Centres Of Excellence

To focus on new and emerging areas of research and education, Centres of Excellence have been established within the Institute. These ‘virtual' centres draw on resources from its stakeholders, and interact with them to enhance core competencies

Read More >>

Faculty

Faculty members at IIMB generate knowledge through cutting-edge research in all functional areas of management that would benefit public and private sector companies, and government and society in general.

Read More >>

IIMB Management Review

Journal of Indian Institute of Management Bangalore

IIM Bangalore offers Degree-Granting Programmes, a Diploma Programme, Certificate Programmes and Executive Education Programmes and specialised courses in areas such as entrepreneurship and public policy.

Read More >>

About IIMB

The Indian Institute of Management Bangalore (IIMB) believes in building leaders through holistic, transformative and innovative education

Read More >>

Optimal Sampling Frequency for Volatility Forecast Models for the Indian Stock Markets

Malay Bhattacharya, Dilip Kumar and Ramesh Kumar
Journal Name
Journal of Forecasting
Journal Publication
others
Publication Year
2009
Journal Publications Functional Area
Decision Sciences and Information Systems
Publication Date
Vol. 28, Issue 1, 2009, PP 38-54
Abstract

This paper evaluates the performance of conditional variance models using high-frequency data of the National Stock Index (S&P CNX NIFTY) and attempts to determine the optimal sampling frequency for the best daily volatility forecast. A linear combination of the realized volatilities calculated at two different frequencies is used as benchmark to evaluate the volatility forecasting ability of the conditional variance models (GARCH (1, 1)) at different sampling frequencies. From the analysis, it is found that sampling at 30 minutes gives the best forecast for daily volatility. The forecasting ability of these models is deteriorated, however, by the non-normal property of mean adjusted returns, which is an assumption in conditional variance models. Nevertheless, the optimum frequency remained the same even in the case of different models (EGARCH and PARCH) and different error distribution (generalized error distribution, GED) where the error is reduced to a certain extent by incorporating the asymmetric effect on volatility. Our analysis also suggests that GARCH models with GED innovations or EGRACH and PARCH models would give better estimates of volatility with lower forecast error estimates. Copyright © 2008 John Wiley & Sons, Ltd.

Optimal Sampling Frequency for Volatility Forecast Models for the Indian Stock Markets

Author(s) Name: Malay Bhattacharya, Dilip Kumar and Ramesh Kumar
Journal Name: Journal of Forecasting
Volume: Vol. 28, Issue 1, 2009, PP 38-54
Year of Publication: 2009
Abstract:

This paper evaluates the performance of conditional variance models using high-frequency data of the National Stock Index (S&P CNX NIFTY) and attempts to determine the optimal sampling frequency for the best daily volatility forecast. A linear combination of the realized volatilities calculated at two different frequencies is used as benchmark to evaluate the volatility forecasting ability of the conditional variance models (GARCH (1, 1)) at different sampling frequencies. From the analysis, it is found that sampling at 30 minutes gives the best forecast for daily volatility. The forecasting ability of these models is deteriorated, however, by the non-normal property of mean adjusted returns, which is an assumption in conditional variance models. Nevertheless, the optimum frequency remained the same even in the case of different models (EGARCH and PARCH) and different error distribution (generalized error distribution, GED) where the error is reduced to a certain extent by incorporating the asymmetric effect on volatility. Our analysis also suggests that GARCH models with GED innovations or EGRACH and PARCH models would give better estimates of volatility with lower forecast error estimates. Copyright © 2008 John Wiley & Sons, Ltd.