Centres Of Excellence

To focus on new and emerging areas of research and education, Centres of Excellence have been established within the Institute. These ‘virtual' centres draw on resources from its stakeholders, and interact with them to enhance core competencies

Read More >>

Faculty

Faculty members at IIMB generate knowledge through cutting-edge research in all functional areas of management that would benefit public and private sector companies, and government and society in general.

Read More >>

IIMB Management Review

Journal of Indian Institute of Management Bangalore

IIM Bangalore offers Degree-Granting Programmes, a Diploma Programme, Certificate Programmes and Executive Education Programmes and specialised courses in areas such as entrepreneurship and public policy.

Read More >>

About IIMB

The Indian Institute of Management Bangalore (IIMB) believes in building leaders through holistic, transformative and innovative education

Read More >>

Does Investor Attention to Energy Stocks Exhibit Power Law?

Ravi Prakash Ranjan and Malay Bhattacharyya
Journal Name
Energy Economics
Journal Publication
others
Publication Year
2018
Journal Publications Functional Area
Decision Sciences and Information Systems
Publication Date
Vol. 75, September 2018, Pg. 573-582
Abstract

In this article, we explore the dynamics of memory and the correlation structure in investor attention. Information on whether a time series is a pure noise or has a short or long range memory is important for predictive modeling of the series and analyzing its relationship with other variables. Existing studies on time series memory of stock variables are limited to price, volume, returns and conditional variance of returns. We carry out an in-depth analysis to understand the dependence structure of stock's investor attention time series (IATS) for energy market. In this process, we first investigate the existence of correlated dependence in IATS and analyze its dynamics using detrended fluctuation analysis. Further, we check how this dependence changes a) with frequency of sampled data b) during volatility clustering periods of price and volume of underlying stocks. Finally, we perfom detrended cross correlation analysis on local and global IATS to find any cross correlation dependence between the two. We use relative search query volume in Google to quantify IATS for a particular stock and analyze top 20 energy companies based on their market capitalization. The obtained detrended fluctuation coefficients for stock's IATS differ significantly from 0.5 indicating the existence of memory in the series. The dynamics of this memory exhibits persistent and mean reverting behavior. We also observed a reasonably high positive cross correlation dependence between local and global IATS. Finally we find that volatility clustering has little effect on dependence structure of investor attention time series. We also include a few examples to illustrate practical implications of these results.

Does Investor Attention to Energy Stocks Exhibit Power Law?

Author(s) Name: Ravi Prakash Ranjan and Malay Bhattacharyya
Journal Name: Energy Economics
Volume: Vol. 75, September 2018, Pg. 573-582
Year of Publication: 2018
Abstract:

In this article, we explore the dynamics of memory and the correlation structure in investor attention. Information on whether a time series is a pure noise or has a short or long range memory is important for predictive modeling of the series and analyzing its relationship with other variables. Existing studies on time series memory of stock variables are limited to price, volume, returns and conditional variance of returns. We carry out an in-depth analysis to understand the dependence structure of stock's investor attention time series (IATS) for energy market. In this process, we first investigate the existence of correlated dependence in IATS and analyze its dynamics using detrended fluctuation analysis. Further, we check how this dependence changes a) with frequency of sampled data b) during volatility clustering periods of price and volume of underlying stocks. Finally, we perfom detrended cross correlation analysis on local and global IATS to find any cross correlation dependence between the two. We use relative search query volume in Google to quantify IATS for a particular stock and analyze top 20 energy companies based on their market capitalization. The obtained detrended fluctuation coefficients for stock's IATS differ significantly from 0.5 indicating the existence of memory in the series. The dynamics of this memory exhibits persistent and mean reverting behavior. We also observed a reasonably high positive cross correlation dependence between local and global IATS. Finally we find that volatility clustering has little effect on dependence structure of investor attention time series. We also include a few examples to illustrate practical implications of these results.