Centres Of Excellence

To focus on new and emerging areas of research and education, Centres of Excellence have been established within the Institute. These ‘virtual' centres draw on resources from its stakeholders, and interact with them to enhance core competencies

Read More >>

Faculty

Faculty members at IIMB generate knowledge through cutting-edge research in all functional areas of management that would benefit public and private sector companies, and government and society in general.

Read More >>

IIMB Management Review

Journal of Indian Institute of Management Bangalore

IIM Bangalore offers Degree-Granting Programmes, a Diploma Programme, Certificate Programmes and Executive Education Programmes and specialised courses in areas such as entrepreneurship and public policy.

Read More >>

About IIMB

The Indian Institute of Management Bangalore (IIMB) believes in building leaders through holistic, transformative and innovative education

Read More >>

Ask your doctor whether this product is right for you: a Bayesian joint model for patient drug requests and physician prescriptions

Bhuvanesh Pareek, Qiang Liu and Pulak Ghosh
Journal Name
Journal of Royal Statistical Society A
Journal Publication
others
Publication Year
2019
Journal Publications Functional Area
Decision Sciences and Information Systems
Publication Date
Vol. 182, Part 1, January 2019, Pg. 197-223
Abstract

The goal of this research is to study jointly physician prescription decisions and patient drug request behaviours. We have adopted a binary logit model and a multinomial logit model to study patient drug request data with excessive zero requests and a multinomial logit model to capture physician prescription decisions. These models are further joined by a flexible non‐parametric multivariate distribution for their random effects. We also adopt an analytically consistent expression for interaction effects in our non‐linear and joint modelling framework. We apply our model to a unique physician panel data set from the erectile dysfunction category. Our key empirical findings include that the triggering of drug requests by direct‐to‐consumer advertising (DTCA) is complex with category level DTCA reducing patients’ probabilities of making drug requests and drug‐specific DTCA driving drug requests for the drug advertised, patients’ characteristics may play a role in both the influence of DTCA on drug requests and the influence of patients’ requests on physicians’ prescription decisions, patients’ drug requests have a positive effect on physicians’ prescription decisions and patients can be consistent with physicians in choosing a drug based on their diagnosis levels and some unobserved factors, and there are significant correlations between physician level random effects that drive both patients’ drug requests and physicians’ prescription decisions, which validate the joint modelling approach.

Ask your doctor whether this product is right for you: a Bayesian joint model for patient drug requests and physician prescriptions

Author(s) Name: Bhuvanesh Pareek, Qiang Liu and Pulak Ghosh
Journal Name: Journal of Royal Statistical Society A
Volume: Vol. 182, Part 1, January 2019, Pg. 197-223
Year of Publication: 2019
Abstract:

The goal of this research is to study jointly physician prescription decisions and patient drug request behaviours. We have adopted a binary logit model and a multinomial logit model to study patient drug request data with excessive zero requests and a multinomial logit model to capture physician prescription decisions. These models are further joined by a flexible non‐parametric multivariate distribution for their random effects. We also adopt an analytically consistent expression for interaction effects in our non‐linear and joint modelling framework. We apply our model to a unique physician panel data set from the erectile dysfunction category. Our key empirical findings include that the triggering of drug requests by direct‐to‐consumer advertising (DTCA) is complex with category level DTCA reducing patients’ probabilities of making drug requests and drug‐specific DTCA driving drug requests for the drug advertised, patients’ characteristics may play a role in both the influence of DTCA on drug requests and the influence of patients’ requests on physicians’ prescription decisions, patients’ drug requests have a positive effect on physicians’ prescription decisions and patients can be consistent with physicians in choosing a drug based on their diagnosis levels and some unobserved factors, and there are significant correlations between physician level random effects that drive both patients’ drug requests and physicians’ prescription decisions, which validate the joint modelling approach.