 -0.26 
St. deviation 4.48 3.94 3.64 4.64 3.68 3.58 
Skewness -0.76 0.12 0.29 -0.13 -0.40 0.25 
Kurtosiss 2.08 1.53 0.26 0.57 1.60 0.95 
Minimum -20.75 -15.78 -9.05 -15.56 -14.02 -11.25 
Maximum 12.53 15.33 11.04 13.27 10.48 13.61 

Panel B: Value-weighted factor portfolios 
Average 0.60 0.20 0.52 0.45 0.18 0.20 
St. deviation 4.48 3.82 4.13 5.54 3.71 3.76 
Skewness -0.76 0.24 0.68 -0.36 -0.41 -0.09 
Kurtosiss 2.08 1.19 1.75 1.02 1.49 0.29 
Minimum -20.75 -12.79 -10.55 -16.88 -15.77 -13.18 
Maximum 12.53 15.29 19.43 17.59 13.25 9.99 
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Table A4. Bivariate Portfolio Sorts Mispricing and Return Predictions from Different Models 

The table presents the monthly returns on portfolios from bivariate sorts on the mispricing score (MISP) and 
return predictions from different machine learning models described in Section 2.3. In the first step, we sort the 
markets into tertiles based on MISP. Subsequently—within each of these subsets—we sort portfolios into low, 
middle, and high tertiles (as inticated in the top row) based on the return predictions from models indicated in 
the top row. Panel A presents the returns on zero-investment strategies that buy (sell) the tertile of markets with 
the highest (lowest) predicted returns aross different MISP tertile. Panel B reports the differences in returns on 
the long-short strategies between the Low and High MISP tertiles and the middle one. All portfolios are equally-
weighted and are rebalanced monthly. The returns and alphas are reported in percentages. The numbers in 
parentheses bootstrap t-statistics. The sample comprises 71 country stock markets and the testing period is from 
January 1995 to April 2021. 

  OLS PCA PLS LASSO ENET SVM GBRT RF FFN1 FFN2 FFN3 
Panel A: Average returns on long-short machine learning portfolios 

Low MISP 1.27 0.90 1.19 0.89 0.88 0.87 0.83 1.19 1.36 1.21 1.18 
 (5.33) (3.90) (5.34) (3.77) (3.74) (3.69) (3.59) (5.01) (5.54) (4.96) (4.91) 

Mid MISP 0.33 0.16 0.11 0.32 0.33 0.35 0.51 0.69 0.50 0.27 0.23 
 (1.89) (0.98) (0.66) (1.67) (1.73) (2.13) (3.09) (3.93) (3.00) (1.72) (1.41) 

High MISP 0.90 1.14 0.96 0.95 0.94 0.89 0.73 0.93 1.00 1.13 1.13 
 (3.35) (4.44) (3.54) (3.25) (3.23) (3.35) (2.94) (3.54) (3.72) (4.38) (4.38) 

Panel B: Differences-in-differences 
Low-Mid MISP 0.94 0.74 1.08 0.57 0.56 0.52 0.33 0.50 0.87 0.94 0.94 

 (3.17) (2.68) (4.17) (1.92) (1.87) (1.84) (1.22) (1.90) (2.98) (3.18) (3.47) 
High-Mid MISP 0.57 0.98 0.85 0.63 0.61 0.53 0.22 0.24 0.50 0.85 0.90 
  (1.84) (3.41) (2.77) (1.91) (1.87) (1.79) (0.72) (0.78) (1.64) (2.89) (3.04) 
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B. Machine Learning Methods 

In all the models described below, we define the excess return on a country equity index 
i at time t+1 as: 

 𝑟քӴ֏+φ = 𝐸֏ि𝑟քӴ֏+φी + 𝜀քӴ֏+φ,  (B1) 

where 𝑟քӴ֏+φ denotes the excess return on index 𝑖 = 1,… ,𝑁յ  in month 𝑡 = 1,… , 𝑇 . The 
expected excess returns are calculated using a constant function of predictor variables zi,t 
available at period t: 

 𝐸֏ि𝑟քӴ֏+φी = 𝑔ि𝑧քӴ֏ी, (B2) 

where the P-dimensional vector 𝑧քӴ֏ contains market characteristics used to predict 
returns. The function 𝑔(. ) is flexible and changes across different machine learning 
models. 

B.1. Linear Regression: OLS 

The linear regression that is estimated using the ordinary least squares (OLS) is one of 
the simplest, yet prevalent, machine learning methods used in finance. The model 
assumes that the conditional expectation of returns on security i at time t can be 
approximated by the following linear function: 

 𝑔ि𝑧քӴ֏; 𝜃ी = 𝑧քӴ֏
 𝜃. (B3) 

The model parameters’ vector θ can be conveniently estimated using OLS by minimizing 
the loss function: 

 𝐿(𝜃) = φ
յկ

∑ ∑ ॅ𝑟քӴ֏+φ − 𝑔ि𝑧քӴ֏; 𝜃ीॆ
ϵյ

֏=φ

կ

ք=φ
.  (B4) 

Importantly, the cross-sectional OLS regressions do not rely on any hyperparameters 
and—thus—do not require the sample splitting into training and validation periods. As 
indicated in Wooldridge (2001) and Gu, Kelly, and Xiu (2020), the parameter estimates 
in (B4) are efficient and unbiased if the number of predictors is small relative to the 
number of time observations. Nonetheless, in real-life machine learning problems, the 
number of covariates is substantial; this leads to the overfitting, invalidating efficiency, 
or consistency of OLS estimates. The subsequent models described in this appendix 
represent literature solutions to cope with these problems. 
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B.2. Dimension Reduction Techniques: PCA, PLS 

The number of covariates in the vector 𝑧քӴ֏ in Equation (B2) is typically high, leading to 
a risk of overfitting. A potentially effective solution to this problem may be reducing the 
number of market characteristics to a smaller quantity of factors. In this regard, we 
consider two popular techniques: the principal component analysis (PCA) and the partial 
least squares (PLS). 

To begin with the PCA, this technique assumes the transformation of a set of return 
predictors into a smaller number of orthogonal principal components. These new de-
correlated predictors are designed to have maximum possible variance and, hence, 
explanatory power over the initial set of predictors. Once the optimal number of the few 
leading components is identified using a validation procedure, they are used as new 
variables in order to predict the cross-section of index returns. 

A potential deficiency of the PCA method is that the leading principal components aim 
to maximize the common variation across the characteristics, disregarding their 
association with future returns. Consequently, while this approach effectively reduces the 
number of dimensions and handles overfitting, there is no guarantee that the newly 
created variables will contain substantial information about stock performance. 
Theoretically, the components may be dominated by covariates that efficiently explain 
the set of considered features but have minor predictive abilities.  

In contrast, the PLS attenuates the drawbacks of PCA by directly extracting the 
strongest signals based on their links with stock returns. The covariation between the 
predictors and asset returns is exploited via a model-averaging approach. Specifically, 
PLS seeks to find linear combinations of the considered predictors; this is so that the 
newly created components maximize their correlation with future cross-sectional returns.  

In practice, the first PLS component is created by running univariate regressions of 
realized returns on individual market characteristics. The resulting coefficients can be 
regarded as measures of “partial” sensitivity of equity index returns to each variable. 
Then, the first component is formed by weighting the predictors based on their 
coefficients; this is so that the higher (lower) weights are associated with the stronger 
(weaker) predictors. The subsequent components are formed using a similar procedure; 
however, the predictors are initially orthogonalized with respect to the already created 
component(s). Similarly, as the PLS, the PCA method has only one tuning parameter 
optimized via validation: the number of components employed in the predictive 
regressions.  
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B.3. Penalized Linear Regressions: LASSO, ENET 

The regularization of linear regression is a common approach to coping with overfitting 
problems. A standard method is to include a penalty term to the objective function. 
Popular regularized models include the least absolute shrinkage and selection operator 
(LASSO), as well as the Ridge regressions. Furthermore, the elastic net (ENET), 
employed in finance firstly by Rapach et al. (2013), is a convex combination of these two 
methods. In our study, we follow Leippold, Wang, and Zhou (2021) and include LASSO 
and ENET among the considered prediction models. Both methods have an identical 
specification as the simple OLS regression. The main difference lies in the structure of 
the loss function, which includes an additional penalty term 𝜙(𝜃; . ). The precise 
functional form of this penalty term may differ; furthermore, the elements of the 
coefficients vector 𝜃 may be shrunk towards zero and regularized. 

The penalty function for LASSO takes the following form:  

 𝜙խբմմհ(𝜃; . ) = 𝜆∑ ੵ𝜃օੵ
ձ

օ=ք
, (B5) 

where λ>0 is the hyperparameter determining the magnitude of shrinkage; i.e., the size 
of the penalty. We employ a standard regularization approach relying on a geometric 
series of λ values with the largest on giving a null model (all coefficients are zero). 
Subsequently, we select and use the λ parameter that generates the lowest MSE in the 
validation sample. 

The penalty function for ENET, in turn, is given by:  

 𝜙զկզյ (𝜃; . ) = (1 − 𝛼)λ∑ ੵ𝜃օੵ
ձ

օ=ք
+ φ

ϵ
𝛼λ∑ 𝜃օ

ϵձ

օ=ք
, (B6) 

where λ>0 plays an identical role as in Equation (B5), and 𝛼 determines the relative 
weight between the two penalty components. The λ hyperparameter is determined 
following the same approach as for LASSO, and α=0.5. One advantage of ENET, relative 
to LASSO, is that it copes more effectively with the correlation between covariates (see 
Zou and Hastie [2005], as well as Diebold and Shin [2019], for details). Following the 
convention in the literature, we do not shrink the intercept in both models. 

B.4. Support Vector Machine: SVM 

Support Vector Machine (SVM) seeks hyperplanes to territorially split the 
multidimensional vector space into groups belonging to similar classes. In the asset 
pricing context, the vector space comprises the stock-level return predictors. The 
hyperplanes are located in areas of closely neighboring vectors. The SVM algorithm 
typically concentrates on the immediate neighbors of the potential hyperplanes, which 
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are called “support vectors.” This operation aims at increasing the computation speed of 
the algorithm. In its optimization procedure, SVM targets to specify the optimal 
hyperplanes by means of minimizing the number of misclassified support vectors and 
maximizing the distance between the correctly classified ones.  

SVM may be used for both binary and multi-class problems. In the latter case, the 
optimal fit is searched via pairwise class comparisons. SVM is strongly regularized to 
avoid overfitting. In a high-dimensional space, SVM  may be used both as a classification 
and regression method—though the last method attracts less attention in finance. In such 
a case, it is sometimes called Support Vector Regression and may be directly employed 
to predict cross-sectional returns. We estimate the model parameters using the average 
stochastic gradient descent (ASGD) algorithm of Xu (2011). 

B.5 Tree Models: RF, GBRT 

Tree models are both flexible and non-parametric machine learning techniques to handle 
both classification and regression problems. We employ two methods from this domain: 
random forests (RF) and gradient boosted regression trees (GBRT). Both techniques can 
be regarded as ensemble methods, as they build on a number of individual “trees.” 

The tree methods partition observation into multiple subgroups, typically named as 
“leaves.” A tree is built in a sequence of steps; furthermore, its structure is determined 
by the decision nodes and splitting variables. A splitting variable produces two disjoint 
branches at each split point. The tree grows subsequent sets of branches until the terminal 
nodes “leaves” are reached. In asset pricing practice, the final product is returns clustered 
by predictors.  

Formally, a simple tree with a depth of L and K leaves can be described by the following 
equation: 

 𝑔ि𝑧քӴ֏; 𝜃,𝐾,𝐿ी = ∑ 𝜃լ1ृ֕Վӱՙ∈դԶ(խ)ॄ
լ

ֆ
, (B6) 

where L indicates the depth measured with the largest number of nodes in a complete 
branch, CK(L) denotes the k-th partition of the variables, θK is the sample average of the 
outcomes within the partition, and 1{.} is the indicator function. If an index i with a set 
of return predictive variables zi,t is clustered into the k-th leaf, then θK will indicate the 
return prediction. The tree models offer substantial flexibility in terms of both split points 
and variable selection (see James et al. [2013] for review). Simple trees are prone to 
overfitting, so they are required to be heavily regularized. The RF and GBRT used in 
this study belong to the most popular regularization techniques. 
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RF relies on the bootstrap aggregation algorithm of Breiman et al. (2001), usually named 
“bagging.” This method builds on average multiple trees to reduce the forecast variation. 
To be specific, the model uses bootstrapped samples of the original data to train a certain 
number of trees and uses random subsets of variables to grow the branches. The averaged 
outcome of these de-correlated trees reduces the overfit and, therefore, results in more 
stable predictions. Our models assume 30 trees with a minimum leaf size of five. The 
number of features equals 30. 

The GBRT algorithm has a different structure and aims at producing a “strong learner” 
from a combination of weak learners. Assume a GBRT model with only two trees. The 
first of them is formed to fit equity returns to market characteristics. Subsequently, the 
second tree (of identical depth) is constructed to fit the residuals from the first tree. The 
ensemble forecast of this simple GBRT model is calculated as the prediction of the first 
tree plus the second tree’s prediction multiplied by the learning rate (0,1). The 
subsequent trees can be formed using the same procedure: fitting the residuals from the 
already grown trees and multiplying them times the learning rate. We fit the GBRT 
model using the least-squares boosting algorithm (Breinan, 2001; Hastie, Tibshirani, & 
Friedman, 2008). We assume up to 100 learning cycles. 

B.6. Neural Networks: FFN1, FFN2, FFN3 

Neural networks can effectively approximate nonlinear functions, as well as account for 
interactions between predictors. Therefore, they attracted much attention in different 
fields—not just limited to finance. In our study, we employ feed-forward neural networks. 
A typical structure of such a network comprises an “input layer” with the input variables 
(return predictors); several “hidden” layers, which contain activation functions and 
transform the predictors; and an “output layer,” transforming the outcomes from hidden 
layers into the final return predictions. The more hidden layers are included in the model, 
the more flexible it becomes. The information flows from the input layers through the 
hidden layers to be aggregated into forecasts through the output layers.  

We consider three different neural networks with one, two, or three hidden layers; these 
are denoted as FFN1, FFN2, and FFN3—respectively. The respective layers include eight, 
four, and two neurons—similar to Gu, Kelly, and Xiu (2020) or Leippold, Wang, and 
Zhou (2021). Each of them takes the result from the previous layer and forges it into 
output.  

Our implementation of neural networks generally follows Gu et al. (2020). The neurons 
may include many different activation functions and we rely on a rectified linear unit, 
which is defined as 𝜎(𝑥) − max(0, 𝑥). To train the model, we follow Da Nard, Hediger, 
and Leippold (2020) and employ the Adam optimization algorithm of Kingma and Ba 
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(2014); with default parameters with the maximum number of epochs amounting to 1000, 
learning rate equals 0.01, and its increase of 1.05.  

B.7. Forecast Combination: COMB 

The forecasts combination assumes merging multiple predictions from different models. 
The underlying reasoning is associated with the concept that forecasts from individual 
models may have high variance. Hence, combining them may reduce the overall variance 
and—thus—decrease the prediction error. The overall effect tends to improve the 
accuracy of return predictability (Rapach et al., 2010; Chen et al., 2019). In our study, 
we follow Bali et al. (2021) and calculate the COMB forecasts as the simple equal-
weighted average of all 11 individual models that are considered: OLS, PCA, PLS, 
LASSO, ENET, SVM, RF, GBRT, FFN1, FFN2, and FFN3. 
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