Centres Of Excellence

To focus on new and emerging areas of research and education, Centres of Excellence have been established within the Institute. These ‘virtual' centres draw on resources from its stakeholders, and interact with them to enhance core competencies

Read More >>

Faculty

Faculty members at IIMB generate knowledge through cutting-edge research in all functional areas of management that would benefit public and private sector companies, and government and society in general.

Read More >>

IIMB Management Review

Journal of Indian Institute of Management Bangalore

IIM Bangalore offers Degree-Granting Programmes, a Diploma Programme, Certificate Programmes and Executive Education Programmes and specialised courses in areas such as entrepreneurship and public policy.

Read More >>

About IIMB

The Indian Institute of Management Bangalore (IIMB) believes in building leaders through holistic, transformative and innovative education

Read More >>

Dirichlet Process Hidden Markov Multiple Change-point Model

Stanley I. M. Ko, Terence T. L. Chong, and Pulak Ghosh
Journal Name
Bayesian Analysis
Journal Publication
others
Publication Year
2015
Journal Publications Functional Area
Decision Sciences and Information Systems
Publication Date
Vol. 10, No. 2, 2015, Pg: 275-296
Abstract

This paper proposes a new Bayesian multiple change-point model which is based on the hidden Markov approach. The Dirichlet process hidden Markov model does not require the specification of the number of change-points a priori. Hence our model is robust to model specification in contrast to the fully parametric Bayesian model. We propose a general Markov chain Monte Carlo algorithm which only needs to sample the states around change-points. Simulations for a normal mean-shift model with known and unknown variance demonstrate advantages of our approach. Two applications, namely the coal-mining disaster data and the real United States Gross Domestic Product growth, are provided. We detect a single change-point for both the disaster data and US GDP growth. All the change-point locations and posterior inferences of the two applications are in line with existing methods.

Dirichlet Process Hidden Markov Multiple Change-point Model

Author(s) Name: Stanley I. M. Ko, Terence T. L. Chong, and Pulak Ghosh
Journal Name: Bayesian Analysis
Volume: Vol. 10, No. 2, 2015, Pg: 275-296
Year of Publication: 2015
Abstract:

This paper proposes a new Bayesian multiple change-point model which is based on the hidden Markov approach. The Dirichlet process hidden Markov model does not require the specification of the number of change-points a priori. Hence our model is robust to model specification in contrast to the fully parametric Bayesian model. We propose a general Markov chain Monte Carlo algorithm which only needs to sample the states around change-points. Simulations for a normal mean-shift model with known and unknown variance demonstrate advantages of our approach. Two applications, namely the coal-mining disaster data and the real United States Gross Domestic Product growth, are provided. We detect a single change-point for both the disaster data and US GDP growth. All the change-point locations and posterior inferences of the two applications are in line with existing methods.