Bayesian approach to cancer-trend analysis using age-stratified Poisson regression models

Annual Percentage Change (APC) summarizes trends in age-adjusted cancer rates over short time-intervals. This measure implicitly assumes linearity of the log-rates over the intervals in question, which may not be valid, especially for relatively longer time-intervals. An alternative is the Average Annual Percentage Change (AAPC), which computes a weighted average of APC values over intervals where log-rates are piece-wise linear. In this article, we propose a Bayesian approach to calculating APC and AAPC values from age-adjusted cancer rate data.
Bayesian approach to cancer-trend analysis using age-stratified Poisson regression models

Annual Percentage Change (APC) summarizes trends in age-adjusted cancer rates over short time-intervals. This measure implicitly assumes linearity of the log-rates over the intervals in question, which may not be valid, especially for relatively longer time-intervals. An alternative is the Average Annual Percentage Change (AAPC), which computes a weighted average of APC values over intervals where log-rates are piece-wise linear. In this article, we propose a Bayesian approach to calculating APC and AAPC values from age-adjusted cancer rate data.